>+4-51

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Million and

Дубна

P6 - 3823

Ж.Желев, В.Г.Калинников, Я.Липтак, Л.К.Пекер

новый изотоп ¹³⁶ Nd и продукты его РАСПАДА

P6 - 3823

Ж.Желев, В.Г.Калинников, Я.Липтак, Л.К.Пекер

136 НОВЫЙ ИЗОТОП Nd И ПРОДУКТЫ ЕГО 60 76

РАСПАДА

7311/3 rg.

Желев Ж., Калиников В.Г., Липтак Я., Пекер Я.К. Р6-3823 Новый изотоп ¹³⁶ Nd 76 и продукты его распада

Идентифицирован ранее неизвестный кзотоп ¹⁵⁶ Nd (T K = 55±1,5 мин). Маучены спектры позитронов, гамма-лучей и электронов внутренней конверсии цепочки ¹³⁶ Nd + Рг + Се. Определены мультипольности ряда переходов. Предлагается схема возбужденных уровней ¹³⁶ Рг и ¹³⁶ Се. Уров-(T K = 13,5 мин) - 2+. Уровни ¹³⁶ Се с энергиями 551,5 и 1090,4 кзв ию 108,8 кзв ¹³⁶ Рг приписаны характеристики 1, а основному состонияю (T K = 13,5 мин) - 2+. Уровни ¹³⁶ Се с энергиями 551,5 и 1090,4 кзв ию 108,8 кзв ¹³⁶ Рг приписаны характеристики 1, а основному состонияю (T K = 13,5 мин) - 2+. Уровни ¹³⁶ Се с энергиями 551,5 и 1090,4 кзв имеют характеристики 2+, а уровень 1551,3 кзв 1 ^m = 3+. Проведена оценсопоставления спектров состояний чётно-чётных ядер, сопержачих так же, как и ¹³⁶ Се 78 нейтронов.

Препринт Объединениого института ядерных исследований. Дубна, 1968.

Zhelev Zh., Kalinnikov V.G., Liptak J., Peker L.K. P6-3823

New 106 Nd 76 leotope and its Decay Products

Previously unknown ¹³⁶ Nd isotope ($T_{k_{s}} = 55^{\pm}$ 1,5 min) has been identified. The positron, $\gamma - ray and conversion electron$ spectra of the decay chain of ¹³⁶ Nd +¹³⁶ Pr.4³⁶ P

Preprint. Joint Institute for Nuclear Research. Dubna, 1968 В работе^{/1/}сообщалось об открытии изотопа ¹⁸⁷ Nd с периодом полураспада $T_{\frac{1}{2}} = 55,0\pm1,5$ мин. В настоящей заметке мы покажем, что обнаруженное у 55-минутной активности неодима β^+ -и γ - излучение связано с распадом нового изотопа ¹⁸⁶ Nd и дочернего ядра ¹⁸⁶ Pr, а не ¹⁸⁷ Nd.

1. Введение

Рассмотрим ожидаемые свойства ¹³⁶ Nd. Для этого сравним свойства цепочек с А = 136,138,140.

186 Nd		186 Pr	13,5 мин	186 Ce
188 Nd	5,2 час	¹⁸⁸ Pr	1.5 мин	188 Ce
140 Nd	<u>3,37 дн</u>	140 Pr	3,39 мин .	140 Ce

Известно, что указанные в "цепочках" основные состояния ¹⁸⁸ Pr и ¹⁴⁰ Pr имеют спин и чётность I^{π} = 1⁺ и конфигурацию {p(d_{5/2}), n(d_{5/2}). Бета-распад ядер Pr на основное состояние Ce(I^{π} = I⁺ → I^{π} = 0⁺) связан с превращением p(d_{5/2}) → n(d_{5/2}), что обеспечивает разрешенный характер бета-переходов ¹⁸⁸ Pr → ¹⁸⁸ Ce (lg fr = 4,7±0,2)^{/2/} и ¹⁴⁰ Pr → $+^{140}$ Ce(lg fr =4,41±0,05)^{/3/}. Можно ожидать, что бета-переходы в первой К сожалению, нам не известны значения Q_{g^+} в первой половине "цепочек" с $\Lambda = 138$ и $\Lambda = 140$. Однако их величину можно грубо оценить . по методу Леви ⁵; $Q_{g^+} \approx 330$ кав (¹⁴⁰ Nd) и $Q_{g^+} \approx 1100$ кав (¹⁸⁶ Nd) совпалают с ожидаемыми и в какой-то мере оправлывают такие оценки Q_{g^+} " Принимая по Леви ⁵, для ¹⁸⁶ Nd $Q_{g^+} \gtrsim 2000$ кав и значение ℓ_g it = 5,2, получим ожидаемую для его периода полураспада величину $T_{K_a} = 1$ час. Принима, и покажем, что они согласуются с ожидаемыми свойствами "цеполучим о покажем, что они согласуются с ожидаемыми свойствами "цеиеодима, и покажем, что они согласуются с ожидаемыми свойствами "це-

$$(+ I = \frac{\pi}{1}I \leftarrow 0 = \frac{\pi}{1}I)$$

период полураспада этого изотопа составлял бы не 13,5 мин, а < 1 мин. Однако несомненно, что состояние $I^{\pi} = I^{+} \{ p (d_{\delta/2}), n (d_{\delta/2}) \}$, аналогичное основным состояниям ¹³⁶ P_{I} , полжно встретиться среди нижних возбужденных состояний ¹³⁶ P_{I} и можно ожидать, что $\beta^{+} - \rho_{\rm AGGRAD}$ ¹³⁶ Nd в основном будет идти через этот уровень

Т χ и Q β_{+} для распада. ¹³⁶ P_{1} $\langle 4\rangle$ со значениями этих величин у T χ^{40} P_{1} μ^{60} P_{1} μ^{60} P_{1} показывает, что основное состояние 136 P_{1} не принадлежит к конфигурации $\{p(d_{5/3}), n(d_{5/3}), n(d_{5/3}), n(d_{5/3})\}$ n P_{1} = 1 + . В противном случае

ния I_g f . Что касается "цепочки" с ___ A = 136, то сопоставление значений

половине "цепочек" ¹⁸⁸ Nd \rightarrow ¹⁸⁶ Pr, ¹⁴⁰ Pr TNПА I $\frac{n}{t} = 0^+ \rightarrow I \frac{n}{t} = 1^+$ (связывающие "цепочек" ¹⁸⁸ Nd \rightarrow ¹⁸⁶ Pr J \rightarrow ¹⁴⁰ Pr TNПА I $\frac{n}{t} = 0^+ \rightarrow I \frac{n}{t} = 1^+$

Þ

2. Экспериментальные результаты

В спектре гамма-лучей и электронов внутренней конверсии неодима с Т у = 55 мин наблюдается ряд линий (табл.1и2).Измерения спектра гамма-лучей выполнены при помощи спектрометра с Ge(Li) -детектором с чувствительным объемом 12 см³.

Измерения конверсионного спектра выполнялись на магнитном бетаспектрометре с двукратной фокусировкой пучка частиц на угол $\pi\sqrt{2}$. Разрешающая способность бета-спектрометра $\approx 0,2\%$ при светосиле $\approx 0,1\%$ от полного телесного угла.

Кроме того, проведены измерения β^+ -спектра 55-минутной активности неодима на бета-спектрометре с трехкратной фокусировкой пучка частиц в однородном магнитном поле.

Во всех измерениях источником служила фракция неодима, хроматографически выделенная из гадолиниевой мишени, облученной в течение 2 часов быстрыми протонами (E _p = 660 Мэв). Фракция содержит помимо активности неодима с Т_½ = 55 мин другие нейтронодефицитные изотопы неодима с A = 141 (Т_½ = 2,4 час), A = 140 (Т_½ = 3,37 дн), A = 139 (Т_½ = 5,53 час), A = 138 (Т_½ = 5,2 час).

Измерения β^+ -спектра 55-минутной активности неодима позволили уточнить граничную энергию жесткой компоненты (E = 2970<u>+</u>50 кэв) и обнаружить компоненту с меньшей граничной энергией(E = 1330<u>+</u>50кэв) (рис. 1).

Обращает на себя внимание то обстоятельство, что β⁺ -компонента с E_{β+} = 2970 кэв и практически все гамма-линии, кроме у 108,8 и у 575,5, хорошо соответствуют гамма-лучам (табл. 1) и компоненте

13,5-минутного излучения (Е = 2954+18 кав), наблюдавшимся в распаде

Наши данные, приведенные в табл. 3, свидетельствуют о том, что по крайней мере три наиболее интенсивных перехода 538,9; 551,5 и 1090,4 кэв конвертируют в ядре ₅₈ ^{Се}, т.е. возникают при β⁺ -распаде ^Рг. В таблице 4 приведены данные о мультипольности этих переходов.

Что касается интенсивного гамма-перехода с $E_{\gamma} = 108,8$ кэв, то его конверсионные линии были изучены особенно тщательно (рис. 2). По их энергии и интенсивности можно было установить, что этот переход происходит в ядре $_{69}$ Рг, а не $_{68}$ Се (табл. 3), и, следовательно, возникает при β^+ -распаде неодима и имеет мультипольность M1+(2,85± .

3. Схема распада ¹³⁶ Р. 77

Схема распада ¹³⁶ р₁ (T $\frac{1}{N}$ = 13,5 мин) впервые предложена в работе $\frac{14}{4}$. Примем ее за основу и внесем необходимые изменения и доработе $\frac{14}{4}$. Примем ее за основу и внесем необходимые изменения и дополнения (рис. 3). По данным $\frac{14}{4}$, $\beta^+ - компонента с E_{\beta,\pm} = 2954\pm18$ кзв более жесткой компоненты в "прямом" $\beta^+ - спектре мы не наблюдали,$ то, спедовательно, нет заметного $\beta^+ - распада ^{136} p_1$ на основное состояние то, спедовательно, нет заметного $\beta^+ - распада ^{136} p_1$ на основное состояние в состояние состояние состояны об относительных интенсивностях пома-переходов мы смогли провести баланс интенсивности и определить

538,9; 551,5 и 1090,4 кэв позволяет однозначно приписать уровням 515, 638,9; 551,5 и 1090,4 кэв позволяет однозначно приписать уровням 51,5 и 1090 кав спин и четность 1^π = 2⁺.

. 93 вы инвору станит сарани на различные уровни се.

9

Астановленная нами мультипольность типа E2 у гамма-переходов

Значение $l_g f r = 5,4$ для бета-перехода на уровень 1090,4 кэв($I^{\pi}=2^+$) и отсутствие бета-перехода на основное состояние ¹⁸⁶ Се ($I^{\pi}=0^+$) показывают, что основное состояние материнского ядра¹⁸⁶ Рг имеет спин и четность $I^{\pi}=2^+$ или 3^+ (в работе ^{/4/ 186} Рг приписаны спин и четность $I^{\pi}=1^+$).

Для оценки квантовых характеристик других уровней ¹⁸⁶ Се сопоставим спектры уровней нескольких четно-четных ядер ¹⁸⁰ 52 Te 78 ⁽⁹⁾; ¹³² Xe 78 ⁽¹⁰⁾; ¹⁸⁴ Ba 78 ⁽¹¹⁾, содержащих как и ¹⁸⁶ Се 78 нейтронов (рис. 4). ¹¹³ этого рисунка, а также из особенностей заселения и разрядки уровня ¹⁸⁵ Се 1551,3 кэв, следует, что ему должны быть приписаны спин и четность I ^π = 3⁺. В этом случае становится понятным значение lg fr = 6,0 для бета-перехода на него, отсутствие гамма-перехода с этого уровня на основное состояние и другие особенности.

Существование уровня 760 кэв, введенного в¹³⁶ Се авторами работы^{/4/} согласно систематике, показанной на рис. 4, крайне невероятно. Возможно, у 760 кэв возникает при разрядке первого уровня с $1^{\pi} = 4^{+}$. Баланс интенсивностей гамма-переходов показывает, что этот уровень $1^{\pi} = 4^{+}$ (если он существует) практически не заселяется непосредственно при бета-распаде. Если этот вывод справедлив, то у основного состояния ¹³⁶ Pr более вероятно значение спина $1^{\pi} = 2^{+}$, чем $1^{\pi} = 3^{+}$.

По энергетическим и спиновым соображениям в ядрах с N = 78 могут быть выделены по крайней мере две квазиротационные полосы, связанные с основным состоянием ($K = 0^+$), и вторым уровнем с $I^{\pi} = 2^+$ ("гамма-вибрационным" уровнем с $K = 2^+$), (рис. 5) / 12/. Такая классификация уровней подтверждается тем, что в рассматриваемых ядрах гаммапереходы внутри полосы с $K = 2^+$ ($1^{\pi} = 3^+ \rightarrow 1^{\pi} = 2^+$) имеют приве-

денную вероятность в ≈ 55(¹³³ Xe), ≈ 70(¹³⁴ B₈) ≈ 80(¹³⁶ Ce) большую, чем гамма-переход с уровня I^π = 3⁺ на уровень другой (основной) квазиротеционной полосы с I^π = 2⁺ (если оба перехода типа E2). Во всех трех ядрах момент инерции "гамма-вибрационного"уровня больше (на≈20%), чем у основного состояния.

Ни в одном из указанных ядер пока не обнаружены "бета-вибрационные" возбужденные состояния с $\mathbf{I}^n = 0^+$ $\mathbf{K} = 0^+$. Представляет интерес сопоставление отношения приведенных вероятностей гамма-переходов типа E2 $\underline{B(E2; 2^+ - 2^+)}$ с "гамма-вибрационного уровня $\mathbf{I}^n = \overset{1}{2}^+$ на перфононной модели сферических ядер к модели сильнодеформированных ядер это отношение должно меняться от бесконечности (∞) до $\approx 0,7$. В рассматриваемых ядрах это отношение уменьшается от 680 ($\overset{132}{132}$ Xe) до 180 ($\overset{134}{166}$ Ba) и 95 ($\overset{136}{136}$ Ce). Этого следовало ожидать, так как по мере увеличения горисходит удаление от ядер с заполненной оболочкой z = 50 и происходит удаление от ядер с заполненной оболочкой z = 50 и происходит удаление от ядер с заполненной оболочкой z = 50 и происходит удаление от ядер с заполненной оболочкой

CXeMB pachada 186 Nd76

 Мы уже отмечали,что к распаду ¹⁸⁶ Nd относится интенсивный гаммапереход 108,8 кав и, возможно, гамма-переход 575 кав. К распаду ¹⁸⁶ Nd следует отнести также интенсивную β⁺ -компоненту 1330±50 кав (рис. 1).
Если бы эта компонента относилась к распаду ¹⁸⁶ Pr., то в ¹³⁶ Ce
дана относилась к распаду ¹⁸⁶ Pr., то в ¹³⁶ Ce

иоп каблюдемом на опыте гамма-спектре такие переходы неблюдаются. • наблюдемом на опыте гамма-спектре такие переходы не наблюдаются.

и, следовательно, β^+ -компонента 1330 кэв не связана с распадом ¹³⁶ Pr.

Обратим теперь внимание на то, что полная интенсивность гаммаперехода 108,8 кэв (у+ с) приблизительно составляет ~ 0,6 от суммы интенсивностей гамма-переходов 551,5 и 1090,4 кэв, возникающих в 92% случаев распада ¹⁸⁶ Pr. Так как 55 мин ¹⁸⁶ Nd и 13,5 мин ¹⁸⁶ Pr в исследуемом источнике находятся в равновесии, то этот результат означает, что гамма-переход 108,8 кэв (у + с) возникает в \approx 65-70% случаев распада ¹⁸⁶ Nd (эта оценка грубая). Из соотношения интенсивностей β^+ -компонент 1330 кэв, 2970 кэв и гамма-линии 108,8 кэв вытекает также, что $I_{\beta^++\epsilon}(\beta^+ 1330) \approx I_{\gamma+\epsilon}(\gamma 108,8)$. Эти оценки (хотя и довольно грубые) показывают, что β^+ -распад ¹⁸⁶ Nd не может итти непосредственно на основное состояние ¹⁸⁶ Pr. а идет, в основном, на уровень 108,8 кэв с l_{g} fr = 5,2.

Такое значение l_{gfr} показывает, что этому уровню ¹⁸⁶ Pr следует приписать спин и чётность $I^{\pi} = 1^+$ и конфигурацию р ($d_{5/2}$), n ($d_{8/2}$), что оправдывает высказанные в начале статьи предположения. М1 – мультипольность гамма-перехода 108,8 кэв позволяет однозначно выбрать для основного состояния ¹⁸⁶ Pr спин и чётность $I^{\pi} = 2^+$, исключив $I^{\pi} = 3^+$.

Для гамма-перехода 575,5 кэв известна интенсивность гамма-линии (табл. 1). Имеются также данные об интенсивности конверсионной линии с энергией 533,5 кэв (табл. 2), которая интерпретируется как сумма К 575.5 + L 538.9.

Так как известно, что гамма-переход 538,9 кэв типа E2, то, используя теоретическое значение отношения интенсивности К и L конверсионных линий K/L = 6,3 и экспериментальное значение интенсивности

К -линии (табл. 2), можно оценить интенсивность его L - конверсионной линии, а, следовательно, и интенсивность K -конверсионной линии гамма-перехода 575,5 кэв. Она составляет ≈160 в единицах табл.2. Эти величины 1_v и 1_{еk} приводят к величине коэффициента внутренней конверсии гамма-перехода 575,5 кэв а k ≈ 1,1.10⁻², что указывает на мультипольность типа M1 (не исключена небольшая примесь Е2).

она вместе с наблюдающейся в гамма-спектре ¹³⁶ Nd + ¹³⁶ Pt слабой линией 684 кав (если последнюю отнести к¹³⁶ Nd) возникает при разрядке уровня ¹³⁶ Pt 684 кав. Принятая нами схема распада ¹³⁶ Nd приведена на рис. 3.

онжомеоа .онов мерасов на распада не хоекое в иннип йоте еннежолоП

17 981 77 981 спинеотого отонноноо энипо О

Конфигурации основных состояний нечётных протона и нейтрона бычно определяются по данным о состояниях нечётных протона и нейтрона в соседних нечётных ядрах с тем же значением х и N. Нечётный 59-й протон в основном состоянии ¹³⁵ ¹³⁶ Се₇₇ на уровне с I = 5/2⁺, в 77-ой нейтрон в основном состоянии ¹³⁶ ¹³⁶ Се₇₇

на уровне с I = $5/2^+$, а 77-ой нейтрон в основном состоянии ${}^{136}_{66}$ Се $_{77}^{7}$ в чейтном состояном состоянии ${}^{66}_{66}$ Се $_{77}^{7}$ находится на уровне I = $1/2^+$. В нечётно-нечётном ядре конфигурации р ($5/2^+$), $a(1/2^+)$ соответствует дублет, нижний уровень которого, согласно правилам для сферических ядер $^{/13-15/}$, должен иметь спин и четность I $^{\pi}$ = 3^+ , а верхний уровень – I $^{\pi}$ = 2^+ не согласно правилаемый спин и 136 рг. 1^{π} = 2^+ не согласуватся с этими правилами. Одной из правилами 136 рг. 1^{π} = 2^+ не согласуватся с этими правилами.

 $1/2^{+}[400]$, согласно правилам Галлахера-Мошковского, приводит к спину и чётности основного состояния ¹⁸⁶ Pr I^{π} = +2⁺.

В заключение авторы считают своим приятным долгом поблаголарить В.Докузову и А.Липтак за помощь в работе.

Литература

- K.Gromov, V, Kalinnikov, V.Kuznetsov, N.Lebedev, G.Musiol, E.Herrman, Z.Zhelev, B.Dzhelepov, A.Kudryavtseva.Nucl.Phys.,73,65(1965).
- 2. В.С.Бутцев, Ж.Т.Желев, В.Г.Калинников, А.В.Кудрявцева, Я.Липтак, Ф.Молнар. У.Назаров, Я.Урбанец. Препринт ОИЯИ Р6-3541, Дубна, 1967.
- 3. Л.Н.Абосалашвили, Ж.Желев, В.Г.Калинников, Я.Липтак, У.Наэпров, Я.Урбанец. Препринт ОИЯИ Р6-3348, Дубна 1967.
- 4. A.R.Brosi, B.N.Ketelle, J.R.Van. Hise. ORNL-3994 (1966).
- 5. J.Riddell. AECL 339 (1957).
- 6. М.П.Авотина, Ж.Т.Желев, В.Г.Калинников. Преприит ОИЯИ 2412, Дубна 1965.
- 7. Б.С.Джелепов, Л.К.Пекер, В.О.Сергеев. Схемы распада радиолктивных ядер с А > 100 Изд. АН СССР, М.,-Л, 1963.
- 8. Л.А.Слив, И.М.Банд, Таблица КВК гамма-излучения на К и L-оболочках. В книге "Гамма-лучи" Изд. АН СССР, М-Л, 1960.
- 9. J.A.Cookson and W.Darcey. Nucl. Phys., 62, 326 (1965).
- 10. H.W.Boyd, N.R. Johnson, E.Eichler, J.H.Hamilton. Bull. Amer. Phys. Soc., 10, 82 (1965).
- 11.D.E.Raeside, J.J.Reidy and M.L.Wiendenbeck. Nucl. Phys., A'98, 54 (1967).
- 12. Л.К.Пекер. Лекции в зимней школе ФТИ им. А.Ф.Иоффе (1968).
- 13. A.De-Shalit. Nucl. Phys., <u>22</u>, 677 (1961).
- 14. Л.А.Слив, Г.А.Согомонова, Ю.И.Харитонов. ЖЭТФ, 40,946 (1960). Изв. АН СССР (сер.физ) 28, 315 (1964).
- 15. Л.К.Пекер, Ю.Н.Новиков. Ядерная физика, 4, 261 (1966).

Рукопись поступила в издательский отдел 18 апреля 1968 года.

			.дэ ООІ вс втяници	^{0⊁e√1} (≯
	-	-	I'I	8545
	-	-	4 ' I	5249
	-	-	≤' ε	7074
	-	-	L'I	†06 I
	. RORD	9 ' 965I	0 ' ⊆	1091
÷	5 , 0<u>+</u>0, 8	E773	9 ' I	877I
	5 *2*0 *3	IIGI	I ' 6	6I9I
	8 '0+ 2'	064I	5*5	ee41
	8 '0 ' €'€	1358	5*3	1961
	9 ' 1 - 0 ' €€	†6 01	96	1092
	5 * 6 * 0*8	S ' S₩0I	2 ' I	۲40I
	6'3 ' I'5	⊆' 656	≤' 8	100 I
	5 *0*0* 8	(126)	9 ' I	946
	-		3 ° I	09८
	-	(†89)	-	-
	-	-	9 ' 0	£L9
	IŦĦI	5'57 5	-	-
	6 - 641	SʻISS	ημΙ	225
	* 001	6 ' 8€⊆	100	075
	≤ '0 ∓́≤'€I	461, 2	τI	094
	0I + 59	9 , 801	-	-
	HTO I	е х кэв	HTO ¹	ех кэв
	BT	дая паннал	\"\Brodeq	

Таблица I Сведения о гамма-лучах, сопровождающих распад ма (т_ы = 55 мин), и о гамма-лучах ¹³⁶ г..

Таблица 2

Электроны внутренней конверсии 186 рг и 186 ма

1913	Padota ^{/6/}			Дан		
1111	^Е " КЭВ	Относит интенс.	с. Е. кэв	Относит. интенс.	Идентифик. линий	Изотоп
Ι.	498,7	765 <u>+</u> 60	498,4+0,4	756 <u>+6</u> 0	K538,9	186 Pr
2.	5II,25	1000 x)	5II,0+0,4	1000 %)	K55I,5	186 Pr
3.	533,5	276+28	-	-	L 539+K575,5	186 Pr
4.	545,5	I43 <u>+</u> I5	-	-	L 552,0	186 Pr
5.	-	-	1050,0 <u>+</u> 0,7	45, 0 <u>+</u> 4, 5	к 1090,4	186 Nd
6.	-	-	66,80 <u>+</u> 0,08	≈37000	к 108,8	186 N d
7.	-	-	102,05 <u>+</u> 0,10	≈ 6200	L ₁ 108,8	
8.	-	-	102,35 <u>+</u> 0,10		L _H I08,8	
9.	-	-	I02,86+0,IO		L _{III} I08,8	

ж) _{1 принята за 1000.}

жж) Данные работы^{6/} заново пересмотрены.

Таблица 3 Определение заряда ядра, в котором осуществляется конверсия гамма-переходов с энергиями 108,8; 538,9; 551,5; и 1090,4 кэв

ь <i>ν</i> КЭВ	Метод опреле-	жсперимент (кав)		Теория ^{/7/} кэв			
	ления	(,	z = 60	z = 59	z =58	z = 57	
I08,80 <u>+</u> 0,08	K – L _I	35,25 <u>+</u> 0,I0	36,44	35 , I6	33 ,9 0	_	
	$K - L_{II}$	35,55 <u>+</u> 0,10	36,85	35,55	34,28		
	к – L _{III}	36,0 <u>6+</u> 0,10	37,36	36,03	34,73		
538,9 <u>+</u> 0;4	$E_{\gamma} - E_{ek}$	40,9 <u>+</u> 0,6	-	42,00	40 , 45	38 ,9 3	
551,5 <u>+</u> 0,4	E _y - E _{ek}	40,7 <u>+</u> 0,6	_	-"-	-"-	_"_	
1090,4 <u>+</u> 0,7	E _y - E _{ek}	40,4 <u>+</u> 0,9	-	_"-		_"_	

ь <i>р</i> КЭВ	Метод определени	я Эксперимент	El	F. 2	Теория/ Ез	8/ M 1		M2 M3	Вывод о муль типоль
538,9	a k	(7,95 <u>+</u> 0,95)I0 ⁻³	2,72(-3)	7 , 6I(-3)	I , 97(-2)	I,16(-2)	3,63(-2)	9 , 65(- 2)	НОСТИ Е2
551,5	K/L	7,0 <u>+</u> 0,9	7,6	6,3	5,5	7,2	6,7	5,8	E 2
	α _k	7,2(-3)	2,57(-3)	2,57(-3)	I,85(-2)	I,IO(-2)	3,4(-2)	9,0(-2)	
1090,4	a k	(1,46 <u>+0</u> ,30)10 ⁻³	6,4(-4)	I,5(-3(3,I(-3)	2,15(-3)	5,3(-3)	I,05(-2)	E 2

Мультипольности некоторых гамма-переходов в ядре ¹⁸⁶ се.

Таблица 4

Таблица 5

Определение мультипольности перехода 108,8 кэв

(a_{L1} / a_{L11}) эксп — 7,6 ± 0,8 (a_{L1} / a_{L11}) эксп = 15,0 ±3,7 (a_{L1} / a_{L11}) эксп = 1,90 ±0,44 Тип мультипольности: (97,16±0,25)% м1 + (2,84±0,25)% E2

Рис. 1. График Кюри-Ферми почитронного спектра ¹³⁶ Nd и ¹³⁶ Pr.

Рис. 2. L -линии перехода 108,8 кэв.

18

-

Рис. 3. Схемы распада 60 Nd₇₆ и 186 рг 77

Рис. 4. Нижние уровни чётно-чётных ядер с z = 52-58. N = 78.

