19/11-69 3-177 Usb. AH CCCP, cep. gnus. 1969, T. 33, NS, c. 1283-1293 ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна P6 - 4240

Н.Г.Зайцева, Б.Крацик, М.Г.Лощилов, Г.Музиоль, Чан Тхань Минь, Х.Штрусный

О СХЕМЕ РАСПАДА 84 У

1969

AAEPHDLX NPOSAEM

ENGORAGOSING CASODAROPHA

P6 - 4240

Н.Г.Зайцева, Б.Крацик, М.Г.Лощилов, Г.Музиоль, Чан Тхань Минь, Х.Штрусный

40 8/56 mb

О СХЕМЕ РАСПАДА ⁸⁴ у

Направлено в Известия АН СССР"

Введение

Распад изотопа ⁸⁴ Y (Т_У = (39<u>+</u>4) мин) был изучен в работах/1-3/ с помощью сцинтилляционного гамма-спектрометра. Полученные данные не позволили авторам этих работ предложить детальную схему распада.

Настоящая работа посвящена исследованию распада⁸⁴ Y с помощью Ge(Li) – гамма-спектрометра с высоким энергетическим разрешением. Предлагается схема уровней чётно-чётного ядра ⁸⁴ Sr 48, возбуждаемых при распаде ⁸⁴ Y, и приводится сравнение с предсказаниями, сделанными на основании различных моделей для чётно-чётных ядер.

Экспериментальная методика

Радиоактивные изотопы иттрия получались различными способами. Облучались мишени SrCl₂ протонами с энергиями 120 и 660 Мэв на внутреннем и внешнем пучке синхроциклотрона ОИЯИ, соответственно, и мишень из металлического ниобия – протонами с энергией 660 Мэв на внутреннем пучке. Мишень SrCl₂, облученная внутренним пучком протонов, растворялась в 0,1 М HCl, и радиоактивный иттрий без носителя выделялся экстракцией с помощью 0,75 М растора диэтилгексилортофосфорной кислоты (HДЕНР) в толуоле/4,5/. После нескольких промывок 0,1 М HCl органический раствор, содержащий радиохимически чистый иттрий, использовался для измерения гамма-спектров.

Для выделения радиоактивных изотопов иттрия из мишеней SrCl₂, облученных внешним пучком протонов, применялся метод распределительной хроматографии/6/. Сорбентом для иттрия служил шлаконизированный силикагель, пропитанный раствором НДЕНР и помещенный в колонку (h = 10 мм, d = 3 мм). После промывки колонки 0,1 М HCl для удаления загрязнений радиоактивный иттрий элюировался 6 М HCl, и этот раствор служил препаратом для измерения гамма-спектров.

Ниобиевая мишень растворялась в смеси кислот HF и HNO_3 , затем осаждался LaF_3 , который захватывал радиоактивный иттрий. После промывки и растворения осадка LaF_3 в 0,3 М HC1 – H_3 ВО $_3$ лантан (иттрий) сорбировались смолой Dowex 50 x 8, смола наносилась на колонку и радиоактивный иттрий без носителя элюировался 0,22 М раствором *а*-оксиизобутирата/7/.

Для измерения гамма-спектров были использованы два детектора типа Ge(Li) с чувствительным объемом 6 и 10 см³ и с энергетическим разрешением⁶⁰ Содля гамма-переходов соответственно 3,5 и 5 кэв. Использованная измерительная техника описана в работе^{/8/}. Измерения гамма-спектров начинались спустя определенное время (от 20 мин до 20 час) с момента окончания облучения.

Экспериментальные результаты

Измерение гамма-спектров изотопов, содержащихся во фракции иттрия, продолжалось во всех опытах в течение многих периодов полураспада до полного распада ⁸⁴ Y. Принадлежность гамма-переходов к определенному изотопу определялась по периоду полураспада. Кроме того, учитывалось постоянство отношения интенсивностей гамма-переходов в гамма-спектрах, которые были зарегистрированы на различных по условиям получения препаратах. Помимо ⁸⁴ Y. в полученных источниках содержались также изотопы ⁸⁵ Y. ⁸⁶ Y. ⁸⁷ Y и ⁸⁸ Y. На рис. 1-4 изображены участки гамма-спектра для энергий от 400 до 2400 кэв. Данные об энергиях и интенсивностях гамма-переходов, сопровождающих распад ⁸⁴ Y, представлены в табл. 1. Здесь же для сравнения приведены

данные, полученные в работах^{/1-4/}. Для определения коэффициента внутренней конверсии (КВК) некоторых переходов нами были использованы интенсивности гамма-переходов, определенные нами, и интенсивности конверсионных электронов, полученные в работе^{/1/}. При этом было принято, что переход с энергией 794 кэв (2⁺ \rightarrow 0⁺) типа E2 с теоретическим КВК $a_k = 8,4.10^{-4}$ /9/. В табл. 2 сравниваются теоретические КВК значений с экспериментально определенными и на этом основании делаются выводы о мультипольности некоторых переходов.

Схема распада ⁸⁴₃₉ Y → ⁸⁴₃₈ Sr 46

Предлагаемая нами схема распада, изображенная на рис. 5б, построена на основе баланса энергий и интенсивностей гамма-переходов с учётом сведений о β^+ - распаде ⁸⁴ у /1/, $\gamma - \gamma$ -совпадениях/1/, а также о структуре схем возбужденных уровней соседних ядер. Разница интенсивностей уходящих и приходящих на каждый уровень гамма -переходов, относилась за счёт позитронного распада и электронного захвата. Доли β⁺ -распада на отдельные уровни были вычислены из теоретических отношений K/β+ для разрешенных переходов. При этом принималось, что найденные в/1/ β+- компоненты с граничными энергиями E_{R+}=(3500<u>+</u> +100) и (2900+150) кэв направлены на уровни с энергиями 1769 и 2451кэв соответственно, откуда следует, что полная энергия бета-распада ⁸⁴ Y Q_{R+} = (6290+100) кэв. На основании этих данных были выравна числены значения log ft переходов на уровни ⁸⁴ Sr. Интенсивности заселения уровней и значения log ft указаны на рис. 5б.

Для сравнения на рис. 5а изображена схема уровней изотона ${}^{82}_{36}$ Kr₄₆, хорошо изученная авторами работ/10,11/. Структуры низкоэнергетических возбужденных состояний (E < 3 Мэв) изотопов ${}^{84}_{38}$ Sr₄₆ и ${}^{82}_{36}$ Kr₄₆ имеют много общего. По модели оболочек основному состоянию соответствует конфигурация { (π 1 f_{5/2})⁶, (ν lg_{9/2})⁻⁴ } и характеристики I ${}^{\pi}$ = 0⁺. Квантовые характеристики первого возбужденного состояния с энергией 794 кэв приписываются по аналогии с чётно-чётными ядрами этой области, т.е. I ${}^{\pi}$ = 2⁺. Мультипольность типа E2 – перехода

с энергией 975 кэв и отсутствие перехода с уровня при 1769 кэв в основное состояние говорят в пользу характеристик 3⁺ или 4⁺ для уровня с энергией 1796 кэв. На рис. ба,б показана систематика энергий низкоэнергетических состояний с I^{π} = 2⁺⁽¹⁾, 2⁺⁽²⁾, 3⁺ и 4⁺ в ядрах с Z = 38 и N = 46. По этой систематике следует ожидать для уровня при энергии 1769 кэв характеристики 4⁺ и при энергии 1456 кэв - 2⁺. Для определения квантовых характеристик других уровней необходимо за исходные принять квантовые характеристики основного состояния распадающегося ядра 84 У. Бета-распад ⁸⁴ ү в основное состояние ⁸⁴ Sr не наблюдается, бета-распад на уровень с энергией 1456 кэв (I^{*π*} = 2⁺) - первого порядка запрещения (lg ft = 7,8), в то время как бета-распад на уровень с энергией 2808 кэв согласно величине lg ft = 5,89 разрешен. Поэтому ⁸⁴ Y можно предполагать. что характеристики основного состояния равна 4, что находится в согласии с правилами Нордгейма. Для уровня с энергией 2808 кэв характеристики тогда равны (4,5).

Эти предположения не противоречат данным для других уровней, когда значение lg ft = 6,8 для бета-распада на уровень при 1769 кэв. В согласии с систематикой, приведенной на рис. 6а,6, и учитывая значения lg ft, можно приписать уровню с эңергией 2059 кэв квантовые характеристики 3⁺. Мультипольность типа E2 гамма-перехода с энергией 465 кэв между уровнями с энергиями 3273 и 2808 кэв позволяет приписать уровню 3273 кэв характеристики I^π = (4,5)⁻. С уровня при энергии 3202 кэв идут два гамма- перехода на уровни с энергиями 2059 и 1456 кэв с характеристиками (3⁺) и (2⁺), соответственно. Гамма-перехода в основное состояние с этого уровня нет. Поэтому можно предполагать, что квантовые характеристики уровня 3202 кэв I^π = (3,4)⁺. Полученное значение величины lg ft = 6,6 для бета-перехода на уровень с энергией 3202 кэв согласуется с этим заключением. Аналогичным образом можно приписать уровню при 3086 характеристики (3,4)⁺.

Обсуждение результатов

Полученные результаты о схеме распада⁸⁴ У в сочетании с данными, полученными другими авторами для соседних чётно-чётных ядер позволяют высказать следующие предположения о природе уровней ядра⁸⁴ Sr.

Уровень с энергией 2808 кэв можно, по-видимому, рассматривать как двухчастичное состояние с конфигурацией $(\pi_{P_{1/2}}, \pi_{g_{9/2}})$. В пользу такой интерпретации говорит разрешенный бета-распад на этот уровень со значением lgft = 5,8, составляющий 30% всех распадов из основного состояния ⁸⁴ Y типа 4⁻ $(\pi_{P_{1/2}}, \nu_{g_{9/2}})$.

Не исключено, что уровни с энергиями 1456 кэв (2^+) и 2059 кэв (3^+) также имеют частичный характер. Можно приписать им, например, конфигурации $2^+(\pi_{P_{1/2}}, \pi_{P_{3/2}})$ или $2^+(\pi_{P_{3/2}})^2$ и $3^+(\pi_{P_{1/2}}, \pi_{F_{5/2}})$ или $3^+(\pi_{P_{3/2}}, \pi_{F_{3/2}})$, соответственно. Также возможны примеси указанных конфигураций в волновых функциях этих состояний. Поскольку нет гаммапереходов с уровня 2059 кэв (3^+) на уровень при 1769 кэв (4^+) и отсюда на уровень при 1456 кэв (2^+) , можно заключить, что уровень при 1769 кэв (4^+) имеет другую частичную природу, например, с двухнейтронной колфигурацией ($\nu_{g_{9/2}}$)². Однако такое объяснение носит только качественный характер, ибо теория частичных состояний этой области мало разработана. Только в работе 15/ приводятся расчётные данные для частичных состояний типа обсуждаемых выше. Схема уровней, построенная по этим данным, не находится в согласии с экспериментально установленными. Так, первый возбужденный уровень расположен при 1140 кэв вместо 794 кэв. Второго уровня 2^+ и уровня 3^+ в расчётном спектре вообще нет.

На рис. 6б показана зависимость энергии первых возбужденных состояний от числа нейтронов в ядрах с Z = 38. Видно, что энергия этих уровней резко возрастает по мере приближения к ядру с магическим числом N = 50, а затем так же резко падает. Это свидетельствует о ее сильной зависимости от оболочечной структуры ядер. Интересно выяснить, имеет ли силу такое заключение для состояний с высокими значениями спина и положительной чётностью. Для этой цели изображены на рис. 7 кривые зависимости разниц энергий $E(4^+) - E(2^+)$ и $E(2^+) - E(0^+)$ как

функции от N и Z. Наклон первой кривой оказывается меньше наклона второй, что говорит о том, что в чётно-чётных ядрах данной области ядер эффекты, учитываемые моделью оболочек, все меньше проявляются с возрастанием значения спина уровней/12/.

Объяснение первых возбужденных состояний с положительной чётностью в рамках фононной модели, видимо, тоже невозможно. Если рассматривать уровень ($2^{+(1)}$ как однофононное состояние и уровни ($2^{+(2)}$) и 4⁺ как двухфононные состояния, то должен наблюдаться гамма-переход с состояниями 4⁺ и 2⁺⁽²⁾. Так же, как в ядрах ⁸² Kr /10/ и ⁸⁶ Sr /16/, здесь такого перехода нет.

В последнее время публиковались попытки объяснения ряда уровней чётно-чётных и "сферических" ядер в рамках феноменологической модели квазиротационных полос/13,14/. Некоторыми из аргументов, выдвинутыми в пользу такого представления, являются: энергетические соображения, последовательность спинов и чётность уровней $I^{\pi} = 0^+, 2^+, 4^+, 6^+, ...$ для состояний с $K = 0^+$ и $I^{\pi} = 2^+, 3^+, 4^+, ...$ для $K = 2^+, a$ также значение вероятности E^2 -переходов между уровнями одной ротационной полосы.

Мы пытались применить представление о квазиротационных полосах к уровням положительной чётности ядра ⁸⁴ Sr. Здесь уровни 0 (0⁺). 794 кэв (2⁺) и 1769 кэв (4⁺) могут образовать основную квазиротационную полосу с $K = 0^+$, а уровни 1456 кэв (2^+), 2059 (3^+) – гаммавибрационную полосу с К = 2⁺. Не исключено, что уровень с энергией 3202 кэв (4+) также относится к предполагаемой гамма-вибрационной полосе с $K = 2^+$, так как с этого уровня наблюдаются только переходы на уровни этой полосы. По энергетическим соображениям следовало бы однако ожидать, что третий уровень такой полосы расположен в районе более низкой энергии. На рис. 8 изображены эти две полосы как ⁸⁴ Sr, так и для ⁸² Kr /13/. Если приписание квантовых чисел К для правильно, тогда переходы между полосами должны быть затруднены. В связи с этим обрашает на себя внимание тот факт, что в обоих ядрах приведенная вероятность гамма-переходов внутри полосы с К = 2⁺ (3⁺- $\rightarrow 2^{+(2)}$) больше, чем для перехода с уровня $K = 2^{+}$ на уровни

с к = 0⁺ (3⁺ \rightarrow 2⁺⁽¹⁾). Для отношения приведенных вероятностей гамма-переходов мы получаем R(2)= B (E2; 3⁺ \rightarrow 2⁺⁽²⁾)/B(E2;3⁺ \rightarrow 2⁺⁽¹⁾) \approx 96 по сравнению с R(2) \approx 67 в случае ⁸² Kr. Отношения приведенных вероятностей гамма-переходов с уровня 2⁺⁽²⁾ гамма-вибрационной полосы на уровни 2⁺⁽¹⁾ и 0⁺ основной полосы равны \approx 180. Для этих же отношений были получены в случае ⁸⁸ Y и ⁸² Kr числа \approx 303 и 72, соответственно. По-видимому, уменьшаются эти отношения по мере удаления от ядер с заполненной оболочкой (для сравнения напомним,

что они должны меняться в пределах от 0,7 до бесконечности для сильнодеформированных и сферических ядер, соответственно).

В заключение авторы выражают благодарность профессору К.Ф.Александеру и доктору Л.К.Пекеру за полезные обсуждения и Р.Арльту за помощь при проведении измерений.

Литература

- 1. T.Yamazaki, H.Ohnuma, Y.Hashimoto, M.Fujioka, E.Takekoshi, A.Hashizume, H.Ikedami, M.Sakai. J. Phys. Soc. Jap., <u>17</u>, 1223 (1962).
- 2. V.Maxia, W.H.Kelley, D.J.Horen, J.Inory. Nucl. Chem., <u>24</u>, 1175 (1962).
- 3. T.Yamazaki, H.Ikedami, M.Sakai, Nucl. Phys., 30, 68 (1962).
- 4. D.F.Peppard, Y.W.Mason and S.W.Moline, J.Inorg, Nucl. Chem., 5, 141 (1957).
- 5. K.Kimura, Bull, Chem. Soc. Jap., 33, 1038 (1960).
- 6. Н.Г.Зайцева, М.Я.Кузнецова, М.Г.Лощилов, Г.Музиоль, Г.Пфреппер. Препринт ОИЯИ, 2012, стр. 50, Дубна, 1965.
- 7. M.Vobecky, A.Mastalka. Coll. Czech. Chem. Comm., 28, 3,709(1963).
- 8. Р.Арльт и др. Препринт ОИЯИ, Р6-3773, Дубна, 1968.

- 9. Л.А.Слив, И.М.Банд. Таблицы коэффициентов внутренней конверсии гамма-излучения. Изд. АН СССР, М.-Л., 1956.
- 10. S.Raman. Nucl. Phys., A90, 508 (1967).
- 11. Я.Врзал, Б.С.Джелепов, А.Г. Дмитриев, Н.Н.Жуковский, Я.Липтак, Л.Н.Москвин, Я.Урбанец и Л.Г.Царицына. Изв. АН СССР, сер. физ., 1661, 1967.
- 12. H.Ejeri UNSJ 104, Tokyo, 1967.
- 13. M.Sakai. Nucl. Phys., A104, 301 (1967).
- 14. Л.К.Пекер. Лекции в зимней школе ФТИ им. А.Ф.Иоффе, 1968. 15. I.Talmi amd I.Unna. Nucl. Phys., 19, 255 (1960).
- Р.Арльт, Н.Г.Зайцева, Б.Крацик, М.Г.Лощилов, Г.Музиоль, Чан Тхань Минь. Препринт ОИЯИ Р6-4239, Дубна, 1968.

Рукопись поступила в издательский отдел

30 декабря 1968 года.

Таблица 1

Энергин и относительные интенсивности гамма-лучей ⁸⁴ Ү

наши данные		Относительные интенсивности І							
	работа /1/	работа ^{/2/}	/3/ работа ,	работа 14/	наши данные	работа /1/	работа /2/	работа /3/	/4/ работа
465+1	453 <u>+</u> 2	-	-		10+1	-	_	_	_
603+1	590 <u>+</u> 2	-	-	-	10,3+2,1	-		. –	-
662+1	-	-	-	660	16,5+2,2	15 <u>+</u> 7	-	-	-
682+1	-	-	-		5,9+2,5	- ``		-	-
794+1	795	-	760	770	100 <u>+</u>	100	-	• -	-
975+1	982	980	960	960	79 <u>+</u> 6	90 <u>+</u> 15	-	- '	-
1040+1	1041±2	-			50 <u>+</u> 12	50 <u>+</u> 15	-	-	
1144+2	-	-	-	-	1,8 <u>+</u> 0,7	-	-	. 🗕	-
1265+1	1270	-	-	-	3,0 <u>+</u> 0,9	9 <u>+</u> 3	-	-	-
1456+2	1470	7		1420	3,8 <u>+</u> 1,0	0 <u>+</u> 2	-	-	
1503+1	4. –	-	. 🛥	-	7 ,6<u>+</u>1, 8	-	· •	<u> </u>	-
1617+1		-		. 	1,75 <u>+</u> 0,4	-	-	·	-
1657+1	-	-	-	-	2 , <u>+</u> 0,7	-	-		-
1711+1	-	**	—	-	1,5 <u>+</u> 0,5	-	-		- `
1746+1	-	-	-		3,2 <u>+</u> 1	-	-	-	-
1764+1	-	-	-	-	3 <u>+</u> 1	-	-	-	-
2294+2	· -	-	-	-	2,52 <u>+</u> 0,3	-			-
635 <u>+</u> 1 ^{x/}	-		-		<u></u> ∠3	-	. -		-
996 ^{x/}		-	-	· -	₹4	·	• -	-	-
1000 <u>+</u> 4 ^{x/}	-		-	1000	2,4 <u>+</u> 1	-		.	-
1092 <u>+</u> 1 ^{x/}	-	-	-	1090	4	, - .	-	· · ·	-
1113 <u>+</u> 1 ^{x/}	-	- '	-	-	1,8	-	-	-	-
1628 <u>+</u> 2 ^{x/}	_	-	-	-	1	-		-	- <u>-</u>
1870 <u>+</u> 2 ^{x/}			· -	-	2,8			· · · ·	-

x/Период полураспада этих переходов определен недостаточно точно, поэтому их принадлежность изотопу ⁸⁴ Y нельзя считать установленной достоверно.

Ĕγ	I, I., относит. Относит.		а _к экспер.			Заключение					
		(1)		· .	E 1	E 2	E ₃	M i	M ₂	M ₈	о мультипольности
465	10 <u>+</u> 1	63 <u>+</u> 1	(5,1 <u>+</u> 1).10 ⁻³	1,1	2.10 ⁻³	3,9.10 ⁻³	1,1 .10 ⁻²	2,47.10 ⁻³	8,4.10 ⁻³	2,55,10 ⁻²	E 2
603	10,35 <u>+</u> 2	39 <u>+</u> 6	(3,2 <u>+</u> 1).10 ⁻³	5,9	10-4	1,75,10-3	4,6.10 ⁻³	1,4.10-3	4.10 ⁻³	i,02.10 ⁻²	Е2 ИЛИ ЕЗ
793	100	100	x/	3,2	10 ⁻⁴	8,4.10-4	1,95.10 ⁻³	7,3.10-4	1,95.10	³ 4.10 ⁻³	E 2
975	79 <u>+</u> 6	61 <u>+</u> 6	(6,3 <u>+</u> 2).10 ⁻⁴	2,1	.10 ⁻⁴	5,1.10-4	1,06.10-4	4,65.10	¹ 1,15,10	3 2,4.10 3	E2,M1, E2+M1

Таблица 2 Коэффициенты конверсии и мультипольности некоторых переходов в 38 57 46

 $x\prime$ Принято теоретическое значение для E2 .

Рис. 1. Спектр гамма-лучей ⁸⁴ У в области энергий 460-800 кэв. а) и б) относятся к 1 и 2 сериям измерений, соответственно. Вторая серия измерений произведена через 2,5 часа после первой.

13

Рис. 2. Спектр гамма-лучей ⁸⁴ У в области энергий 750-1150 кэв.

Рис. 3. Спектр гамма-лучей в области энергий 1100-1600 кэв.

Рис. 4. Спектр гамма- лучей ⁸⁴ У в области энергий 1600-2400 кэв.

Рис. 5. а – схема возбужденных уровней $\begin{array}{c} 82 \\ 84 \\ 84 \\ 89 \\ 45 \end{array}$; б – схема распада $\begin{array}{c} 84 \\ 86 \\ 46 \end{array}$; 6 – схема распада

Рис. 6. а – нижние уровни чётно-чётных ядер с N = 48; б – нижние уровни чётно-чётных ядер с Z = 38.

Рис. 7. Зависимость

E(4 +), E(2 +) H E(2+)-E(0+) OT N

и Z.

