

AEPHAUX NP

PNGOTAO

Л.Гуэтх, Ш.Гуэтх, Э.Дароци, Б.С.Джелепов, Ю.В.Норсеев, В.А.Халкин

ИССЛЕДОВАНИЕ АЛЬФА-СПЕКТРОВ ^{211.} At , ²¹¹ Po , ²¹⁰ At , ²⁰⁹ At и ²⁰⁷ At НА ПОЛУПРОВОДНИКОВОМ АЛЬФА-СПЕКТРОМЕТРЕ 1968 Л.Гуэтх, Ш.Гуэтх, Э.Дароци, Б.С.Джелепов, Ю.В.Норсеев, В.А.Халкин

406/2 np

ИССЛЕДОВАНИЕ АЛЬФА-СПЕКТРОВ 211 211 210 210 209 At И 207 At НА ПОЛУПРОВОДНИКОВОМ АЛЬФА-СПЕКТРОМЕТРЕ

I. В ведение

Изотопы астата впервые были синтезированы искусственным путем в 1940 году ^{/1/}. Они распадаются в результате захвата орбитальных электронов и испускания альфа-частии. Обзор ядерно-физических свойств этих ядер дается в литературе ^{/2/}. Альфа-спектры указанных изотопов изучались на магнитных альфа-спектрографах и с помощью ионизационных камер ^{/1/}.

Мы имели возможность получить интенсивные источники и исследовать альфа-спектры изотопов астата с A = 211, 210, 209 и 207 на полупроводниковом альфа-спектрометре. В настоящей работе уточняются и дополняются данные о распаде этих изотопов, опубликованные нами ранее^{/3/}.

II. Полупроводниковый альфа-спектрометр

Полупроводниковый альфа-детектор (поверхностно-барьерный кремниевый) имел чувствительную поверхность 25 мм². Его разрешение в зависимости от режима работы спектрометра изменялось в пределах 23-28 кэв в используемом энергетическом диапазоне *а* – частиц от 4,5 до 7,5 Мэв. Подробное описание спектрометра (предусилитель, главный усилитель, экспандер, калибровочный импульс-генератор) и его калибровка даются в работе ^{/4/}.

Измерения спектров проводились с помощью многоканальных анализаторов типа У-52- R / KFKI (Венгрия) с числом каналов 128 и АИ-4096 с числом каналов 256 и 512. Измерения были выполнены в измерительном центре Лаборатории ядерных проблем ОИЯИ.

III. Альфа-источники²¹¹ At, ²¹⁰ At, ²⁰⁹ At, ²⁰⁷ At

Радиоактивные изотопы астата были получены путем глубокого расшепления тория (от 1 до 5 г) на внутреннем пучке синхроциклотрона ОИЯИ протонами с энергией 660 Мэв в течение 0,5-1 часа. Интенсивность протонного пучка - 2 мка. Изотопы астата получались суммированием продуктов прямой реакции 30 Th²⁸² (р,6рх) At (227-х) и продуктов распада изотопов радона и франция. В зависимости от того, какие изотопы мы хотели изучать, использовались три вида источников астата. Эти источники приготовлялись следующим образом.

1. Выделение 209-211 At

Химическая обработка мишени проводилась через 5-6 часов после конца облучения для того, чтобы изотопы астата с периодом полураспада меньше чем 2 часа успели распасться. Методика соосаждения астата с металлическим Те и сорбции на катионите из солянокислого раствора была разработана в отделе ядерной спектроскопии и радиохимии Лаборатории ядерных проблем Ю.В. Норсеевым и В.А. Халкиным ^{/5/}. Сам процесс выделения и очистки ²⁰⁹⁻²¹¹ At занимал 5 часов, при этом выход астата составлял около 60%, а источники содержали ²⁰⁹ At , ²¹⁰ At, ²¹¹ At.

2. Выделение изотопов астата с периодом полураспада 0,5 час и больше (²⁰⁵⁻²¹¹ At)

Выделение астата проводилось через 15-20 минут после конца облучения, весь процесс выделения составлял 1,1-2 часа. Использованная методика описывается в работе ^{/6/}. Эта методика позволяла получать источники излучения, содержащие изотопы ²⁰⁵⁻²¹¹ Аt и продукты их распада – изотопы полония.

3. Выделение обогащенного астата - 211

Облучалось 5 граммов тория в течение часа. После облучения мишень выдерживалась 80 часов, при этом в мишени оставался²¹¹ At, находившийся в равновесии с ²¹¹ R_B (T $\frac{1}{2}$ =16 часов), последний распадается путем захвата орбитальных электронов с интенсивностью 74% ^{/1/}. Дальнейшее выделение проводилось по методике, описанной в пункте 1. Отношение изотопов ²¹¹ At : ²¹⁰ At : ²⁰⁹ At =1:1 /30:1/1000. В качестве подложек источников использовались отполированные платиновые диски диаметром 12 мм и толщиной 0,1 мм. На подложки астат наносился самопроизвольным выделением элемента из азотнокислого раствора на отполированную поверхность пластины по методу Ю.В. Норсеева и др. ^{/7/}. Платиновая пластинка после осаждения на ней астата тщательно промывалась бидистиллированной водой и высушивалась. Таким образом получались источники без носителя.

IV . Результаты исследования

Для калибровки спектрометра по энергиям были использованы данные $^{/8/}$ об альфа-группах 210 Ро (5304,5 кэв), 211 Аt (5868 кэв) и 211 Ро (7448 кэв). Изотопы 210 Ро и 211 Ро возникают в результате К - захвата из 210 Аt и 211 Аt , интенсивность захвата равна 100% и 59%, соответственно.

Энергии альфа-групп определялись с учетом погрешности калибровочных альфа-групп и статистических ошибок в нескольких сериях измерений.

Альфа-спектры ²¹¹⁻²⁰⁹ At , ²⁰⁷ At , ²¹¹⁻²⁰⁸ Po , ²⁰⁶ Po и ²⁰⁴ Po приведены на рис.1-3, а результаты измерений в сравнении с данными других авторов сведены в табл. 1.

1. Изотоп ²¹¹ Аt

²¹¹ At ($T_{1/2} \approx 7,5$ часа) впервые был получен Корсоном и др. в 1940 году /9/. По его данным интенсивность распада ²¹¹ At \rightarrow ²⁰⁷ Bi ($T_{1/2} \approx 38 \text{ ner}^{10/2}$) равна 40% и ветви ²¹¹ At \rightarrow ²¹¹ Po($T_{1/2} \approx 0,52 \text{ cek}^{11/2}$) $\approx 60\%$. Из измерений альфа-спектра ²¹¹ Аt на магнитном альфа-спектрографе /12/ и с помощью ионизационной камеры /13,14/ известна только одна интенсивная линия, соответствующая основному альфа-переходу, которая была нами принята в качестве калибровочной. Мы искали линию перехода на первый возбужденный уровень ²⁰⁷ Вi (671 кэв /1/) с источником 3 типа. Соответствующая линия с учетом отдачи ядра должна иметь энергию 5210 кэв. Интенсивность этой линии более чем 2.10⁻⁴ от основного перехода не обнаружена. На основании измерений альфа-спектров двух источников типа 2 определено разветвление ²¹¹ Аt по отношению к интенсивностям альфа-групп ²¹¹ At и находящегося с ним в равновесии ²¹¹ Ро (рис.2). Интенсивность альфа-ветви ²¹¹ At равна 41,8±0,2%, распад с захватом орбитальных электронов - 58,2 ± 0,2%.

2. Изотоп ²¹¹ Ро

Альфа-спектр ²¹¹ Ро исследовался в работах /12,15,16,17/. Нейман и Перльман ^{/15/} дают три линии тонкой структуры с энергиями и интенсивностями 6,90 Мэв (0,57%), 6,57 Мэв (0,48%) и 6,34 Мэв (0,07%). Хофф^{/12/} в спектре, снятом на магнитном спектрографе, обнаружил две первые линии тонкой структуры, а в диапазоне энергии от 6,26 до 6,57 Мэв не нашел никаких других линий с интенсивностью, составляющей больше 0,02% от основной линии. В работе Валена ^{/16/} по исследованию альфа-распада радиоактивной цепочки ²²⁸ Ra упоминается первая линия тонкой структуры в спектре ²¹¹ Ро . Авторы работы ^{/17/} изучали распад ²¹¹ Ро в радиоактивной цепочке ²²⁸ Ас . При измерении альфа-гамма-совпадений были обнаружены совпадения между альфа-частицами с энергией 6,90 Мэв и гамма-квантами с hν =670 Мэв.

В наших опытах ²¹¹ Ро находился в равновесии с материнским веществом ²¹¹ At . Мы наблюдали три альфа-линии с энергиями 7.448; 6,891 и 6,571 Мэв (рис. 2), погрешность в определении энергий линий -4 кэв. Интенсивность этих линий на один акт распада равна соответственно: 98,90+0,03%, 0,57±0,03% и 0,53±,03%.

Второй изотоп, астат -210 (Т $_{12}$ =8,3 часа), был синтезирован в 1949 году $^{/18/}$. Хофф, измеряя альфа-спектр ²¹⁰ Аt на магнитном спектрографе, нашел три линии с приблизительно одинаковой интенсивностью. По данным этой работы интенсивность распада ²¹⁰ At \rightarrow ²⁰⁶ Bi не превышает 0,2%.

Результаты наших измерений подтверждают существование трех линий: 5524±5 кэв, 5442±4,5 кэв и 5361±3,5 кэв; их интенсивность соответственно 36,7±3,4%, 34,3±5,6% и 29,1±5,6%. Период полураспада ²¹⁰ At по нашим данным равен 8,6+0,4 часа.

4. Изотопы²⁰⁹ At и ²⁰⁷ At

Изотопы астата с атомными весами от 209 до 200 были получены в 1951 году $^{/14/}$. Согласно работе $^{/14/}$ интенсивность альфа-распада At (T $_{12} \approx 5,5$ час) составляет около 5% и 207 At (T $_{12}$ =1,8 час $^{/1/}$) - 10% $^{/22/}$

Мы получили следующие результаты: интенсивность альфа-ветви ²⁰⁹ At равна 4,1±0,5%, а период полураспада - 5,41±0,05 час. В случае ²⁰⁷ At уточнены энергия линии перехода на основное состояние²⁰³ Bi $E_{q} = -5759 \pm 4$ кэв и период полураспада $E_{g} = 106 \pm 3$ мин.

V. Заключение

В данной работе при помощи нолупроводникового спектрометра изучен альфа-распал изотопов ²¹¹⁻²⁰⁹ At . ²⁰⁷ At и ²¹⁰ Po .

Измерены энергии и интенсивность альфа-линии. Определена вероятность альфа-распада изотопов²¹¹ At ,²⁰⁹ At и период полураспада²¹⁰ At ²⁰⁹ At и ²⁰⁷ At.

Авторы выражают глубокую благодарность Т.Фенешу за предоставленную возможность использовать полупроводниковый альфа-спектрометр, Л. Трону за помещь при измерениях и К.Я. Громову за обсуждение работы.

- 1.C.M.Lederer, J.M.Hollander and I.Perlman. Table of Isotopes (1967).
- 2. E.K. Hyde, J. Perlman, G.T. Seaborg, The Nuclear Properties of the Heavy Elements. Vol. II, 1077 (1964).
- Ш. Гуэтх, Б.С. Джелепов, Ю.В. Норсеев, В.А. Халкин. Программа и тезисы докладов XVIII ежегодного совещания по ядерной спектроскопии и структуре атомного ядра. Рига, 25 января - 2 февраля 1968г. "Наука", Л., 1968.
- 4. J. Mahunka, T. Lakatos, T. Fenyes. Atomki Közlemenyek, V, 65(1963).
- Ю.В. Норсеев. Диссертация на соискание ученой степени кандидата химических наук, ОИЯИ-ЛГУ, 1965г.; Б.Н. Беляев, Ван Юн-юй, Е.Н. Синотова, Л. Нэмэт и В.А. Халкин. Радиохимия, 2, 603 (1960).
- 6. Ю.В. Норсеев, В.А. Халкин. Препринт ОИЯИ, Р12-3529, Дубна, 1967.
- 7. Ю.В. Норсеев, Чао Тао-нань, В.А. Халкин. Радиохимия, 8,№5, 487 (1966).
- 8. A.H. Wapstra. Nucl. Phys., 57, 48 (1964).
- 9. D.R. Corson, K.R. MacKenzie and E. Segre. Phys. Rev., <u>57</u>, 1087 (1940).
- 10. E.H. Appelman. Phys. Rev., 121, 253 (1961).
- 11. R.F. Leininger, E. Segre and F.N. Spiess. Phys. Rev., <u>82</u>, 334 (1951).
- 12. R.W. Hoff. UCRL-2325 (1953).
- 13. F.F. Momyer. UCRL-2060 (1953).
- 14. G.W. Barton, Jr., A. Ghiorso and J. Perlman. Phys. Rev., <u>82</u>, 13 (1951).
- 15. H.M. Neuman and J. Perlman. Phys. Rev., 81, 958 (1951).
- 16. R.F. Walen, V.Nedovessov et G. Bastin-Scoffier.Nucl. Phys., <u>35</u>, 232 (1962).
- 17. C.R. Cothern and R.D. Connor, Bull. Am. Phys. Soc., <u>10</u>, 83 (1965).
- E.L. Kelley and E.Segre. Phys. Rev., <u>75</u>, 999 (1949).
 J.P. Hummel. Report UCRL 3456 (1956).

- 20. G.H. Briggs. Rev. Mod. Phys., 26, 1 (1954).
- 21. P.A. Tove. Arkiv för Fys., 13, 549 (1958).
- 22. W. Forsling, T. Alväger, L.W. Holm et al. Arkiv för Fys., 19, 83 (1961).
- 23. A.W. Stoner. Report UCRL 3471 (1956).
- 24. R.W. Hoff, F. Asaro and J. Perlman. J. Inorg. Nucl. Chem., 25, 1303 (1963).
- 25. W.E. Burcham. Proc. Phys. Soc., A67, 555 (1954).
- 26. W.E. Burcham. Proc. Phys. Soc., A67, 733 (1954).
- 27. W.E. Burcham, B.C. Haywood, Proc. Phys. Soc., A69, 862 (1956).
- 28. A.W. Stoner and E.K. Hyde. J. Inorg. Nucl. Chem., 4, 77 (1957).
- 29. P. Gray. Phys. Rev., 101, 1306 (1956).

Рукопись поступила в издательский отдел 10 октября 1968 года.

Таблица 1

Сравнение полученных изми элачений периода полураспада, вероятности апьфа-распада, энергий и интенскивностей альфа-линий изотопов ^{211 доб}дь ²⁰⁷ Аг. и ²¹³ Ре. с данкыми, полученными различными авторами.

Vaceou		Разветвление		1 da		
100100	^T I/2	ч - распад	захват электроно	в	E	Ja
		B %	в %	линли	(hob)	(%)
211At	7,20±0,05 ч. /29/	41,8±0,2	58,2 <u>+</u> 0,2	ď,	5868 <u>+</u> 3 /8	/ >99,98
27.7		40,510,5 /15/	59,1±0,5 /15/	Ci,		20,02
Po	0,52 cex. /II/				7448 <u>+</u> 2 /8,	98,90 <u>+</u> 0,03
	010010104 008./21/			d.	7442 <u>+</u> I5 /20	/ 99,0 /8/
	5				7430 /12	/ 99.0 /12/
					7430 /15	/ 99,88 /15/
					689I±4	0.57+0.03
				d'	6890,7+2,5 /I	6/ 0.70 /TC/
					6895 /12	/ 0.50 /10/
	· · · · · · · · · · · · · · · · · · ·				6900+40 /15	0,50 /12/
					6571.4	0,57 /15/
				¢1	6560 (70	0,53 <u>+</u> 0,03
					(570.10 /12)	0,53 /12/
				~	6310140 /15/	0,48 /15/
210	8.6+0.4 1			~3 ~3	6340460 /15/	0.07 /15/
	8.3 0 /10/	0.10		a.	5524 <u>+</u> 5,0	36,7+3,4
	0,5 4. /10/	0,17 /12/			5525 /12/	32 /12/
				ol.	5442 <u>+</u> 4,5	34,3 <u>+</u> 5,6
					5443 /12/	31 /12/
				α,	5361 <u>+</u> 3,5	29,I±5,6
209				-	5361 /12/	37 /12/
At	5,4I±0,05 ч.	4,I <u>+</u> 0,5	95,9+0,5	~	5648+4 /8//19	3/
	5,5 <u>+</u> 0,3 4. /I4/ /	v 5 /I4/ ~	95 /14/	0.0	,	
207 _{At}	106 <u>+</u> 3 мин.				5759+4	
	I - 4 y. /24/		_		5756+8 /8/	
	2 4. /14/ ^	· I0 /I4/ ^	90 /14/		5750 /T#/	
	I20 MHH. /25/	7-17	/14/	d.	5750.40 /25/	
	102+10 MMH. /26/				5750+40 /25/	
	83+8 MNH, /27/				5860 10 165	
	107+5 мин. /28/	10 /28/	90 (20)		5760+40 /27/	
	I.8+0.2 4. /22/	120/ 10	50 /28/		5750 <u>+</u> 50 /28/	
					5750 <u>+</u> 30 /22/	

•

Рис.1. Альфа-линии в спектрах изотопов²¹¹⁻²⁰⁹ At ,²⁰⁷ At и²¹⁰ Ро (источники тила 1). Спектры сняты на 128-канальном амплитудном анализаторе в энергетическом диапазоне с 5,2 Мэв до 5,8 Мэв, время экспоэиции - 1,5 и 6,5 часа.

Рис.2. Альфа-линии в спектрах ²¹¹⁻²⁰⁹ Аг , ²⁰⁷ Аг, ²¹¹ Ро и ²⁰⁴ Ро (источники типа 2). Спектры сняты в режиме 512-канального анализатора АИ-4096 в диапазоне энергий альфа-частиц с 5,0 Мэв до 7,5 Мэв, время экспозиции - 15 мин.

