ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

1968

William .

5-15

Дубна

P6 - 3695

П.Галан, В.В.Кузнецов, М.Я.Кузнецова, О.Б.Нильсен, Я.Урбанец, М.Фингер, Д.Христов, И.Юрсик

> УРОВНИ ¹⁵⁵ Gd, ВОЗБУЖДАЮЩИЕСЯ ПРИ РАСПАДЕ ¹⁵⁵ ТЬ

П.Галан. В.В.Кузнецов, М.Я.Кузнецова, О.Б.Нильсен, х)Я.Урбанец, М.Фингер, Д.Христов, И.Юрсик хх)

> уровни ¹⁵⁵ Gd, возбуждающиеся ПРИ РАСПАДЕ¹⁵⁵ ТЬ

Направлено в Известия АН СССР (серия, физическая)

Объеданены институт THE MARK BUCHELOBARNE X/Институт им. Нильса вора МЕНИОТЕКА

42.72/2 up

^{хх/}Институт ядерных исследований, ЧСАН

огла вление

			⊃rp•
1.		Введение	5
2.		Экспериментальная методика	7
	2.1.	Источники	7
	2.2.	Экспериментальные установки	8
3.		Экспериментальные результаты	10
	3.1.	Исследования спектров конверсионных элекгронов	10
	3.2.	Гамма-излучение 155 ть	13
	3.3.	Исследование спектров е-у-совпадений	15
	3.4.	Исследование спектров у-у -совпадений	16
4.		Анализ экспериментальных результатов. Сзема распада	
		185 Tb \rightarrow Gd	19
	4.1.	Мультипольности переходов	19
	4.2.	Анализ е – у –совпадений	19
	4.3.	Анализ у - у -совпадений	21
	4.4.	Схема распада ¹⁵⁵ ТЬ → ¹⁵⁵ Gd	24
	4.4.1.	Основные состояния ¹⁵⁵ Ть и ¹⁵⁵ Gd	24
	4.4.2.	Возбужденные уровни Gd	2 5
	4.4.3.	Баланс интенсивностей переходов в схеме распада	29
			20
	*1.7.	155 Cd	30
F		на уровни оч 185 155 Аногио сколи ростово Ть Сс	31
5.	F 1	Анализ схемы распада тв → ба	, JI 31
	5.1.	Введение	91
	5.1.1.	Одночастичные уровни схемы Нильссона	31
	5,1,2,	Коллективные вибрационные состояния	32
	5.1.3.	Коллективные вращательные состояния	33
	5.1.4.	Кориолисово взаимодействие и взаимодействие между сос-	-
		тояниями. отличающимися на $\Delta N = 2$	34

5.1.5.	Стриктура неротационных состояний ¹⁶⁵ Сd по сверхтекучей	
	модоли ядра	34
5.2.	Основное состояние и возбужденные уровни ¹⁸⁵ Gd с отри-	
	цательной чётностью	35
5.2.1.	Вранательная полоса основного состояния /521// 3	5
5.2.2.	Вранательная полоса β -вибрационного состояния /521 $n_{\!eta}$. З	36
5.2.3.	Врашательная полоса состояния /521/	1
5.2.4.	Состояния с энергиями 286,8 и 451,3 кэв 4	3
5.3.	Возбужденные уровни в ядре ¹⁵⁵ Gd с положительной чёт-	
	ностью 4	4
5.3.1.	Вращательная полоса состояния /400/1 4	5
5.3.2.	Врашательная полоса состояния /402/↓ 4	6
5.3.3.	Уровни с энеогиями 266.6: 235.2: 118.0: 105.3 и 86.5 кав. 4	17

.

•

,

Г. ВВЕДЕНИЕ

Исследование свойств возбужденных состоянии ¹⁸⁵ при распаде ¹⁸⁵ Ть, представляет большой интерес. 5 дро ₆₄Gd₉₁ расположено в начале области атомных ядер с 150 ≤ A ≤ 80, у которых была обнаружена сильная деформация в основном состсянии ^{/1/}. Исследуя свойства ¹⁸⁵ Сd, можно проверить предсказания обобщенной ^{/2,3/} и сверхтекучей ^{/4/} модели ядра.

Особенно интересным является наблюдение β – и у-вибрационных состояний в ядре ¹⁵⁵ Gd. у -вибрационные состояния, основанные на низколежащих одночастичных уровнях, систематически проявляются в деформированных чётно-чётных и нечётных ядрах ^{/5,6/}. β -зибрационные состояния обнаружены в основном в чётно-чётных ядрах ^{'5/}, в нечётных ядрах они надежно идентифицированы только для двух ядер – ¹⁵⁷ Tb^{/7/} и ¹⁵⁶ Cd ^{/8/}. Имеется также указание на существование состояния такой природы в ядре ¹⁵¹ Gd^{/7}a/.

Схема уровней ¹⁸⁵ Сd изучалась в ряде работ $^{/1;8-36/}$. Исследовались уровни, возбуждающиеся при распаде Eu ($T_{1/2}=1,81$ года) и ¹⁸⁵ Ть ($T_{1/2}=5,6$ дня). Многие данные получены в опытах по кулоновскому возбуждению Сd и в опытах по (d,p), (\cdot , d') и (d,t) реакциям.

Схема распада ¹⁵⁵ Tb → ¹⁵⁵ Gd была впервые предложена Т.И.Вардом^X, более.полные данные о распаде ¹⁵⁵ Tb получены в работах^(8,10,16-19). Много новых данных о схеме уровней ¹⁵⁵ Cd получено в ⁽²²⁾. Для спинов основных состояний ¹⁵⁵ Gd ⁽³⁷⁾ и ¹⁵⁵ Tb ⁽³⁸⁾ получено значение 3/2.

^{х/}Т.И.Вард, диссертация, см. ссылку в^{/1/}.

Установлено^{/1,9,39/}, что при распаде¹⁵⁵ Ть возбуждаются уровни типа 5/2⁻, 7/2⁻ ротационной полосы основного состояния¹⁵⁵ Gd /521/f. Имеющиеся в настоящее время экспериментальные даные согласуются со сделанным ранее нами^{/8/} выводом о том, что возбуждающиеся в ядре

¹⁸⁵ Gd при распаде ¹⁸⁵ Tb уровни с энергиями 592,6 кэв (3/2) и 647,8 кэв (5/2) являются уровнями вращательно і полосы бета-вибрационного состояния /521/†β, связанного с основным состоянием ¹⁸⁵Gd. В интерпретации остальных уровней, возбуждающихся в ядре ¹⁸⁵Gd при распаде ¹⁸⁵ Tb, имеются разногласия.

В работах^{/17,40/} указывается, что некоторье свойства уровней ¹⁵⁵ Са можно объяснить наличием сильного кориолисового взаимодействия и некоторых других эффектов, которые не учитывались при построении /41/.

В настоящей работе приводятся результаты исследования распада ¹⁵⁵ Ть. Предварительные результаты этих исследозаний опубликованы в работах /8,14,18/

Были проведены измерения спектров конверсионных электронов на тороидальном шестизазорном бета-спектрометре $^{/42/}$ в Институте имени Нильса Бора и на бета-спектрометре с двукратной двойной фокусировкой на угол $\pi\sqrt{2}$ $^{/43/}$ в Объединенном институте ядерных исследований. Спектры гамма-лучей изучались с помощью Ge(1.i) -детекторов в Институте им. Нильса Бора и в ОИЯИ. Спектры е -- у -совладений изучались на тороидальном шестизазорном бета-спектрометре вместе со сцинтилляционным гамма-спектрометром в Институте им.Нільса Бора. Спектры

у – у –совпадений изучались с помощью двух коаксиальных Ge (Li)-детекторов и двухмерного анализа в Институте ядерных исследований ЧСАН.

2. ЭКСПЕРИМЕНТАЛЬНАЯ МЕТОДИКА

2.1. Источники

Изотопы тербия получались в результате расшепления ядер тантала под действием протонов с энергией 660 Мэв на синхроцикло гроне Объединенного института ядерных исследований в Дубне. Продолжительность облучения танталовых мишеней составляла 2 + 17 часов. Из облученной мишени химическим путем выделялась группа редкоземельных элементов. Разделение по элементам проводилось хроматографическим методом /44/. Фракции тербия, диспрозия, гольмия получались в радиохимически чистом виде через 1,5 + 8 часов после конца облучения.

При исследовании излучения ¹⁸⁸ Ть было использовано пять типов препаратов тербия, которые получались как из тербиевой фракции, так и из фракций диспрозия и гольмия. Из этих фракций изотопы тербия получались по следующим цепочкам распада:

149 Dy	<u>8 мин .</u>	149 Tb	4.1 час	149 Gd	9 <u>,3 дн</u> ¹	49 Eu	<u>160 д</u>	149 <u>н</u> Sm/стаб)
150 Dy	8 мин	150 Tb	3,1 час	180 Gd	(стаб)			- •
151 Ho	31 сек,	¹⁵¹ Dy	19 мин	¹⁸¹ Tb	17,5 час	15 L d	<u>120 дн</u> , ¹	⁸¹ Ец (стаб)
152 Ho	<u>64 сек</u>	¹⁵² Dy	2.6 час	152' Tb	17.5 час,	182 Gc	(стаб)	
158 Ho	187 сек	¹⁵⁸ Dy	6 час	¹⁵⁸ Tb	<u>2.3 дн</u> ,	188 Gd	225 дн.	¹⁵⁸ Еu(стаб).
154 Ho	5,6 мин	184 Dy	10 лет	154 Tb	21 час:8,	<u>5 ча</u> с	184 Gd	(стаб).
¹⁵⁵ Но	16 мин; 4	7 мин, 1	⁵⁵ Dy <u>10</u>	155 18C,	ть <u>5.6</u>	<u>дн</u> ,	65 Gd (c	стаб)
157 日 o	18 мин	187 By -8	,2 час 157	ть <u>160</u> л	Gd	(сте	5).	
Препарат	<u>1</u> - фр	акция́те	ербия, пер	ечищенн	ая дополи	нитель	но хром	atorpa-
фическим	путем ч	epes 10	+ 15 дней	после е	ее получе	ния.	Препарат	r 1 co-
держал	158 Tb,	ТЪ,	156 Tb 1	4 ¹⁶⁰ Th	.			
Препарат	<u>и</u> – фр	акция те	ербия, выд	еленная	из мате	ринсь	ого дисп	розия
через 🛩 7 дней после хроматографического выделения диспрозия из группы								
редкоземельных элементов. Этот препарат содержал 188 'b и 188 Ть.								

Препарат III - это препарат II, хроматографически перечищенный через

ЗО дней послє выделения тербия из диспрозия. Препарат III содержал только один изотоп ¹⁸⁵Ть.
<u>Препарат IV</u> – чистый изотоп ¹⁸⁵Ть, полученный из материнского гольмия.
Фракция тербия выделялась из гольмия через 30 + 40 часов после выделения гольмия из группы редкоземельных элементов.
<u>Препарат V</u> – исотоп ¹⁸⁵Ть, выделенный из тербиевой фракции с помощью масс-сепаратора ¹⁸⁵ Ть, выделенный из тербиевой фракции с помощью масс-сепаратора ¹⁸⁵ в Институте имени Нильса Бора. Разделение изото-пов тербия на масс-сепараторе проводилось в Копенгагене через = 15 часов после хроматографического разделения редкоземельных элементов в Объединенном институте ядерных исследований в Дубне.

2.2. Экспериментальные установки

Спектр конверсионных электронов изучался с помощью тороидального шестизазорного β -спектрометра $^{/42/}$ и магнитного β - спектрометра с двукратной фокусировкой на угол $\pi\sqrt{2}$ $^{/43/}$. Регистрация электронов на тороидальном шестизазорном β -спектрометре осуществлялась двумя независимыми сцинтилляционными детекторами, поэволяющими одновременно измерять два спектра конверсионных электронов. В нашем случае один из спектров измерялся с "высоким" разрешением (разрешение $\approx 0.5\%$, светосилс $\approx 1\%$), а другой – с высокой светосилой (разрешение = 1%, светосила $\approx 9\%$). Спектр, измеряемый с разрешением $\approx 1\%$, был необходим при постановке опытов по исследованиям e - y- совпадений. При исследовании спектров на тороидальном шестизазорном β -спектрометре использовались только три зазора спектрометра.

Магнитный 3 -спектрометр с фокусировкой на угол π√2 использовался как в режиме однократной, так и двукратной фокусировки электронов. Регистрация электронов проводилась с помощью щелевых счётчиков Гейгера-Мюллера. В режиме однократной фокусировки два счётчика разме-

•8

щались за первым фокусом и включались в схему совпадэний. Разрешение β -спектрометра составляло = 0,25%, светосилε - ≈ 0,2%,, фон при перекрытом пучке электронов составлял 546 имп/мив. В режиме двукратной фокусировки один счётчик помещался за первым фокусом и два за вторым фокусом. Все три счётчика включались в схему совпадений. Регистрировались как двойные совпадения (между 1 и 2 счётчиками), так и тройные совпадения (между 1 и 2 счётчиками), так и тройные совпадения (между всеми счётчиками). В этом случае разрешение составляло = 0,22%, светосила ≈ 0,1%, фоновь х отсчётов в течение 15 часов не наблюдалось.

Гамма-излучение ¹⁶⁶ Ть исследовалось с помощью трех германиевых полупроводниковых детекторов: плоскопараллельного С; (Li) -детектора с размерами 0,7 см² х 0,35 см и двух коаксиальных Се(Li) -детекторов с чувствительными объемами ~ 5 см³ и ~ 12см³. При измерениях на плоскопараллельном детекторе использовался 1024-канальный амплитудный анализатор, при измерениях на коаксиальных детекторах использовался 2048-канальный амплитудный анализатор. Толуширина у -линий ¹⁶⁶ Ть с энергией 340,8 кэв составляла ~ 5 кэв и ~ 3 кэв для плоскопараллельного и коаксиальных детекторов соответственно.

Спектры е – γ – совпадений изучались на тороидальном шестизазорном β – спектрометре (разрешение = 1%, светосила = 9%) и γ – спектро– метре с 512 – канальным амплитудным анализатором с (ристаллом NaI(T1) (7,6 см х 7,6 см), имеющим разрешение на линии ¹⁸⁷ Cs (E_γ = 661 кэв) = 8%.

Возможность регистрации электронов, отличающихся по энергии на 1,8%, на тороидальном шестизазорном β -спектромет је двумя независимыми сцинтилляционными счётчиками позволяла измерять два спектра е – у -совпадений одновременно: спектр совпадений слектронов на максимуме конверсионной линии и спектр фоновых совпалений электронов за данной конверсионной линией (E $_{e}$ >E $_{k}$) с у -лучами ¹⁵⁵ Ть. При исследовании е – у -совпадений 512-канальный анализатор использовался как две независимые половины по 256 каналов.

Спектры *у-у*-совпадений измерялись при помощи двух коаксиальных Се(Li) -детекторов^{X/} с чувствительными объемами 6,1 см³ и 7,3 см³. Разрешение обоих детекторов составляло = 5 кэв на линии ⁶⁰ Со с энергией 1331 кэв. Схематическое изображение геометрии опыта приведено на рис. 1. Для уменьшения числа совпадений, обусловленных *у*-квантами, рассеянными из одного детектора в другой, между ними располагалась свинцовая защита толщиной 10 мм, облицованная 1 мм Сd + 0,35 мм Си.

Электронная с ппаратура представляла собой аналогию быстромедленной схемы совпадений. Блок-схема аппаратуры приводится на рис. 2. Стабильность аппаратуры не хуже 0,1% в течение 100 часов. Разрешающее время аппаратуры r ~ 10⁻⁷ сек. Эффективность регистрации совпадений для y -лучей с энергией выше 50 кэв составляла не менее 80%. В измерениях испольновался 4096-канальный амплитудный анализатор, работающий в режими двухмерного анализа 64х64 канала.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

3.1. Исслєдования спектров конверсионных электронов

Спектр конверсионных электронов в энергетической области от 30 до 370 кэв исследовался с помощью тороидального *β*-спектрометра. В измерениях использовался препарат V.

Проведено несколько серий измерений; один из полученных спектров представлен на рис. 3. Сведения об энергиях и относительных интенсивностях конверсионных электронов приведены в табл. 1.

х/Коаксиальные Ge (Li) - детекторы, использованные в данной работе, изготовлены в Институте ядерных исследований ЧСАН.

Спектр конверсионных электронов¹⁵⁵ ^{Ть} в исследуемой энергетической области является очень сложным. Разрешающая способность прибора не позволяла разделять большинства известных линий^{/1,9/}. Для разделения интенсивностей сложных линий по составляющим использовались соответствующие данные об относительных интенсивностях конверсионных электронов из работы^{/10/}. Полученные таким образом интенсивности отдельных линий и данные работы^{/10/} приведены в таблице 2.

На β -спектрометре с фокусировкой электронов на угол $\pi\sqrt{2}$ исследовались отдельные энергетические участки спектра конверсионных электронов ¹⁵⁵ Ть. В режиме однократной фокусировки проводились измерения в области энергий электронов от 50 до 570 кэв, в режиме двукратной фокусировки – в области E_{e} от 130 до 670 кэв. В измерениях использовались препараты I и II.

В бета-спектрометре с фокусировкой электронов на угол $\pi \sqrt{2}$ окна счётчиковых камер закрыты лавсановыми пленками толшиной = 4 µ. Для определения интенсивностей конверсионных электронов в области низких энергий необходимо вводить поправку на поглошение и рессеяние электронов как в этих пленках, так и в газе, заполняющем счётчиковые камеры. Эта поправка определялась экспериментально, причём использовались известные данные об интенсивностях конверсионных электро-155 Ть (/10/, данные настоящей работы, таблица 1). ¹⁶⁹Yb /46/ ¹⁵² Еи /47/. Кривые эффективности регистрации электронсв в случае однократной и двукратной фокусировки представлены на рис. 4. Ошибка в определении поправочного коэффициента в режиме двукрагной фокусировки в исследуемой энергетической области составляет * 20%. В режиме однократной фокусировки ошибка в определении поправочного коэффициента составляет ≈ 20% в энергетической области 150 + 290 кэв и возрастает с уменьшением энергии электронов. При энергии электронов около 100 кэв ошибка в определении этого коэффициента дости ает 50%.

Полученные данные об энергиях и относительных интенсивностях конверсионных электронов ¹⁸⁵ Ть представлены в таблице 2. Конверсионные линии, соответствующие переходам с энергиями 216,0; 254,0; 380,3; 428,3; 488,1; 513,0; 532,5; 542,5; 555,4; 610,4 и 648,1 кэв, в конверсионных спектрах ранее нэ наблюдались. Гамма-лучи, соответствующие всем этим переходам, наблюдались нами также в гамма-спектрах или спектрах $\gamma - \gamma$ -совпаденый при распаде ¹⁸⁵ Ть /18/.

При определэнии энергий указанных переходов в качестве калибровочных энергий и пользовались результаты работы ^{/10/}. Погрешность в определении энергии новых линий относительно калибровочных энергий не превышает 0,2%. Значения энергии других переходов, которые наблюдаются нами в спектре конверсионных электронов, взяты из ^{/10/}.

При анализе двухмерных спектров у - у -совпадений при распаде ¹⁸⁵ Ть / 18/ обнаружены гамма-лучи с энергией 162 кэв, соответствующие переходу с энергией 162,3 кэв в ядре ¹⁸⁵ Сd. Такие гамма-лучи ранее при распаде ¹⁸⁵ Ть не наблюдались.

В работе /17 / при измерениях спектров конверсионных электронов 185 Ть на магнитном слектрографе с высоким разрешением в области

К -конверсионных линий группы известных переходов^{/10/} с энергиями 158,6; 160,5; 161,3; 163,3 кэв наблюдалась слабая конверсионная линия, которую авторы отнесли к переходу 162,62 кэв в¹⁵⁵ Gd. Соответствующая область конверсионного спектра, полученная в наших измерениях на спектрометре с фокусировкой электронов на угол $\pi\sqrt{2}$, работающем в режиме однократной фокусировки, приводится на рис. 5. Разделение конверсионных линий К •162,6 и К - 163,3 из-за недостаточной разрешающей способности спектронетра в наших измерениях затруднено. Разложение этого сложного участка спектра на составляющие компоненты, определение энергий отдельных компонент и их относительных интенсивностей было

проведено на электронно-вычислительной машине по программе, недавно составленной Звольским и Приходько /48/. Анализ результатов разложения

приводит к заключению, что в рассматриваемый участок (онверсионного спектра дают вклад семь линий конверсионных электронов с энергиями 108,4; 108,9 + 109,5; 110,3; 111,1; 112,1 и 113,1 кэв, соот зетствующих переходам К 158,6 (¹⁸⁵ Tb) + М 109,6 (¹⁸⁸ Tb); N 109,7+0 109.7 (¹⁸⁸ Tb K 160,5 (¹⁸⁵ Tb); K 161,3 (¹⁸⁵ Tb); K 162,3 (¹⁸⁵ Tb) , K 163,3 (¹⁸⁶ Tb). Ошибка в определении относительных интенсивностей конверсионных электронов не превышает 15%, ошибка в определении энергии линии К 162,3 относительно линий К 161,3 и К 163,3, не превышает 0,3%. Полученные интенсивности конверсионных линий К 160,5; К 161,3 и К 163,3 согласуются с интенсивностями этих линий в ^{/17/}. Однако полученое значение интенсивности линии К 162,3 приблизительно в шесть раз превышает соответствующее в ^{/17/} значение.

В работе^{/17/} при распаде ¹⁸⁸ Ть обнаружены конверсионные электроны, соответствующие переходам с энергиями 59,63; 102,6 ; 103,38; 193,28; 206,55; 242,85; 246,36; 248,64; 261,34; 310,13 и 408,79 кэв. Обнаружено также, что линии конверсионных электронов ранее известных переходов^{/10/} с энергиями 208,0 кэв и 367,6 кэв двойные, каждая из них соответствует переходам с энергиями 208,08 и 208,61 кэв и 367,33 и 367,70 кэв соответственно.

Линии конверсионных электронов, которые в работе ^{/10/} идентифицируются как L₁ и L₂ конверсионные линии перехода с энергией 60,3 кэв, в работе ^{/17/}идентифицируются как К -конверсионные и приписываются двум переходам с энергиями 102,61 и 103,38 кэв. Конверсионная линия, которая в работе ^{/10/}интерпретируется как К 101,6, в работе^{/17/} рассматривается как L₁ 59,63.

3.2. Гамма-излучение Ть

При измерениях гамма-спектра на плоскопараллельном детекторе использовался препарат V, на коаксиальных детекторах - прелараты II и III.

Было проведено девять измерений гамма-спектров ¹⁸⁶ Ть, из них два-на плоскопараллельном детекторе и семь - на коаксиальных детекторах. Полученные спектры хорошо согласуются между собой. Спектр у -лучей, снятый на плоскопараллельном детекторе, приведен на рис. 6, гамма-спектры, полученные с помощью коаксиальных детекторов, представлены на рис. 7 и 8.

На коаксиальных детекторах измерения гамма-спектров проводчлись с использование и фильтров (2 и 4 мм А1) и при разных расстояниях между детектором и источником. С помощью этих измерений было установлено, что линии с энергиями ≈ 130 и ≈ 306 кэв соответствуют суммарным пикам рентгеновского излучения и интенсивных гамма-лучей с энергиями 86,5 и 262,45 к≤в соответственно.

Определение относительных интенсивностей гамма-лучей при измерениях на плоскопараллельном детекторе производилось с помощью кривой эффективности рэгистрации гамма-излучения Се(Li) детектором с размерами 2,5 см² х 0,35 см, взятой из работы^{/49/}. Участок кривой эффективности, полученной для нашего плоскопараллельного детектора при измерении спектров ²⁰⁷ Bi ^{/50a/}и ²⁰⁸ Tl ^{/50b/}, энергии и интенсивности у -лучей которых известны, хорошо ложится на используемую кривую эффективности.

Кривые эфрективностей регистрации у -излучения коаксиальными детекторами с уувствительными объемами = 5 см и = 12 см получены экспериментально, одна из них приведена на рис. 9. Для определения эффективностей использовались 208 Нд. 169 Yb. ¹⁶⁰Tb, для которых известны у-лучей /51,46,52/. При определении эффективэнергии и интексивности у - излучения с энергией < 80 кэв регистрации испольностей **У**b с E = 63,12кэв известная интенсивность у -лучей зовалась ^{20 3} Hg рассчитанны э интенсивности X X_R - излучения и И 160 Тв. Расчёт проводился на основе данных о схемах распада И ²⁰⁸Нg и ¹⁶⁰ Tb и интенсивностей конверсионных электронов и у -лучей,

приведенных в работах^{/51,53/}В этих работах интенсивности конверсионных электронов и у -нучей определены с точностью не хуже 10%. Выход флюоресценции для К-оболочек брался равным 0,955 и 0,926^{/54/} для ртути и тербия соответственно. Энергии и относительные интенсивности калибровочных у -линий и рассчитанные интенсивности рентгеновского излучения приводятся в таблице 3.

Полученные данные об энергиях и интенсивностях у -лучей ¹⁶⁶ Ть представлены в табщие 4; 44 перехода наблюдались в у -спектре впервые нами^{/8/}, причём 21 переход ранее не наблюдался также и в спектре конверсионных электронов. В работе^{/16/} наблюдалось большинство этих перезодов. Относительные интенсивности гамма-лучей хорошо согласуются с нашкии данными (см. табл. 4). Мы не наблюдали переходов с энергией 235,1 и 326,0 кэв, на существование которых указывается в работе^{/16/}. Наблюдаемому нами переходу с энергией 488,1 кэв соответствуют, по-видимому, два перехода с энергиями 487,5 и 488,9 кэв^{/16/}. В наших исследованиях наблюдались слабые по интенсивности гамма-лучи с энергиями 216,0; 233,6; 248,0; 254,2; 361,0; 380,3; 395,0; 447,0; 513,0; 542,5; 555,4 и 610,5 кэв, которые в работе^{/16/} не наблюдались.

3.3 Исследование спектров е-у - совпадений

При исследовании спектров е-у-совпадений использовался препарат V. Измерялись спек'ры совпадений гамма-лучей с конверсионными линиями L60; K86,5 + L45,3; K105,3; K105,3 + M60; K148,45+ L105,3; K ≈ 160; K=163; K180,1 п K262,65.

Анализ спектров е – у –совпадений проводился следующим образом. Спектр совпадений у –лучей с заданной линией конверсионных электро– нов разлагалсяна составляющие части методом последовательного вычитания спектров. При разложении у –спектров использовались данные о форме линий, полученные при измерении у –спектров ряда стандартных препара–

тов, имеющих характерные одиночные у -пики. Полученные интенсивности

у -дучей были отнесены к числу N зарегистрированных электронов

β-спектрометром в процессе измерения совпадений. Отношение полученных интенсивностей у-лучей к числу N в большинстве случаев позволяло сделать заключение об интенсивностях У-переходов, совпадающих с конверсионными электронами заданной энергии. Некоторые экспериментальные спектры е-у совпадений приведены на рис. 10 ц 11, где для сравнения приведены также одиночные спектры гамма-лучей ¹⁸⁶ Ть. Результаты анализа спектров е-у- совпадений представлены в таблице 5.

3.4. Исследование спектров у-у - совпадений

При исследовании спектров у-у-совпадений использовался препарат IV. Были проведены измерения двухмерных спектров у- у -совпадений. Схематическое изображение регистрации совпадений дается на рис. 12. где используются обосмачения:

- ω₁, ω₂ телесные углы регистрации γ-излучения 1 и 2 детекторами, соответственно;
- σ₁(E), σ₂(E) эффективность регистрации у –излучения с энергией E 1-и 2- детекторами, соответственно;
 - I_γ(E) число у -квантов с энергией Е_риспускаемых источником за единицу времени;
- N₁(E), N₂(E) число у -квантов с энергией E , зарегистрированных в единицу времени 1 и 2 детекторами, соответственно;

. .

 $\epsilon_{12}(E_iE_k)$ – эффективность регистрации совпадений двух у -квантов с энергиями E_i и E_k X/ N₁₂(E_iE_k) – полное число $\gamma_i - \gamma_k$ – совпадений, зарегистрированных в с диницу времени X/.

Измерялись совпатения у -лучей энергетической области 80+230 кэв с у -лучами той же области (1-й опыт) и с у - лучами энергетической области 250+380 кэв (2-ой опыт). Прополжительность измерений в обоих случаях составляла около 20 часов. Эффективность регистрации у -лучей детекторами определялась экспериментально в каждом опыте по интенсизности линий в одиночных спектрах. Разрешающее время аппаратуры отенивалось по случайным совпадениям у -лучей, которые заведомо не совпадают во времени; эта оценка использовалась при анализе спектров у - у - совпадений.

Результаты измерений двухмерных спектров $\gamma - \gamma$ – совпадений обрабатывались методом, который подробно описан в работе^{/18/}. Интенсивность $\gamma - \gamma$ - совпадений определялась, как

$$I_{12}(E_{1}E_{k}) = \frac{N_{12}(E_{1}E_{k})}{\epsilon_{1}(E_{1}) \cdot \epsilon_{2}(E_{k})}$$

ист. где N₁₂ (E_i,E_k) представляет число истинных совпадений между

у - квантами двух фотоликов, соответствующих переходам с энергиями Е і и Е , а •

$$\epsilon_{1}(\mathbf{E}_{1}) = \omega_{1} \cdot \sigma_{1}(\mathbf{E}_{1}) ; \quad \epsilon_{2}(\mathbf{E}_{k}) = \omega_{2} \cdot \sigma_{2}(\mathbf{E}_{k}). \quad (3.2)$$

Согласно формуле (12) из работы /18/ для интенсивности совпадений

у -квантов, ссответствующих двум переходам, один из которых за-

селяет уровень (, а другой разряжает уровень У, имеем

$$I_{12}(E_{i}E_{k}) = I_{j'}(E_{i})I_{j'}(E_{k})k'\epsilon_{12}(E_{i}E_{k}) \frac{\Delta_{y}^{2}}{\sum_{Y}(I_{j'}+I_{e})\sum_{X}(I_{j'}+I_{e})} (3.3)$$

х/В данных обозначениях предпологоется, что импульсы от у -квантов с энергией с, поступают на схему совналений с 1-го детектора, а с энергией С, со 2-го детектора.

где I_•(E) - число конверсионных электронов перехода с энергией E, испускаемых презаратом за единицу времени;

 $I_{y}(E)$ и $\epsilon_{12}(E_{t}E_{k})$ были определены выше, $\sum_{Y}(I_{Y}+I_{0})$ – сумма полных интенсивностей переходов с уровня Y, Δ_{Y}^{X} – вероятность разрядки уровня X через уровень Y, k' – коэффициент, связывающий шкалы интенсивностей

$$\gamma^{(E_i)}, I_{\gamma}^{(E_k)}$$
 H $I_{12}^{(E_i, E_k)}$.

Коэффициент **k**' является одинаковым для всех каскадов, дающих вклад в рассматриваемый спектр совпадений. Величина эффективности регистрации совпадений $\cdot \frac{i}{12}$ в исследуемой области энергий не должна изменяться больше, чэм на 20%, следовательно, в тех же пределах могло изменяться произведение **k**' $\cdot \epsilon_{12}$. Величина **k**' $\cdot \epsilon_{12}$ определялась из эксперименяться произведение **k**' $\cdot \epsilon_{12}$. Величина **k**' $\cdot \epsilon_{12}$ определялась из экспериментальных данных по нескольким надежно идентифицированным каскадам. Значение полученлого таким образом произведения **k**' $\cdot \epsilon_{12}$ служило в дальнейшем критерием правильности вводимых в схему уровней каскадов. На рис. 13 и 14 приведены спектры совпадений, соответствующие сечениям вдоль оси **E**₁ (**E**_k при выбранных энергиях на оси **E**_k (**E**₁). Для сравнения приводытся также одиночные спектры вдоль обеих осей.

Полученные интенсивности *у* – *у* – совпадений приведены в таблице 6. При нормировке интенсивностей совпадений интенсивность совпадений (*у* 105,3)(*у* 262,45[°] + *у* 268,7) принималась равной 1000. Погрешность в определении интексивностей совпадений составляет от 20 до 50% в зависимости от интексизностей переходов и фоновых совпадений.

В спектрах совпадений с наиболее интенсивными переходами наблюдались у-лучи, интенсивность которых составляла 5.10⁻⁴ у -квантов на распад.

4. АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ РЕЗУЛЬТАТОВ. СХЕМА РАСПАДА 15 ⁵ Tb → ^{15,5} Gd

4.1. Мультипольности переходов

Данные об интенсивностях у – лучей (табл.4) и конверсионных электронов (табл. 1,2) и результаты работ^{/10,17/} позволяли нам определить экспериментальные значения коэффициентов внутренней конверсии (КВК) большинства переходов, сопровождающих распад ¹⁸⁵ Tb → ¹⁸⁵ Gd. При определении КВК принималось, что переход с энергиэй 262,45 ков типа M1^{/10,17/}.

Сравнение экспериментальных значений КВК с теоротичэскими /55/ приведено в таблице 7.

На основе данных об интенсивностях конверсионных электронов и у -лучей, а также заключений о мультипольностях переходов, нами определены полные интенсивности переходов при распаде ¹⁵⁵ Ть. Эти значения приведены в табл. 8 и были использованы для составления баланса интенсивностей на уровнях ¹⁸⁵ Сd.

4.2. Анализ е - у- совпадений

Результаты анализа спектров совпадений отражены э схеме распада ¹⁵⁶ ть → ¹⁵⁵ Gd (рис. 15). В спектрах совпадений с линиями L 60.0 и (K105,3 + M 60.0) отчётливо проявляются совпадения с у -лучами с энергией 370 кэв. В этой области хорошо известна интэнсивная линия с энергией 367,6 кэв. В работе^{/17/}показано, что эта лин и двойная и состоит из линий с энергиями 367,33 и 367.70 кэв. Расчёты по формуле (3.3) приводят к заключению, что ≈ 50% полной интенсизности у -лучей с энергией 367,6 кэв совпадает с переходом 60.0 кэв. Это позволяет разместить переход с энергией 367.33 кэв между уровнях и 427,4 и 60.0 кэв, что подтверждает заключение, сделанное в^{/17/}. Результаты наших исследований и данные работы^{/17/} приводят к выводу, что оба перехода типа Е 1.

Количестве ный анализ спектров • – у – совпадений приводит к заключению о существовании каскада 175,2 и 60,0 кэв, что подтверждает существование уговня с энергией 235,2 кэв, введенного в работе^{/16/} на основе у – у - совпадений.

Совпадения конверсионных электронов L 60.0 и M 60,0 с у –лучами 226,8 кэв подтверждают существование прямого каскада из этих переходов, и, таким образом, существование уровня с энергией 286,8 кэв.

Анализ совнадений с конверсионными электронами К 86,5+L 45,3 приводит к заключению о существовании прямых каскадов:

148,6	кэв	<u> </u>	36,5	КЭВ	239,5	КЭВ	 86,5	КЭВ
180,1	кэв	,	86,5	КЭВ	281,1	кэв	 86,5	КЭВ
200,3	кэв		86,5	кэв	340,8	кэв	 86,5	к эв

Каскад 148,6 кэв — 86,5 кэв также подтверждает существование уровня с энергиэй 235,2 кэв.

Анализ сов надений с электронами К 105,3 позволяет сделать заключение о существования следующих прямых каскадов: 161,3 кэв ——→ 105,3 кэв 262,45 кэв ——→ 105,3 кэв 163,3 кэв ——→ 105,3 кэв 321,8 кэв ——→ 105,3 кэв 220,6 кэв ——→ 105,3 кэв

Анализ совтадений с электронами К 148,65 + L105,3 подтверждает существование прямого каскада 148,65 кэв — 86,5 кэв. Наблюдаются слабые по интенсивности совпадения с у – лучами с энергией ~ 105 кэв. Это указывает, по-видимому, на сложный характер перехода 148,65 кэв и позволяет разместить его в двух местах, причём преобладающая доля интенсивности п линадлежит переходу, расположенному между уровнями 235,2 кэв и 86,5 кэв, а меньшая часть – между уровнями 266,6 и 118,0 кэв. Наблюдаются также совпадения конверсионных электронов К 148,65 кэв с

у -лучами с знергией ≈ 130 кэв, которые соответствуют суммарному пику от у -лучей 86,5 кэв и рентгеновского излучения.

Анализ спектра совпадений с электронами к 180,1 приводит к заключению о существовании прямых каскадов:

> 180,1 кэв ----- 86,5 кэв 160,5 кэв ------ 180,1 кэв

В этих спектрах также проявляются совпадения с у -лучами в области ≈ 130 кэв.

Анализ совпадений с электронами K262,45 + K 268,7 кэв указывает на существование прямых каскадов:

262,45 кэв ----- 105,3 кэв

220,0 кэв ----- 268,7 кэв.

На основе анализа спектров е – у – совпадений подтверждается существование в ядре ¹⁶⁶ Gd следующих уровней: 60,0; 86,5; 105,3; 118,0; 235.2: 266.6: 268.6: 286,8: 326,0: 367,7: 427,4: 488,6 кэв.

4.3. Анализ у-у - совпадений

Данные об интенсивностях у – у – совпадений (таб. 6) вместе с данными об интенсивностях у – лучей (табл. 4) и интенсивностях конверсионных электронов (табл. 1,2) позволили нам прогести количественный анализ схемы распада.

из спектров у - у - совладений, приводят к оценке интенсивностей у -лучей такого перехода I_у < 30% от полной интенсивности у -лучей с энергией 148,65 кэв что находится в согласии с результатами е - у -совпадений.

Наблюдаются также совпадения (у148,65) (у 216). На основе указанных совпадений переход 216 кэв размещается между уровнями 451,3 кэв и 235,2 кэв, что доказывает существование уровня 451,3 кэв, введенного в работе /16/.

В спектре совпадений с у -лучами 148,65 кэв (рис. 13) обнаружена линия с энергие і – 192 кэв, которая ранее при распаде ¹⁸⁶Ть не наблюдалась. Переход с такой энергией располагается между уровнями 427,4 и 235,2 кэв. Спектры совпадений у -лучей с энергией – 162 кэв с у -лучами 86,5; 105,3; ~162 и 180 кэв так же, как и результаты анализа спектров е - у - совпадений, подтверждают расположение переходов с энергиями 158,5; 160,5; 161,3 и 163,3 кэв в схеме уровней ¹⁸⁶Сd, предложенной в предыдущих работах ^{/8}, 10, 17/

Наблюдаются также совпадения у -лучей с энергией ~ 162 кэв с переходами 208; 220,6 и 239,45 кэв (табл. 6), разряжающими уровень 326,0 кэв. Чтобь объяснить эти совпадения, необходимо предположить существование нового перехода с энергией ~ 162 кэв, расположенного между уровнями 488,8 и 326,0 кэв (рис. 15).

Обращают на себя внимание некоторые результаты анализа спектров у - у - совпадений с переходами 86,5 и 105,3 кэв (рис. 14, табл. 6). Как видно из рис. 15, переходы с энергиями 262,45; 321,8 и 384,2 кэв находятся в прямом каскаде с переходом 105,3 кэв, в то время как с

у -лучами 86,5 кэв они совпадают через переход 18,7 кэв. Переходы 281,1 и 340,8 кэг совпадают непосредственно с переходом 86,5 кэв. Величины $k' \epsilon_{12}$ (табл. 9) для всех пяти указанных прямых каскадов отличаются от сгеднего значения не более, чем на 15%. Однако величины $k' \epsilon_{12}$ для каскадов 262,45 — 18,75 — 86,5 кэв и 321,8 —

→ 18,7 → 86,5 кэв превышают соответствующие величины для прямых каскадов более, чем в три раза, причем от своего среднего значения они отличаются не более, чем на 15%. Для объяснени: такого расхождения в величинах к'є₁₂ прямых каскадов и каскадов, идущих через переход 18,7 кэв, следует предположить, что интенсивность перехода 18,7кэв, связывающего уровни 105,3 и 86,5 кэв, по крайней мере, в два раза превышает интенсивность, приведенную в работе/10/.

Кроме упомянутых каскадов количественный анализ результатов у-у - совпадений подтверждает существование следующих прямых каскадов:

180,1 кэв		86,5 кэв	262,45 кэв		105,3 кэв
182,1 кэв	,	86,5 кэв	321,8 кэв	`	105,3 кэв
200,3 кэв		86,5 кэв	348,2 кэв	-	105,3 кэв
239,45 кэв		86,5 кэв	160,5 кэв		180,1 кэв
281,1 кэв	>	86,5 кэв	380,3 кэв		180,1 кэв
340,8 кэв	}	86,5 кэв	160,5 кэв	+	161,3 кэв
161,3 кэв	>	105,3 кэв	158,6 кэв	•	163,3 кэв
163,3 кэв		105,3 кэв	158,6 кэв		182,1 кэв
220,6 кэв		105,3 кэв	158,6 кэв		268,6 кэв

В результате анализа двухмерных спектров y - y-созпадений удалось с уверенностью разместить все интенсивные переходы в схеме распада ¹⁵⁵ Tb → ¹⁵⁵ Gd. Определены интенсивности гамма-лучей переходов с энергиями 162,3 и 192,2 кэв, которые в одиночных спектрах глима-лучей не наблюдались. Анализ y - y и e - y - совпадений также указываетна то, что линии с энергиями = 208 и = 220 кэв сложные, что находитсяв согласии с работой по изучению спектра конверсионных электронов¹⁵⁵ Tb / 17/.

На основе анализа спектров *у* - *у* - совіїадений подтверждается существование в ядре ¹⁸⁵ Gd уровней с энергиями: 86,5 105,3; 118,0; 235,2; 266,6; 268,6; 286,8; 326,0; 367,7; 427,3; 451,3; 488,8 и 647,8 кэв.

4.4. Схема распада ¹⁵⁵ ТЬ → ¹⁵⁵ Gd.

Предлагаемая нами схема распада ¹⁵⁵ Ть - ¹⁵⁸ Сd приводится на рис. 15. В схему эключено большинство переходов, наблюдаемых при распаде ¹⁵⁵ Ть. Суммарная интенсивность переходов, не включенных в схему распада, составляет < 0,5% на распад.

В схеме указаны энергии уровней, экспериментальные значения спи-155 Gd при электронном нов и чётностей, процент заселенности уровней 155 Tb и значения lg fr, вычисленные при значении энерзахвате в ¹⁵⁵ ть → ¹⁵⁵ Gd 1000 кэв. Переходы, расположение котогии распада рых в схеме распада подтверждается из анализа е - у или у - у-совпадений, отмечены знаками • и о соответственно. В случае, если расположение перехода в схеме распада подтверждается как в е-у так и в у-у-совпадениях. переход отмечен знаком . В случае, когда энергетический баланс и анализ Спектров совпадений не позволяют сделать однозначное 685 Gd, в схеме уровней заключение о расположении перехода пeреход располагает Э в нескольких местах, причём расположение, которое, по нашему мненик, более предпочтительно, обозначено сплошной линией, расположение такого перехода в других местах обозначено пунктирной линией.

4.4.1. Основные состояния Ть и Gd.

Ядра ¹³⁵ ть и ¹⁶⁵ Gd находятся в области ядер, у которых проявляются свойства, связанные с отклонением от сферической симметрии ядерного потенциала ^{/418/}.

Спин основного состояния ¹⁸⁵ Gd экспериментально определен в^{/38/}, он равен 3/2. Резильтаты опытов по кулоновскому возбуждению ядра ¹⁸⁸ Gd ^{/20/} находятся в согласии с этим значением. Результаты этой работы дают для гараметра деформации δ ядра ¹⁸⁸ Gd в основном

состоянии значение 0,3. По схеме Нильссона основному состоянию $\frac{100}{64}$ Gd₉₁ приписана конфигурация 3/2⁻/521/, приписываемая также основным состояниям нечётных ядер гадолиния с A = 155 + 159^{/41}B[/]. Приписание квантовых характеристик 3/2⁻/521/ основному состоянию ¹⁵⁵ Gd подтверждается в работе по изучению (d, p) и (d, t) реакций^{/22/}.

Квантовые характеристики основного состояния ядра ₆₅ Tb₉₀ определяются состоянием 65-го протона. В схеме Нильссона гри параметре деформации δ ~ 0,3 65-ому протону соответствует орбиталь 3/2⁺/411/, которая приписывается основным состояниям нечётных ядер тербия с

A = 155 + 163 $^{/41B/}$. Характер существующей в ядре ¹⁵⁵ Гь ротационной полосы $^{/56/}$ согласуется со значением I₀ = 3/2. Проведенные в последнее время непосредственные измерения спина основного состояния ¹⁵⁶ Ть методом магнитного резонанса $^{/39/}$ действительно приводят к значению I₀ = 3/2, что подтверждает предположение, сделанное ранее на основе систематики.

4.4.2. Возбужденные уровни Gd

Уровень с энергией 60,0 кэв наблюдался при распадо. Ть и Ев, а также в опытах по кулоновскому возбуждению ¹⁵⁵ Gd. Мультипольность перехода 60,0 кэв вместе с данными по кулоновскому возбуждению устанавливают однозначно спин и чётность этого уровня 5/2⁻.

Уровень с энергией 86,5 кэв возбуждается при распле ¹⁵⁵ Ть и¹⁵⁵ Еи и разряжается двумя переходами типа E1 с энергиями 86,5 и 26,5 кэв, что определяет чётность данного состояния как положительную, однако для спина остаются две возможности: 3/2, 5/2.

Уровень с энергией 105,3 кэв, интенсивно засоляющийся как со сторо-¹⁸⁵ ТЪ, так и ¹⁸⁵ Ев, разряжается тремя переходами с энергиями 105,3; 45,3 и 18,75 кэв на основное и первые два возбужденных состояния ¹⁵⁵ Gd. Мультипольности этих переходов устанавливают положительную чётность этого уровня, а для спина остаются две возможности: 3/2, 5/2.

Уровень с энергией 118,0 кэв слабо заселяется как при распаде так и Ез и разряжается тремя переходами с энергиями 118,0; 58,0 и 31,43 кэв. Мультипольности переходов, разряжающих рассматриваемый уровень, посволяют сделать заключение о положительной чётности этого уровня при значениях спина: 3/2, 5/2, 7/2.

Уровень с энергией 146,0 кэв наблюдался в опытах по кулоновском ¹⁵⁵ Сd, а также при распаде ¹⁵⁵ Tb и ¹⁶⁶ Eu. Данный уровень разгяжается переходами с энергиями 146,0; 86,0 и 40,7 кэв, мультипольности которых вместе с результатами опытов по кулоновскому возбуждению определяют спин и чётность уровня I^π = 7/2⁻.

Уровене с энергией 235,2 кэв, как и все вышележащие уровни Сd заселяется только при распаде ¹⁵⁸ Тb. Рассматриваемый уровень разряжается перезодами с энергиями 148,65 и 175,2 кэв, мультипольности кото рых устанавливают для данного состояния положительную чётность и возможные значения спинов 3/2, 5/2 и 7/2. В работе^{/16/} наблюдался слабый переход с энэргией 235,1 кэв, который размещен между уровнем 235,2 кэв и основным состоянием ¹⁵⁵ Gd. Нами в этой области энергий в спектре у -лучей обнаружен слабый переход с энергией ≈ 233,5 кэв.

Уровень с энергией 266,6 кэв разряжается интенсивными переходами с энергиями 180,1 и 161,3 кэв, слабым переходом с энергией 206,6кэв, обнаруженным в /17/ и возможно, переходом с энергией 148,65 кэв. Мультипольности указанных переходов определяют положительную чётность уров ня с энергией 266,6 кэв при возможных значениях спина 1/2, 3/2, 5/2, 7/2.

Энергетический баланс и анализ спектров е – у и у – у -совпадений указывают на то, что уровень с энергией 268,6 кэв разряжается переходами с энергиями 268,7; 208,6; 182,05; 163,3 и 150,6 кэв. Мультипольности переходов, расряжающих уровень 268,6 кэв, определяют его чётность как положительнук, при возможных значениях спина 1/2, 3/2, 5/2.

26

Уровень с энергией 286,8 кэв разряжается переходани с энергиями 286,9; 226,8; 200,3 и 181,6 кэв, мультипольности которых определяют отрицательную чётность рассматриваемого уровня при возможных значениях спина 3/2 и 5/2.

Уровень с энергией 326,0 кэв разряжается переходани с энергиями: 239,45; 220,6; 208,0; 39,8 кэв и, возможно, переходом с энергией 326,0 кэв, который наблюдался при изучении спектра у -лучей ^{15 у}Ть^{/,16/} Мультипольности переходов, разряжающих уровень с энергией 323,0 кэв, определяют его чётность как положительную при возможных энечениях спинов 1/2, 3/2, 5/2 (7/2).

Данные о распаде ¹⁸⁵ Ть приводят к заключению, что уровень с энергией 367,7 кэв разряжается переходами с энергиями 367,7; 281,1; 262,45; 99,0 и 80,9 кэв. Мультипольности переходов, разряжающих уровень с энергией 367,7 кэв, определяют его чётность как положительную, но допускают для спина значения 1/2; 3/2; 5/2.

Согласно имеющимся в настоящее время экспериментальным данным, уровень с энергией 427,4 кэв разряжается переходали с энергиями 427,4 кэв, 367,4 кэв, 340,8 кэв, 321,8 кэв, 192,2 кэв, 160,5 кэв, 101,15 кэв и 59,63 кэв. Однако энергетический баланс допускает расположение перехода 427,4 кэв и в другом месте в схеме уровней ¹⁵⁵G. Мультипольности переходов, разряжающих уровень с энергией 427,4 кэв, устанарливают его чётность как положительную, но допускают значения 3/2 или 5/2 для спина этого уровня. В случае отсутствия разрядки рассмитриваемого уровия на основное состояние ¹⁵⁵Cd для спина этого уровня дспускается также значение 7/2.

Уровень с энергией 451,3 кэв введен в схему распаца¹⁵⁵ Ть → ¹⁵⁵ Gd в работе^{/15/}на основе совпадения суммы энергий переходов 391,3 кэв и 60,0 кэв и энергии перехода 451,3 кэв. Результаты проведенного нами анализа спектров у - у - совпадений подтверждают сущестнование этого уровня и указывают на то, что он разряжается также переходом с энер-

гией 216 кэг. Мультипольности переходов, разряжающих уровень с энергией 451,3 кэв, определяют его чётность как отрицательную, для спинов попускают следующие возможные значения: 1/2, 3/2 и 5/2.

Уровень с энергией 488,8 кэв введен в схему распада ¹⁸⁸Ть → ¹⁸⁵Сd в работах /8 15/. На основе имеющихся экспериментальных данных можно

предположуть, что этот уровень разряжается переходами с энергиями 488,1; 402,3; 384,3; 371,0; 254,0; 220,0; 162,3 кэв. Энергетический баланс допускает разрядку данного уровня также переходами с энергиями 428,3кс и 120,5 кэв 4 позволяет расположить переход с энергией 488,1 кэв в другом месте схемы уровней ¹⁵⁵ Gd. Мультипольности переходов, разряжающих рассматриваемый уровень, определяют его чётность как положительную при возможных значениях спина 1/2, 3/2, 5/2. Если происходит разрядкє этого уровня также переходом с энергией 428,3 кэв, то значение 1/2 для спина не допускается. В случае отсутствия разрядки уровяя с энергией 488,8 кэв на основное состояние ¹⁵⁶ Gd для спина это го уровня допускается также значение 7/2.

Уровень с энергией 592,6 кэв разряжается переходами с энергиями 592,8; 532,5; 505,9; 447,0 кэв. Энергетический баланс допускает также возможность разрядки этого уровня переходом 488,1 кэв и переходом 103,38 кэв, идентифицированным в^{/17/}. Примесь излучения типа ЕО в переходе с энергией 592,8 кэв приводит к заключению, что уровень с энергией 592 6 кэв имеет спин и чётность 3/2⁻, что согласуется с мультипольностями остальных переходов, разряжающих рассматриваемый уровень.

Уровень с энергией 647,8 кэв разряжается переходами с энергиями 648,1; 588,2; 542,5; 501,8; 380,3; 361,0 и 220,0 кэв. Примесь излучения типа ЕО в переходе с энергией 588,2 кэв приводит к заключению, что уровень с энергией 647,8 кэв имеет спин и чётность 5/2⁻; это согласуется с мультипольностями остальных переходов, разряжающих данный уровень.

На основе энергетического баланса, баланса интенсигностей и выводов о мультипольностях переходов в схему распада ¹⁶⁵ Гь → ¹⁶⁵ Gd нами введено дополнительно два новых уровня с энергиями 559,9 и 615,5 кэв.

Уровень с энергией 559,9 кэв разряжается переходами с энергиями 559,9; 454,8 и, возможно, 233,5 кэв. Мультипольности переходов с энергиями 559,9 и 454,8 кэв определяют чётность рассматриваємого уровня как отрицательную и допускают следующие значения спина: 1/2, 3/2, 5/2.

Уровень с энергией 615,5 кэв может разряжаться переходами с энергиями 615,5; 555,4; 248,0 кэв и, возможно, переходом с энергией 380,3 кэв. Мультипольности переходов, разряжающих рассматриваемый уровень, определяют его чётность как отрицательную при позможных значениях спина 3/2 и 5/2.

В работе ^{/8/} в схему распада ¹⁵⁵ Ть → ¹⁵⁵ Gd нами были введены уровни с энергиями 138,8; 706; 720,8; и 881 кэв. Однако, анализ всей совокупности экспериментальных результатов не дает достаточных оснований для того, чтобы оставить эти уровни в схеме распада ¹⁸⁵ Ть → ¹⁸⁶ Gd.

4.4.3. Баланс интенсивностей переходов в схеме распада ¹⁵⁵ Ть → ¹⁶⁵ Gd.

Данные об интенсивностях конверсионных электронов и у -излучения (таблицы 1,2 и 4) позволили нам составить баланс ин енсивностей переходов для уровней ¹⁸⁵Gd в предложенной схеме распада ¹⁸⁵Tb → → ¹⁸⁵Gd (рис. 15) и определить интенсивности электронного захвата в ¹⁸⁵Tb, приводящего к возбужденным уровням ¹⁵⁵Gd.

Интенсивность рентгеновского К x –излучения (табл 4) позволила определить долю электронного захвата в ¹⁸⁶Ть, приводящую к основному состоянию ¹⁸⁵Gd. Доля распадов на основное состояние ¹¹⁸Gd вычисля-

лась из интенсивности K_x -лучей и интенсивностей К -линий конверсионных электронов табл. 1 и 2). При этом учитывался L -захват, вычисленный при предположении разрешенных β -переходов. Выход флюоресценции для К оболочки согласно^{54/}, принимался равным $\omega_k = 0.920$. Доля электронного захвата в ¹⁸⁵ Ть, ведущего на основное состояние ¹⁵⁵ Gd, оказалась равной 32%, что находится в хорошем согласии с величиной 30%, полученной в работе ^{16/}.

Полученные абсолютные интенсивности гамма-лучей, конверсионных электронов и полные интенсивности переходов, сопровождающих распад¹⁵⁵ Ть, приведены в табл 8. Интенсивности заселения уровней ¹⁵⁵ Gd при электронном захвате в ¹⁵⁵ Ть приводятся в табл. 10.

4.4.4. Значения lg fr для распада¹⁸⁵ Ть на уровни¹⁸⁵ Gd. Полученные значения lg fr для распада¹⁸⁵ Ть электронным захватом на уровни¹⁵⁵ Gd приведены в таблице 10. Разность масс ядер ¹⁵⁵ Ть -¹⁵⁵ Gd экспериментально не определялась. Значения этой разности, по полуэмпирическим данным разных авторов /1,57,58,59,60/, довольно сильно различаются между (обой.

Как правило, в тяжелых ядрах разность масс на 200-300 кэв превышает энергию самого жесткого перехода, если его измеренная интенсивность ~ 0,01% на распад. Самый жесткий переход, наблюдаемый нами, имеет энергию 648,1 кэв и интенсивность ~ 0,01% на распад. Более жест кие переходы с энер иями 706,2 и 715,3 кэв, обнаруженные в спектре конверсионных элект юнов /10/, в гамма-спектрах ¹⁵⁵ ть не наблюдались, и их интенсивности, по-видимому, не превышают 0,005% на распада В соответствии с этим разумно предположить, что энергия распада ¹⁶⁵ ть-- ¹⁵⁵ Gd составляет~ 000 кэв. Приведенные в таблице 10 величины lg ir вычислены для значений разности масс ¹⁵⁵ ть - ¹⁵⁶ сd 800 и 1000 кэв.

5. АНАЛИЗ СХЕМЫ РАСПАДА Ть → Gd.

5.1. Введение

Ядро ¹⁶⁵Сd₉₁ находится в начале области атомных ядер редкоземельных элементов, равновесная форма которых не является сферически симметричной. Известно, что многие свойства возбужденных состояний таких ядер с нечётным А можно объяснить в рамках обобщенной модели ядра ^{/2,3,41,61/}. Однако детальное сравнение наблюдаемых свойств возбужденных состояний этих ядер со свойствами, предсказаными на основе обобщенной модели ядра, в некоторых случаях (особенно иля ядер, расположенных на краях области деформированных ядер), не дает удовлетворительного согласия. Для объяснения отклонений экспериментальных данных от предсказаний теории часто учитывают эффекты, обусловленные связью вращательного и колебательного движения или связью вращательного и внутреннего движения ^{/62,63/}.

Рассмотрим некоторые основные черты схемы уровнэй сd, которые можно ожидать на основе обобщенной и сверхтекучей модолей ядра и из систематики состояний в этой области ядер.

5.1.1. Одночастичные уровни схемы Нильссона

Основное состояние ¹⁸⁸ Gd имеет квантовые хараксеристики $3/2^{-}/521/$ и обладает статической деформацией, равной $\delta \approx 0,3$. В отом случае, согласно схеме уровней Нильссона ^{/64/} (рис. 16), в ядре ¹⁵⁵ Gd в области малых энергий возбуждения можно было бы ожидать возбуждение уровней, соответствующих одночастичным состояниям 5/2/523/; 1/2/521/; 11/2/505/;3/2/532/; 1/2/530/; 9/2/514/ с отрицательной чётностью, одночастичным состояниям 5/2/642/; 7/2/633/; 3/2/402/; 1/2/400/; 3/2/651/ и 1/2/660/-с положительной чётностью. Однако возбуждение состояний $11/2^{-}/505/; 9/2^{-}/514/$ и $7/2^{+}/633/$ в ядре ¹⁵⁵ Gd ири расисие ¹⁵⁵ Tb

пректически нельзя ожидать из-за большой разницы между спинами этих состояний и спином основного состояния ¹⁸⁵ Ть (3/2⁺ /411/).

5.1.2. Коллективные вибрационные состояния

В последние годы в теоретических и экспериментальных исследованиях появились указания на существование в ядрах с нечётным А состояний коллективного вибрационного характера, основанных на низколежащих одночастичных уровня:.. Возбуждения этого типа связаны с коллективными ко лебаниями поверхности относительно равновесной формы ядра^{/2,3}/

В случае ядра ⁵⁵ Gd можно ожидать низкорасположенные вибрационные состояния, которые соответствуют колебаниям квадрупольного типа с $\lambda = 2$.

Для ядер с незётным A, у которых проекция момента количества движения на ось симмєтрии всегда отлична от нуля, следует ожидать существования трех состозний вибрационного типа, а именно: β -вибрационного с K = K₀ и двух у -вибрационных состояний с проекциями спинов на ось симметрии ядра, равлыми K = K₀ ± 2 . Здесь K₀ = Ω есть квантовое число одночастичного состояния, с которым связаны вибрационные состояния. Надо отметить, что эффект смешивания одночастичных и вибрационных состояний и эффект кориолисового взаимодействия затрудняет идентификацию состояний и часто приводит к тому, что структура таких состояний является более слокной. В частности, ожидается, что энергия и другие свойства вибрационных состояний существенным образом зависят от взаимного расположения других состояний в данном ядре^{/61/}.

Остановимся на некоторых характерных свойствах, которые следует ожидать для вибрационных уровней в ядрах[®]с нечётным **А**

Согласно обобщенной модели ядра, гамма-переход между чистым вибрационным и одночастичным состояниями имеет место в том случае если вибрационное состозние основано на данном одночастичном уровне.

Характерной чертой разрядки уровней ротационной полосы бета-вибрационного состояния на уровни ротационной полосы состояния, с которым связано бета-вибрационное состояние, является возможность существования монопольных ЕО-переходов между уровнями с одинаковыми спинами. В случае разрядки гамма-вибрационного уровня переходы типа ЕО запрещены по квантовому числу К. Таким образом, наблюдение излучения типа ЕО при разрядке уровня может служить укасанием на его бета-вибрационную природу.

Для у -вибрационного состояния с K = K₀-2 = 1/2, параметр развязки а должен быть равным нулю. Поскольку, согласно расчётам, для ожидаемых одночастичных состояний с $\Omega = 1/2$ в ядре¹⁸⁵ G d тараметр развязки а отличен от нуля (табл. 11), то равенство нулю параметра а для состояний с K = 1/2 указывает на их у -вибрационный характер.

5.1.3. Коллективные вращательные состояния

С каждым из одночастичных, а также вибрационных состояний может быть связана ротационная полоса. Согласно работе^{/65/}, энергии уровней вращательной полосы приблизительно описываются соотношением:

$$E_{k}(I) = E_{k}^{0} + A\{I(I+1) + a(-)^{I+1/2} (I+1/2)\delta_{K_{j}1/2}\} + BI^{2}(I+1)^{2}, \quad (5.1)$$

где константы E_k^0 , А, а, В определяются из экспериментальных данных. Для ожидаемых в ядре ¹⁵⁵ Gd одночастичных состояний с К = Ω = 1/2 расчёт параметра а с использованием волновых функций Нильссона, согласно ^{/41a/} при значении параметра деформации δ = 0,3 дает величины, приведенные в таблице 11.

5.1.4. Кориолисово взаимодействие и взаимодействие между состояниями, отличающимися

на $\Delta N = 2$

В работах ^{/17,40/} было обращено внимание на то обстоятельство, что некоторые свойства низколежащих состояний ¹⁸⁶ Gd не удается объяснить на основе простых пуедставлений об одночастичных уровняк Нильссона и связанных с ними эращательных состояний, и что здесь, по-видимому, имеет место сильное кориолисово взаимодействие ^{/62,63/}. В соответствии с правилами отбора ^{/33/}, в случае ядра ¹⁸⁵ Gd можно ожидать кориолисово взаимодействие мэжду нильссоновскими состояниями, как указано в таблице 12.

Как указано в работах^{/17,74/}, в случае ядра¹⁵⁵ Са можно ожидать взаимодействие между состояниями, отличающимися по квантовому числу

N на 2, которое в эхеме Нильссона не учтено, а именно, между состояниями $1/2^+$ /400/ и $1/2^+$ /660/ с $\Omega = 1/2$ и состояниями $3/2^+$ /651/ и $3/2^+$ /402/ с $\Omega = 3/2$. Для орбиталей этих пар состояний в схеме Нильссона в области $\delta \approx 0.3$ наблюдается сближение.

Очевидно, что гориолисово взаимодействие и взаимодействие между состояниями, для которых Δ N =2, могут значительно затруднить идентификацию состояний в ядре ¹⁵⁵Gd.

5.1.5. Структура неротационных состояний ^{гоо}Сd по свэрхтекучей модели ядра

В работе^{/66/}на основе сверхтекучей модели ядра с учётом взаимодействия квазичастии с фононами выполнены расчёты энергий неротационных состояний нечётных деформированных ядер в области 155 ≤ A ≤ 181, дана их структура и в отдельных случаях приведены параметры развязки. Результаты, полученные в этой работе для ¹⁸⁵ Gd в сравнении с нашими

A CONTRACTOR OF A CONTRACTOR OF

A REAL PROPERTY AND A REAL

данными, приводятся в табл.13. В работе^{/66/} так же, как и в схеме Нильссона^{/64/}, не учтено смешивание одночастичных волновых функций состояний /651/**4** и /402/**4**, а также /660/**г** и /400/**4** и кориолисово взаимодействие.

5.2. Основное состояние и возбужденные уровни Gd с отрицательной чётностью

5.2.1. Вращательная полоса основного состояния /521/ 🖈

В предыдущих работах (см., например, ^{/1,9,20/}) по кулоновскому возбуждению ¹⁸⁸Gd и по исследованию распада ¹⁵⁵Tł и ¹⁵⁵Eu было установлено, что уровни с энергиями 60,0 кэв (5/2⁻) и 146,0 кэв (7/2⁻) являются уровнями вращательной полосы основного состряния ¹⁵⁵Gd /521/#

Коэффициенты в формуле (5.1) для энергий уровней этой полосы получились равными A = 11,7 кэв и B = 23,8 эв (табл. 14). Анализ характера разрядки уровней вращательной полосы основного состояния показал^{/34,35/}, что экспериментально полученные вероятности радиационных переходов внутри этой полосы хорошо описываются з рамках обобщенной модели ядра.

Распад ¹⁸⁵ Ть (3/2⁺/411/) на первые два уровня вращательной полосы основного состояния ¹⁵⁵ Gd /521/7 классифицируется как iu. Сравнение отношений приведенных вероятностей для ветвэй электронного захвата, ведущего на уровни вращательной полосы основного состояния

¹⁵⁵ Gd, приведено в табл. 15. Усиление распада ¹⁵⁸ T, на основное состояние ¹⁵⁶ Gd по отношению к распаду на уровень с энергией 60,0 кэв (5/2⁻), по сравнению с теоретическими предсказаниями по правилам Алага^{/67}, по-видимому, можно объяснить, если предположить, что в первом случае заметную роль играет электронный захват типа L=0.

5.2.2. Вращательная полоса β - вибрационного состояния /521/4β

Среди возбужденных уровней с отрицательной чётностью в ядре ¹⁵⁵ Gd, заселяющихся при распаде Ть, особое внимание заслуживают уровни с энергиями 592,6 и 647,8 кэв, введенные в работах /8,15/. Коэффициенты внутренней конверсии (КВК) для переходов с энергиями 592,8 кэв и 588.2 кэв (табл. 7), и ущих с уровней 592,6 и 647,8 кэв на основное состояние и на уровени 60,0 кэв, соответственно, имеют большие величины. Это указывает на то, ито рассматриваемые переходы или имеют высокую мультипольность (> N.3), или же в них проявляется примесь излучения типа ЕО. Предположение о высокой мультипольности этих переходов приводит к высоким значениям спинов соответствующих уровней. Однако анализ остальных экспериментальных данных показывает, что возбуждение уровней с такими спинами (≥ 9/2) практически исключено. Следовательно, мы имеем здесь дело с переходами, в которых проявляется примесь излучения типа ЕО. Это обстоятельство позволило нам сделать заключение /8/. что уровень с энергией 592,6 кэв (3/2) представляет В -вибрационное состояние, связанное с основным состоянием $3/2^{-}/521/$, а удовень с энергией 647.8 кэв (5.2) представляет первое ротационное состояние на В-вибрационном уговне 592.6 кэв. Для параметра А этой полосы согласно. (5.1) при В =0 получаем значение А = 11,0 кэв, которое несколько ниже соответствуюцего параметра А = 12,0 кэв для полосы основного состояния (табл 14). Гакое поведение параметров А для вращательных полос основного и *β*-вибрационного состояний находится в согласии с поведением соотвэтствующих параметров в чётно-чётных ядрах.

Значение энергии следующего состояния (I K^π = 7/2 3/2⁻)β-вибрационной полосы для полученного значения параметра A = 11,0 кэв, должно быть равным ≈ 725 кэв. По-видимому, возбуждение этого состояния при распаде ^{1.6} Tb является маловероятным из-за большой разницы спинов этого урэвня и основного состояния ¹⁵⁸ Tb.
В пользу интерпретации уровня с энергией 592,6 (эв, как β -вибрационного, также указывают результаты работы Тьема и Элбека^{/22/}. В этой работе изучались энергетические состояния ¹⁵⁵ Gd при помощи (d, p) и (d, t) -ядерных реакций. Анализ спектра тритонов показал, что в реакции ¹⁶⁶ Gd (d, t) ¹⁵⁶ Gd возбуждаются уговни с энергиями 594, 721 и 813 кэв, которые на основе анализа сечений возбуждения могут быть отнесены к врашательной полосе β -вибгационного состояния и соответствуют уровням этой полосы со спинами 3/2⁻, 7/2⁻ и 9/2⁻, соответственно. Возбуждение β -вибрационной полосы в ¹⁶⁵ Gd наблюдалось также в реакции ¹⁶⁵ Gd (d, d') ¹⁶⁵ Gd /68/.

Выводу о β -вибрационном характере уровня с энергией 592,6кэв не противоречат результаты работы^{21/} по кулоновскому возбуждению ядра ¹⁵⁵ Cd. В этой работе указывается на существование уровня коллективного характера с энергией ≈ 0,60 Мэв с возможными квантовыми характеристиками 1/2, 3/2, 5/2, 7/2.

В работе Соловьева и Фогеля⁷⁶⁶⁷ при расчётах структуры основного и возбужденных состояний ¹⁵⁸Cd показано, что не основном состоянии построено два колебательных уровня. Один из ни: с $K = 3/2^{-}$, является довольно чистым β – вибрационным состоянием и его следует, повидимому, отождествить с наблюдаемым нами состоянием с энергией 592,6 кэв. Рассчитанное значение энергии β -вибрационного состояния получено несколько завышенным по сравнению с экспериментальным значением (табл 13).

При разрядке уровней вращательной полосы β – вибрационного состояния на уровни вращательной полосы основного состояния мы имеем благоприятный случай для наблюдения монопольных переходов ЕО между уровнями, для которых ΔI=0. Согласно работе^{/69/} вероятность ЕО перехода W₂(E0) можно записать

$$\mathbf{W}_{}(\mathbf{E}\mathbf{O}) = \Omega_{} \cdot \rho^{2} , \qquad (5.2)$$

где Ω_x - приведенная вероятность ЕО перехода, не зависящая от внутренних свойств ядра; эна была рассчитана для разных оболочек (x = K, L,.) Черчем и Уинсером ^{/6,3/}. Параметр *ρ*-приведенный ядерный матричный элемент электрического монополя, зависящий от внутренних свойств ядра, можно рассчитать на эснове различных предположений о модели ядра. Для сравнения теорет:ческих и экспериментальных данных относительно переходов типа ЕО часто используют безразмерный параметр, введенный Расмуссеном ^{/70}/

X (
$$\underline{EO}, i \rightarrow f$$
) = $\underline{B(EO, i \rightarrow f)}$, где (5.3)

В (EO, $i \rightarrow f$) = $e^2 R^4 \rho^2$ – так называемая "ядерная вероятность" монопольного EO перекода и В (E2, $i \rightarrow f$) – приведенная вероятность E2-перехода.

Определение интенсивности разрядки уровней с энергиями 592,6 кэв и 647,8 кэв посредством ЕО перехода в нашем случае затруднено из-за конкуренции между переходами типа ЕО, М1 и Е2, которые возможны при разрядке между уровнями с ΔI = 0.

На рис. 18 показана разрядка уровней β-вибрационной полосы на уровни вращательной полосы основного состояния ¹⁸⁸ Gd.Полученные нами значения КВК позволяют приписать переходам с энергиями 523,5 кэв, 648,1 кэв и 501,8 кэв мультипольности E2, M1 и M1 соответственно, однако, примесь излучений других мультипольностей не исключается. КВК для перехода с энергией 447 кэв экспериментально не определялся, однако по размещению этого перехода в схеме распада ¹⁸⁵ Tb следует приписать ему мультипольность E2.

Сравнение экспегиментальных отношений приведенных вероятностей у-переходов, разряжающих уровни с энергиями 592,6кэв и 647,8кэв, с отношениями, полученными ссгласно обобщенной модели, приведено в таблице 16,

Вероятность W_x(EO) конверсии EO-лерехода на x —оболочке (x = K,L,.) в смешанном EO + M1 + E2 переходе можно записать как

$$W_{x}(EO) = W_{y}(E2) \left\{ \frac{1}{\delta^{2}} \left[a_{x} - a_{x}(M1) \right] + \left[a_{x} - a_{x}(E2^{+}) \right] \right\} = (5.4)$$
$$= W_{y}(M1) \left\{ \left[a_{x} - a_{x}(M1) \right] + \delta^{2} \left[a_{x} - a_{x}(E2^{+}) \right] \right\},$$

где $W_{\gamma}(E2)$ и $W_{\gamma}(M1)$ - вероятности у -переходов, а -экспериментальное значение КВК перехода, а (M1) и а (E2 - теоретические значения КВК, $\delta^2 = W_{\gamma}(E2)$: $W_{\gamma}(MI)$. Используя формулу (5.4), можно сделать оценки интенсивностей $I_{ex}(E0)$ в переходах с энергиями 592,8 кэв и 588,2 кэв.

Для перехода с энергией 592,8 кэв, предполагая змесь излучений типа ЕО + Е2 (δ² → ∞) или ЕО + М1 (δ² → 0) в сбоих крайних случаях в пределах экспериментальных ошибок, получаем практически одинаковые значения для интенсивностей ЕО-перехода

I (EO, 592,8 кэв) = 0,5 <u>+</u> 0,1

 I_L (E0, 592,8 кэв) = 0,06 ± 0,02.

Отношение вероятностей ЕО-конверсии на К и L ¬оболочках в этом случае равно W_K(EO) : W_L(EO) = 8,3 <u>+</u> 4,0, что в пределах ошибок согласуется с теоретическим значением 5,9^{/71}/_и 8 ^{/69/}. Отношение интенсивности конверсионных электронов ЕО перехода с энергией 592 8 кэв к интенсивности

у -лучей этого перехода равно І_е(ЕО, 592,8 кэв) : І_у(М1, Е2,592,8 кэв) = 0,14<u>+</u> 0,04.

Подобным образом для перехода с энергией 588,2 кэв мы получаем

 $I_{\kappa}(E0,588,2 \text{ k}_{3B}) = 0,17 \pm 0,04$

I, (ЕО,588,2 кэв) ≤ 0,05

Отношение $W_{K}(E0): W_{L}(E0) \geq 3,5$ и отношение

 $I_{e}(EO, 588, 2 \text{ k}): I_{y}(M1, E2, 588, 2 \text{ k}) \approx 0,11$.

Предполагая, что оба перехода с энергиями 592,8 кэв и 588,2 кэв типа EO + E2 и, используя соотношение (5.3), получаем Вероятность ₩_x(EO) конверсии ЕО-лерехода на с -оболочке (х = K,L,.) в смешанном EO + M1 + E2 переходе можно записать как

$$\mathbb{W}_{x}(EO) = \mathbb{W}_{y}(E2) \left\{ \frac{1}{\delta^{2}} \left[a_{x} - a_{x}(M1) \right] + \left[a_{x} - a_{x}(E2) \right] \right\} = (5.4)$$

$$= \mathbb{W}_{y}(M1) \left\{ \left[a_{x} - a_{x}(M1) \right] + \delta^{2} \left[a_{x} - a_{x}(E2) \right] \right\},$$

где $W_{\gamma}(E2)$ и $W_{\gamma}(M1)$ - вероятности у -переходсв, а -экспериментальное значение КВК перехода, а (M1) и а (E2) - теоретические значения КВК, $\delta^2 = W_{\gamma}(E2)$: $W_{\gamma}(MI)$. Используя формулу (5.4), можно сделать оценки интенсивностей $I_{ex}(E0)$ в переходах с энергиями 592,8 кэв и 588,2 кэв.

Для перехода с энергией 592,8 кэв, предполагая смесь излучений типа ЕО + Е2 (δ² → ∞) или ЕО + М1 (δ² → 0) в обоих крайних случаях в пределах экспериментальных ошибок, получаем трактически одинаковые значения для интенсивностей ЕО-перехода

 I_{κ} (E0, 592,8 кэв) = 0,5 \pm 0,1

 I_{L} (E0, 592,8 кэв) = 0,06 \pm 0,02.

Отношение вероятностей ЕО-конверсии на К и L \sim обол)чках в этом случае равно $W_{K}(E0) : W_{L}(E0) = 8,3 \pm 4,0$, что в пределах ошибок согласуется с теоретическим значением 5,9^{/71}/₄ 8 ^{/69/}. Отношение интенсивности конверсионных электронов ЕО перехода с энергией 592,8 кэв к интенсивности

γ -лучей этого перехода равно I_e(ЕО, 592,8 кэв) I_γ(М1,Е2,592,8кэв) = 0,14<u>+</u> 0,04.

Подобным образом для перехода с энергией 588,2 кэв мы получаем

 $I_{\kappa}(E0,588,2 \text{ K}_{3B}) = 0,17 \pm 0,04$

I, (E0,588,2 κ_{B}) $\leq 0,05$

Отношение $W_{\mu}(EO) : W_{I}(EO) \ge 3,5$ и отношение

I₂(ЕО, 588,2 кэв) : I₂(М1, Е2, 588,2 кэв) ≈ 0,11.

Предполагая, что оба перехода с энергиями 592,8 кэв и 588,2 кэв типа EO + E2 и, используя соотношение (5.3), получаем

$$\frac{B(E0, 592,8; 3/2_{\beta} \longrightarrow 3/2^{-})}{B(E2, 592,8; 3/2_{\beta} \longrightarrow 3/2^{-})} = 0,78 \pm 0,25$$

$$\frac{B(E0; 588,2; 5/2_{\bar{B}} \longrightarrow 5/2^{-})}{B(E2; 588,2; 5/2_{\bar{B}} \longrightarrow 5/2^{-})} \approx 0,54.$$

Следует обратить внимание на тот факт, что полученные выше от-<u>B(E0, i → f)</u> ношения <u>B(E2 i → f)</u> для ядра ¹⁸⁵Gd близки к значениям отношений для соседних чётно-чётных ядер ¹⁵⁴Gd и ¹⁹⁶Gd.

$$\frac{B(E0; 693,0; 2^{+}_{\beta} \longrightarrow 2^{+})}{B(E2; 693,0 2^{+}_{\beta} \longrightarrow 2^{+})} \approx 0,40 \qquad \mu$$

$$\frac{B(E0; 673; 4^{+}_{\beta} \longrightarrow 4^{+})}{B(E2; 678; 4^{+}_{\beta} \longrightarrow 4^{+})} \approx 0,40$$

$$\frac{B(E2; 678; 4^{+}_{\beta} \longrightarrow 4^{+})}{B(E2; 678; 4^{+}_{\beta} \longrightarrow 4^{+})} \approx 0,40$$

в ядр

$$\frac{B(E0; 1040, \xi; 2^{+}_{\beta} \longrightarrow 2^{+})}{B(E2; 1040, \xi; 2^{+}_{\beta} \longrightarrow 2^{+})} = 0,53$$

в ядре 166 Gd $^{/73/}$, полученных для переходов, разряжающих уровни β -вибрационной полосы на уровни вращательной полосы основного состояния этих ядер (рис. 18).

Согласно выражэниям (5.2) и (5.4), значение ρ^2 для ЕО перехода можно записать, как

$$\rho^{2} = \frac{\Psi_{\gamma}(E2)}{\Omega_{x}} \left\{ \frac{1}{\delta^{2}} \left[a_{x} - a_{x}(M1) \right] + \left[a_{x} - a_{x}(E2) \right] \right\}.$$
(5.5)

Принимая, что голученное в работе^{/21/} значение B(E2) = = (0,042 ± 0,010) · e² · 10⁻⁴⁸ см⁴ относится к возбуждению уровня с энергией 592,6 кэв и полагая $\delta^2 = -\frac{W_{\gamma}(E2)}{W_{\gamma}(M1)} + \infty$, мы оценили значение | ρ | и время жизни этого уровня. Значение | ρ | равно

$$|\rho_{\rm K}| = |\rho_{\rm L}| \approx 0.4.$$

Время жизни уровня с энергией 592,6 кэв

$$T_{1/2}$$
 (592,6 кэв) ~ 2,2.10⁻¹²сек.

В нашем случае **W**(EO) будет практически одинаковым для EO-переходов между уровнями β-вибрационной полосы и полосы основного состояния, так как изменение Ω_K(Ω_L,...) в этом случае будет несущественным. Таким образом, полагаем, что

[™] _к(ЕО, 592,8 кэв) = [™] _к(ЕО, 588,2 кэв).

Это позволяет нам оценить время жизни уровля с энергией 647,8 кэв:

$$T_{1/2}$$
 (647,8 кэв) = 5.10⁻¹³ сек.

Согласно классификации β -переходов ^{/54}, растад ¹⁵⁵ Ть на первые два уровня β -вибрационной полосы ¹⁵⁵ Сd является переходом первого порядка запрещения, незатрудненным -1u.Распад ¹⁵⁵ b на β -вибрационный уровень замедлен по сравнению с распадом на основное состояние ¹⁵⁵ Gd. Согласно полученным значениям lg fr (табл 10)

 $(lg fr)_{\beta-вибр.}$ – (lg fr) = 1,6 осн.сост.

Сравнение отношений приведенных вероятностей, полученных из эксперимента и рассчитанных по правилам Алага, для тетвей распада ¹⁵⁵ Ть на уровни вращательной полосы β -вибрационного состояния представлено в таблице 15. Из этой таблицы следует что поведение приведенных вероятностей распада на уровни β -вибрационной полосы ¹⁵⁵Gd можно объяснить в предположении, что доминирующих и здесь являются переходы с L=2.

5.2.3. Вращательная полоса состояния /521/4

В работе /22/ по изучению энергетических состсяний в нечётных ядрах гадолиния при помощи (d, p) и (d, t) -реакций было указано на существование вращательной полосы состояния /5:21/4 во всех

ядрах с массовыми числами 153 ≤ А ≤ 161. Установлено, что в ядре состояниями этой полосы являются возбужденные уровни с энергиями 556 кэв (1/2⁻), 614 кэв (3/2⁻), 658 кэв (5/2⁻), 784 кэв (7/2⁻) и 866 кэв (9/2⁻).

В схеме возбужденных уровней ¹⁵⁵ Gd введены два уровня отрицательной чётности с энергиями 559,9 кэв и 615,5 кэв. Возможные значения спинов этих уровней (1/2, 3/2, 5/2) и (3/2, 5/2), соответственно. Уровень с энергией 315,5 кэв разряжается в основном на уровни со спинами 3/2 и 5/2 вращатэльной полосы основного состояния с $K^{\pi} = 3/2^{-}$. Наблюдение разрядки уровня с энергией 559,9 кэв на основное состояние (3/2⁻) переходом типа M1 и на состояние с энергией 86,5 кэв (3/2⁺) переходом типа E1(-M2) и отсутствие перехода на уровень 60,0 кэв (5/2⁻), даже слабогс по сравнению с интенсивным прямым переходом 559,9 кэв, дает основание приписать уровню 559,9 кэв спин и чётность 1/2⁻.

На основании вышесказанного уровни с энергиями 559,9 кэв и 615,5 кэв следует идэнтифицировать как члены вращательной полосы, построенной на уровне 559,9 кэв типа /521/4, обнаруженной в работе Тьема и Элбека ^{/22/}.

Сравнение отношений приведенных вероятностей, полученных из эксперимента и рассчитанных по правилам Алага для гамма-переходов, разряжающих уровень с энергией 615,5 кэв (I К ^{*π*} = 3/2 1/2⁻) на уровни вращательной полосы основного состояния указывает, что в пределах экспериментальных ошибок противоречий не наблюдается (таблица 16).

Бета-переходы на уровни полосы состояния /521/↓ классифицируются как 1 ч. Сравнение отношений приведенных вероятностей, полученных из эксперимента и рассчитанных по правилам Алага, для ветвей распада ¹⁵⁵ Ть на уровни 3/2 1/2 /521/ и 1/2 1/2 /521/ ¹⁵⁵ Gd приведено в таблице 15.

Наблюдение других уровней полосы /521/↓ в ядре ¹⁵⁰ Gd при распаде ¹⁵⁵ Ть затруднено. Согласно правилам Алага, при распаде ¹⁶⁶ Ть уровень 5/2 1/2⁻ /521/ должен возбуждаться с версятностью в пять раз меньшей, чем уровень 1/2 1/2⁻ /521/, что приводит к значению ≈ 0,035% на распад для интенсивности заселения этого уровня. Соответствующее значение lg f r ≈ 9,3

Приняв, согласно $^{/22/}$, значение энергии 658 кэв для уровня 5/2 1/2⁻/521/, получаем при B = 0 значения констант A = 13,5 кэв, a = 0,37 (см. формулу 5.1). Обращает на себя внимание, что значение параметра развязки а меньше значения 0,9, ожидаємого для чистого нильссоновского состояния /521/4 (табл. 14). Наиболее вероятной причиной такого понижения значения параметра а является смешивание состояния /521/4 с гамма-вибрационным состоянием (K o-2) основного состояния /521/4 с гамма-вибрационным состоянием (K o-2) основного состояния /521/4 с гамма-вибрационным состояние /521/4 с гаммавибрационным состоянием /521/4 (K = Ko - 2) был обнаружен и в других ядрах^{/61/}. Во всех этих случаях наблюцалось понажение значения параметра а по сравнению с теоретическим значением для нильссоновского состояния /521/4.

Согласно расчётам Соловьева и Фогеля⁷⁶⁶⁷, состояние с К $\pi = 1/2^{-1}$ с энергией 550 кэв в ¹⁵⁵ Gd, которое, по-видимому, соответствует уровню с энергией 559,9 кэв, имеет сложную структуру (таб.: 13). Больчую роль в данном случае играет примесь гамма-вибрационного состояния, связанного с основным состоянием /521/1. Величина параметра развязки, полученная Соловьевым и Фогелем a = 0,36 находится в хорошем согласии с экспериментальным значением a = 0,37.

5.2.4. Состояния с энергиями 286,8 и 451,3 кэв

Уровни с энергиями 286,8 кэв (3/2⁻, 5/2⁻) и 451,3 кэв (1/2⁻, 3/2⁻, 5/2⁻), возбуждающиеся в ядре ¹⁵⁵ Gd при распаде ¹⁵⁵ Tb, трудно идентифицировать без привлечения дополнительных данных. Наиболее вероятной интерпретацией этих уровней являются нильссоновские состояния 1/2 /530/; 3/2 /532/; 5/2 /523/.

Состояния, связан ње с орбиталью $1/2^{-}/530/$, были идентифицированы в нечётных ядрах гадолиния с $153 \leq A \leq 159^{/22/}$. В ядре ¹⁵⁸ Gd авторами ^{/22/} наблюделы связанные с этой орбиталью состояния с энергиями 423 кэв (1/2⁻), 451 кэв (3/2⁻), 489 кэв (5/2⁻), 556 кэв (7/2⁻) и 617 кэв (9/2⁻), причём состояние с $1^{\pi} = 3/2^{-}$ в этой полосе идентифицировано с большой достоверностью. На основе этого можно считать, что наблюдаемый при распаде ¹⁵⁵ Tb в ядре ¹⁵⁵ Gd уровень с энергией 451,3 кэв соответствует состоянию $3/2 1/2^{-}/530/$. Наблюдение основного состояния с I K^π = $1/2 1/2^{-}$ полосы /530/, которое может возбуждаться при распаде ¹⁸⁵ Tb с интенсивностью, сравнимой с возбуждением уровня с K^π $3/2 1/2^{-}$, в наших измерениях было затруднено.

В работах по раснаду ¹⁵⁵ Ть обычно предполагалось, что уровень с энергией 286,8 кэе соответствует состоянию 5/2 5/2 /523/. Однако в работе ^{/22/}, гдс рассматривается существование уровней, связанных с нильссоновским сострянием 5/2 /523/ в нечётных ядрах гадолиния с 155 $\leq A \leq 161$, авторы указывают, что в ¹⁵⁵ Gd уровни 5/2, 7/2 и 9/2 вращательной полосы этого состояния можно отождествить с наблюдаемыми ими уровнями либо 287, 370 и 485 кэв, либо 321, 392 и 485 кэв, причём авторы считают наиболее вероятной вторую возможность. Поэтому уровень с энергией 283,8 кэв (3/2, 5/2), наблюдаемый в ядре ¹⁵⁵ Gd при распаде ¹⁵⁵ Ть, нам представляется возможным идентифицировать как нильссоновское состояние 3/2, 3/2 /532/.

5.3. Возбужденные уровни в ядре ¹⁵⁵ Gd с положительной чётностью Интерпретация уговней ¹⁵⁵ Gd с положительной чётностью затруднена. Как показали исследования уровней ядра ¹⁵⁶ Gd /17,22,40,74/ , здесь,

по-видимому, проявляются кориолисово взаимодействие и эффекты, связанные с пересечением нильссоновских состояний, для которых $\Delta N = 2$.

Валюсь и др.^{/19/}при изучении угловых *у* – *у* – горреляций в ядре ¹⁵⁵ Са сделали заключение о значениях спинов стдельных уровней ¹⁵⁵ Са (таблица 17).

Таблица 17

Еур(кэв)	I
86,5	5/2
105,3	3/2
235,2	3/2, (7/2)
266,6	5/2
367,7	1/2, 5/2
427,4	3/2, 7/2

Совокупность результатов нашей работы и работ / 19,22/ позволяет сделать определенные заключения о спинах уровней с положительной чётностью.

Возможная интерпретация уровней ¹⁵⁵Gd, наблыдаемых при распаде ¹⁵⁵Tb, приведена на рис. 17. Здесь указаны нильссоновские состояния, которые дают преобладающий вклад в волновую функцию соответствующих состояний ¹⁵⁵Gd.

5.3.1. Вращательная полоса состояния /400/1.

Уровень с энергией 367 кэв в ядре ¹⁵⁵ Gd был идентифицирован как нильссоновское состояние $1/2^+$ /400/ в работе^{/22/}. Исходя из этого, можно предполагать, что интенсивно заселяющийся при распаде ¹⁵⁵ Ть уровень с энергией 367,7 кэв $(1/2^+, 5/2^+)$ в ядре ¹⁵⁵ Gd соответствует состоянию 1/2, $1/2^+$ /400/. В пользу того, что спин зостояния с энергией 367,7 кэв равен 1/2, указывает также отсутствие заметной разрядки этого уровня на уровень с энергией 60,0 кэв $(5/2^-)$ вращательной полосы основного состояния.

Заключение о мультипольности перехода с энергией 101,15 кэв M1 + (E2) $^{/10,17/}$, противоречит его размещению между состояниями 367,7 кэв $(1/2^+)$ и 263,6 кэв $(5/2^+)$. По-видимому, этот переход следует расположить между уровнями с энергией 427,4 кэв $(3/2^+)$ и 326,0кэв $(3/2^+, 5/2^+)$.

Уровни с энергизми 427,4 кэв $(3/2^+)$ и 488,8 кэв $(3/2^+, 5/2^+)$ являются, по-видимому, вращательными состояниями, связанными с уровнем 367,7 кэв 1/2, $1/2^+$ /400/, как это предполагалось в работе 16/. В этом случае, согласно формуле (5.1), при В=0 получены значения параметров A = 16,1 кэв и a = -0,24.

Значение параметра a = + 0,24 меньше, чем значение a = 0,35 для чистого нильссоновского состояния 1/2⁺ /400/ и ближе к значению a = 0,30, полученному в расчётах Соловьева и Фогеля^{/66/} для соответствующего состояния, имеющего сложную структуру (табл. 13).

Полученные нами экспериментальные данные указывают, что отно:чение приведенных вероятностей для гамма-переходов, разряжающих уровень с энергией 427,4 кэв (IK ^π = 3/2 1/2⁺) на уровни вращательной полосы основного состояния ¹⁵⁶ Gd, B(E1, 428,3) : B(E1, 367,4) ≥ 30, что значительно превьшает величину 1,43, полученную для этого отношения по правилам Алэга.

5.3.2. Вращательная полоса состояния /402/4.

При распаде ¹⁵⁵ Ть в ядре ¹⁶⁵Gd наблюдаются два уровня положительной чётности с блязкими энергиями 266,6 кэв и 268,6 кэв. Валюсь и др.^{/19/} при исследовании угловых у - у - корреляций при распаде

¹⁵⁵ Ть установили, что спин уровня с энергией 266,6 кэв равен 5/2. Отсюда следует предположить, что наблюдаемое в^{/22/} состояние с энергией 267, кэв 3/2⁺ /402/ в ядре ¹⁵⁵ Gd соответствует состоянию с энергией 268,6 кэв.

Если предположить, что уровень с энергией 326,0 кэв $(3/2^+ 5/2^+)$ является первым вращательным уровнем, связанным с состоянием 268,6 кэв, 3/2, $3/2^+$ /402/, то, согласно формуле (5.1), при В =0 толучаем A=11,5 кэв. Бета-распад на первые два уровня предполагаемой вращательной полосы состояния $3/2^+$ /402/ классифицируется как вь. Усилэние распада ¹⁵⁵ Ть на уровень 268,6 кэв ¹⁵⁵ Gd по отношению к распада на уровень 326,0 кэв, исходя из сравнения с теоретическими предсказаниями по правилам Алага (таблица 15), по-видимому, можно объяснить тем, что в первом случае заметную роль играет переход типа L=0.

5.3.3. Уровни с энергиями 266,6; 235,2; 118,0; 105,3 и 86,5 кэв

Экспериментальные результаты, имеющиеся в настоящее время, указывают на то, что низколежащие уровни ¹⁸⁵ Gd с голожительной чётностью не являются чистыми нильссоновскими состояниями. Рассмотрим отдельные низколежащие уровни ¹⁸⁵ Gd.

<u>266.6 кэв.</u> Этот уровень сильно заселяется при распаде ¹⁵⁶Ть. В опытах по изучению угловых *у* - *у* - корреляций ^{/1!1/} для этого уровня получено значение спина **I** = 5/2, что находится в согласии с нашими результатами.

<u>235,2 кэв.</u> Валюсь и др.^{/19/} получили для спина этого уровня значение 3/2 (7/2). Согласно наблюдаемой разрядке узовня с энергией 451,3 кэв в наших исследованиях и принятой интерпретации этого уровня 3/2 1/2⁻/530/ (рис. 17), предпочтительнее приписать уровню с энергией 235,2 кэв спин и чётность 3/2⁺.

<u>118.0 кэв.</u> Возможные значения спинов этого уровня I = 3/2, 5/2, 7/2. Этот уровень, по-видимому, отличается от уровня с энергией 119кэв с предполагаемым значением I = 11/2, который наблютался в (d,t) и (a, в) реакциях^{/36/}.

<u>105.3 кэв и 86.5 кэв.</u> В работе^{/12/} по измерению времен жизни уровней ¹⁸⁵ Gd уровни с энергиями 105,3 кэв и 86,5 кэв интерпретировались как нильссоновские состояния 5/2 5/2⁺ /642/ и 3/2 3/2⁺ /651/ соответственно. Уровень с энергией 118,0 кэв в этой работе интерпретировался как вращательное состряние 5/2 3/2⁺ /651/. Такая интерпретация рассматриваемых уровней принималась в большинстве последующих работ.

Авторы работы ^{/13/}на основе анализа у – у -угловых корреляций получили для спина уровня с энергией 105,3 кэв эначение 3/2.

Принятое нами значение спина и чётности уровня с энергией 367,7кэв 1/2⁺ и мультипольность перехода с энергией 262,45 кэв типа M1, разряжающего этот уровень на уровень 105,3 кэв, позволяют приписать уровню 105,3 кэв значения спина и чётности – 3/2⁺.

Авторы работ^{/22,4/}из анализа (d, p) и (d, t) реакций также пришли к заключению, что спин и чётность уровня с энергией 105,3 кэв - 3/2⁺. Наблюдаемое большое сечение возбуждения этого уровня они объясняют вкладом (≈ 40%) от состояния 3/2⁺/402/, найденного при энергии 267 кэв.

К заключению о спине уровня ·105,3 кэв - 3/2 приводит также анализ угловых у-у - корроляций в ядре ¹⁸⁸ Gd при распаде ¹⁸⁸ Tb ^{/19/}.

При исследовании эффекта Мёссбауэра в ядре ¹⁸⁸ Gd Шпинель и др.^{/32/} и Стивенс и др.^{/31/} гриписали уровню с энергией 86,5 кэв спин 5/2 и 1/2 соответственно. Однако значение I = 1/2, предложенное в^{/31/}, не согласуется с данными по мультипольности переходов, разряжающих этот уровень.

В работе^{/19/} при исследовании угловых у – у – корреляций при распаде ¹⁵⁵ Ть уровню ¹⁵⁵ Gd с энергией 86,5 кэв приписывается спин 5/2. Результаты работы^{/22} находятся в согласии с таким заключением о эначении спина.

Таким образом можно считать, что спин и чётность уровней с энергиями 105,3 кэв и 86,5 кэв - 3/2⁺ и 5/2⁺, соответственно.

В заключение авторы выражают свою благодарность К, Я.Громову, И.Звольскому, Ж.Желеву и З. Плайнеру за интерес к работе, помощь при постановке эксперимента и ценные замечьния; С.Бьерн)ольму, В.Гнатовичу, Б.Элбеку, З.Стахуре, В.Г.Соловьеву, П.О.Тьему и П.Фогелю за полезные дискуссии.

Авторы также благодарны Т.Галановой, Т.Пазмановой и Л.Черны за помощь при обработке экспериментальных результатов.

Литература

- Nuclear Data Sheets Compiled by K.Way et al., (Printing and Publishing Office, National Academy of Sciences, National Research Council, Washington 25, D.C.), <u>5</u>, № 5, 1963.
- 2. A.Bohr, Kgl. Danske vid. Selskab. Mat.-Fys.Mecd., <u>26</u>, № 14 (1952). (Перевод в сб. "Проблемы современной физики" вып. 9, 1955).

А.Bohr, B.Mottelson, Kgl. Danske,vid. Selskab.Mat.-Fys.Medd.,<u>27</u>, №16(1953). (Перевод в сб. "Проблемы современной физики", вып. 9, 1955).

- O.Nathan, S.G.Nilsson in Alpha-Beta- and Gamma-Ray Spectroscopy Ed. K.Siegbahn, Publ. Co., Amsterdam, 1965.
- В.Г.Соловьев, в сборнике "Структура сложных ядер". Атомиздат, Москва 1966 и ссылки, данные в этой работе.
- 5. Y.Yoshizawa, B.Elbek, B.Herskind and M.C.Olesen, Nucl. Phys., <u>73</u>, 273 (1965).
- 6. В.Гнатович, К.Громов, "Ядерная физика, т. 3, вып. 1 8 (1966).
- 7. L.Persson, H.Ryde, K.Oelsner-Ryde, Ark. Fys., 24, 451 (1963).
- 7а. К.Вильский, В.В.Кузнецов, О.Б.Нильсен, О.Скилбрайт, В.А.Халкин,

Ядерная физика <u>6</u>, 672, 1967.

- a)M.Finger, P.Galan, M.Kuznetsova, J.Liptak, J.Urbanec, J.Vrzal. Preprint E-2908, Dubna 1966.
 - б) Я.Врзал, П.Галан, М.Кузнецова, Я.Липтак, Я.Урбанец, М.Фингер. Материалы IX совещания по ядерной спектроскопии нейтронодефицитных изотопов и теории деформированных ядер. Препринт 6-3036, Дубна 1966.

В заключение авторы выражают свою благодарность К, Я.Громову, И.Звольскому, Ж.Желеву и З. Плайнеру за интерес к работе, помощь при постановке эксперимента и ценные замечания; С.Бьернхольму, В.Гнатовичу, Б.Элбеку, З.Стахуре, В.Г.Соловьеву, П.О.Тьему и П.Фогелю за полезные дискуссии.

Авторы также благодарны Т.Галановой, Т.Пазманогой и Л.Черны за помощь при обработке экспериментальных результатов.

Литература

- Nuclear Data Sheets Compiled by K.Way et al., (Printing and Publishing Office, National Academy of Sciences, National Research Council, Washington 25, D.C.), <u>5</u>, № 5, 1963.
- 2. A.Bohr, Kgl. Danske vid. Selskab. Mat.-Fys.Medd., <u>26</u>, № 14 (1952). (Перевод в сб. "Проблемы современной физики," вып. 9, 1955).

А.Bohr, B.Mottelson, Kgl. Danske, vid. Selskab.Mat.-Fys.Medd., <u>27</u>, №16(1953). (Перевод в сб. "Проблемы современной физики", вып. 9, 1955).

- O.Nathan, S.G.Nilsson in Alpha-Beta- and Gamma-Ray Spectroscopy Ed. K.Siegbahn, Publ. Co., Amsterdam, 1965.
- В.Г.Соловьев, в сборнике "Структура сложных ядер". Атомиздат, Москва 1966 и ссылки, данные в этой работе.
- 5. Y.Yoshizawa, B.Elbek, B.Herskind and M.C.Olesen. Nucl. Phys., <u>73</u>, 273 (1965).
- 6. В.Гнатович, К.Громов, "Ядерная физика, т. 3, вып. 1, 8 (1966).
- 7. L.Persson, H.Ryde, K.Oelsner-Ryde, Ark. Fys., 24, 451 (1963).
- 7а. К.Вильский, В.В.Кузнецов, О.Б.Нильсен, О.Скилбрайт, В.А.Халкин,

Ядерная физика <u>6</u>, 672, 1967.

- 8. a)M.Finger, P.Galan, M.Kuznetsova, J.Liptak, J.Urbanec, J.Vrzal. Preprint E-2908, Dubna 1966.
 - б) Я.Врзал, П.Галан, М.Кузнецова, Я.Липтак, Я.Урбанец, М.Фингер. Материалы IX совещания по ядерной спектроскопа и нейтронодефицитных изотопов и теории деформированных ядер. Препринт 6-3036, Дубна 1966.

- c) M.Finger, P.Galar, M.Kuznetsova, J.Liptak, J,Urbanec, J.Vrzal. Report on Int. Conf. on Nuclear Phys. Gattlinburg, 1966.
- 9. Б.С.Джелепов, Л.К.Пекор, В.О.Сергеев. Схемы распада радиоактивных ядер с А > 100. (Изд. АН СССР, Москва-Ленинград 1969).
- 10. B.Harmatz, T.H.Handley and J.W.Mihelich, Phys. Rev., 128,1186(1962).
- 11. B.N.Subba Rao, Nuclear Physics 28, 503 (1961).
- 12. B.I.Deutch, F.R.Metzger and F.J.Wilhelm, Nuclear Physics 16,81(1960).
- 13. B.N.Subba Rao, Proc. Ind. Acad.Sci., <u>55</u>, 174 (1962).
- 14. К.Вильский; В.В. Кузнэцов, Н.А.Лебедев, О.Б.Нильсен, О.Скилбрайт. Материалы VIIIсовешания по ядерной спектроскопии нейтронодефицитных изотопов, изомерии ядэр и теории ядра. Препринт ОИЯИ 2412, Дубна 1966 г.
- 15. P.H.Blichert-Toft, E.G.Funk and J.W.Mihelich, Bull. Am. Phys.Soc. <u>10</u>, 1107 (1965).
- 16. P.H.Blichert-Toft, E.G.Funk and J.W.Mihelich, Nuclear Physics. A96, 190 (1967).
- 17. J.Kormicki, H.Niewodniczanski, Z.Stachura, K.Zuber and A.Budziak, Nuclear Physics <u>A102</u>, 253 (1967).
- П. Галан, М.Я.Кузнецоза, М.Фингер, И.Юрсик. Препринт ОИЯИ Р6-3479, Дубна 1967 г. Направлено в Чех.физ. журн.
- В.Валюсъ, Э.Киселевски, З.Стахура, Я.Стычень, А.З.Хрынкевич, М.Шавловски. Программа и гезисы докладов 18 ежегодного совещания по ядерной спектроскопии и структуре атомного ядра, Рига, 1968 г. Изд. "Наука", Ленинград 1968 г.
- 20. B.Elbek, Determination of Nuclear Transition Probabilities by Coulomb Excitation, Ejnar Munksgaards Forlag, Copenhagen 1963.
- 21. К.И.Ерохина, М.Х. Ле мберг, В.А.Набичвришвили, Изв. АН СССР, сер.физ., <u>29</u>, № 7 1103 (1965).

- 22. P.O.Tjøm and B.Elbek, A Study of Energy Levels in Odd-Mass Gadolinium Nuclei by Means of (d,p) and (d,t) Reactions. Доклад на х совещании по ядерной спектроскопии нейтронодефицитных изотопов и теории деформированных ядер. Дубна, 1967 г.
- 23. Б.С.Джелепов, П.А.Тишкин и И.А.Шишелов. Маториалы VIII совещания по ядерной слектроскопии нейтронодефицитных изотопов, изомерии ядер и теории ядра. Препринт ОИЯИ 2412, Дубна 1965 г.
- 24. K.E.G.Löbner and S.G.Malmskog, Nuclear Physics 80,505(1966).
- 25. A.Krusche, D.Bless and F.Münnich, Zeitschrift für Physik, <u>192</u>, 490 (1966) and references in this paper.
- 26. S.G.Malmskog, Arhiv för Fysik <u>33</u>, No 17, 291 (1967) and references in this paper.
- 27. A.Z.Hrynkiewich, S.Ogaza, J.Styczen, B.Hrasinik, B.Pudlovska and R.Kulessa Nuclear Physics <u>. 80</u>, 608 (1966).
- 28. W.Meiling and F.Stary, Nuclear Physics 80 71 (1966).
- 29. B.V. Narasimha Rao and S.Jnanananda Proc. Phys. Soc., 87,455(1966).
- E.Bozek, A.Z.Hrynkiewicz, S.Ogaza, J.Styczen. Phys. Letters <u>11</u>, 63 (1964).
- R.R. Stevens Jr., Y.K.Lee and J.C.Walker, Phys. Letters. <u>21</u>, 401 (1966).
- 32. Н.Н.Делягин, Хусейн Эль Саис, В.С.Шпинель. ЖЭТФ 51, 95 (1966).
- А.Е.Балабанов, Н.Н.Делягин, Хусейн Эль Саис Ядерная физика <u>3</u>, 209, (1966).
- 34. D.Ashery, A.E.Blaugrund, R.Kalish, Nuclear Physics 76,336(1966).
- 35. D.Ashery and Goldring Zeitschrift für Naturforschung 21a, 936 (1966).
- 36.И.Борггреен, Г.Слеттен. Сообщение на х совешании по ядерной спектроскопии нейтронодефицитных изотолов и теории деформированных ядер. Дубна 1967 г.
- 37. a) W.Low, Phys. Rev., <u>103</u>, 1309 (1956).
 - b) D.R.Speck, Phys. Rev., <u>101</u>, 1725 (1956).
- 38. И. Лингрен. Сообщение на Х совещании по ядерної спектроскопии нейтро-

нодефицитных изотопов и теории деформированных ядер. Дубна, 1967 г. 39. B.R.Mottelson and 3.G.Nilsson, Mat. Fys. Medd. Dan. Vid.Selsk.

<u>1</u>, No 8, (1959). 40. M.E.Bunker and C.W.Rich, Physics Letters 25B, 396 (1967).

- 41. a) S.G.Nilsson, Fgl. Danske Vidensk. Selsk., Mat.Fys. Medd.,
 29, No 16, 1-68 (1955). Перевод в сборнике "Деформация атомных ядер" ИЛ, М 1958.
 - b) B.R.Mottelson and S.G.Nilsson, Mat.Fys.Medd.Dan.Vid.Selak.,
 1, No 8 (1959).
- 42. O.B.Nielsen and C.Kofoed-Hansen, Mat.Fys.Medd.Dan.Vid.Selsk., 29, No 6 (1955).
- 43. J. Adam, V.G. Chumin, Yu.N. Denisov, M. Finger, K.Ya. Gromov, M.Ya. Kurnetsove, Lu Si - ting, Preprint E-2494 Dubna 1965.
- 44. Б.К.Преображенски і, А.В.Калямин. О.М.Лилова, ЖЭТФ 2 1164 (1957).
- 45. K.O. Nielsen, O. Skilbreid, Nucl. Instr. 2, 15 (1958).
- 46. P.Alexander and F.Boehm, Nucl. Phys., <u>46</u>, 108 (1963).
- 47. G.Malmsten, Ö.Nilsson, and J.Andersson, Arkiv för Fysik. 33, 361 (1966).
- 48. И.Звольский, В.Приходько. Препринт ОИЯИ 6-3517, Дубна 1967 г.
- 49. G.T.Ewan and A.J.Tavendale, J.Can.Phys., <u>42</u>, 2286 (1964).
- 50. См. ссылки в 49.
- 51. A.H.Wapstra, C.J.Nijgh, Nucl.Phys., <u>1</u> 245 (1956).
- 52. Я.Врзал, П.Галан, Т.И.Галанова, Я.Липтак, Я.Урбанец, М.Фингер. Препринт ОИЯИ Р6-3512, Дубна 1967 г.
- 53. G.T.Ewan, P.L.Graham, J.S.Geiger, Nuclear Physics, <u>22</u>,610(1961).
- 54. A.H.Wapstra, G.I.Nijgh and R.van Lieshout, Nuclear Spectroscopy Tables (North-Holland Publ. Co. Amsterdam 1959).
 - Перевод А.Х. Вапстра, Г.И.Ниих, Р.Ван Лишут "Таблица по ядерной спектроскопии", Атомиздат, М, 1960.
- 55. Л.А. Слив, И.М.Банд. Таблицы коэффициентов внутренней конверсии. В книге "Гамма- 1учи", М.-Л., 1961.
- 56. P.H.Blichert-Tof., E.G.Funk and J.W.Mihelich, Nucl. Phys. A100, 369 (1967).

- 57.A.G.W.Cameron, A Revised Semiempirical Atomic Mass Formula AECL- 433(1957).
- 58. Г.Ф.Драницына. Материалы IV Совещания по нейтрэнодефицитным изотопам, Дубна (1961).
- 59. W.D.Myers and W.J. Swiatecki, Nuclear Masses and Deformations, UCRL- 11980(1965).
- 60. J.Riddell, A Table of Levy's Empirical Atomic Masses, AECL-339 (1957).
- 61. С.В.Рич и М.Э.Банкер. Изв. АН СССР сер. физ. <u>31</u>, 42 (1967).
- 62. A.K.Kerman, Mat. Fys. Medd.Dan.Vid.Selsk., 3(, No 15 (1956).
- 63. R.T.Brokmeier, S.Wahlborn, E.J.Seppi and F.Boehm. Nuclear Physics <u>63</u>, 102 (1965).
- 64. C.M.Lederer, J.M.Hollander and J.Perlman, Table of Isotopes, sixth Edition (1967).
- 65. "Гамма-лучи" М.-Л. 1961 г.
- 86. В.Г.Соловьев, П.Фогель и Г.Юнгклаусен, Изв. АН СССР, сер.физ. 31, 518 (1967).
- 67. G.Alaga, K. Alder, A Bohr, B.Mottelson, Kgl. Danske vid.Selskab. Mat.-Fys.Medd., 29 No 9 (1955). (Перевод в сб.

"Проблемы современной физики", вып. 1, 1956

- 68. Ссылка № 8 в работе /22/.
- 69. E.L.Church and J.Weneser, Phys. Rev., 103, 1035 (1956).
- 70. J.O.Rasmussen, Nuclear Physics 19, 85 (1960).
- 71. R.H.Fowler. Proc. Roy. Soc., A129 (1930).
- Б.С.Джелепов, А.Г.Дмитриев, Н.Н.Жуковский и А.Г. Малоян. Изв. АН СССР сер.физ. т. 30 № 8 1265 (1966).
- 73. П.Г.Хансен, Х.Л.Нильсен и К.Вильский, Изв. АН (СССР сер.физ. т. 31 № 1 68 (1967).
- 74. R.K.Sheline, M.J.Bennett, J.W.Dawson, Y.Shida. Phys. Letters, <u>26B</u>, 14, 1967.

Рукопись поступила в излательский отдел 7 февраля 1968 года.

Таблица 🕨 1

Относительные интенсивности конверсконных электронов ¹⁵573, полученные в измерениях на тороидальном спектрометре.

₩¥ nn	Энергия электронов (кэз)	Ĵe a)	Идентификация
I	34,6		K <i>LL</i>
2	36,3	442 0<u>+</u>45 0	K 86,5+ L 45,3
3	41,2		K L M
4	50,8	1040 <u>+</u> 260	L 60,0+ K 101
5	:5,I	235 0<u>+</u>350	K 105,3
6	58,I	170 <u>+</u> 85	M+ <i>N</i> 60,0
7	'78,I	996 <u>+</u> 100	L 86,5
8	-35,I	330+160	X+ <i>N</i> 86,5
9	98,3	1410+280	K 108,65+ L 105,3
10	103,7	~228	M+ № 105,3
11	112,2	17 40<u>+</u>350	K 158,6+ K 160,5 + K 161,3-
			+K 162,8 + K 163,3
12		1000	K 180,1+ K 181,6+ K 182,05
13	.40,5	96. <u>+</u> 34	L148,65
14	[46,7	21+8	M+N 148,65
15	154,6	258+40	L 162
16	I60 , 3	69 <u>+</u> 10	M+N 162 + K 208
17	171,3 -	219+35	L180, I+ K 220
18	179,1	48 <u>+</u> 13	N+N 180,1+ K 226,8
19	. 189,9	~21	К 239,45
20	196	~12,5	K 2548
21	212,2	274 +28	K 262,45+ L 220
22	218,5	~8	K 268,7
23	231,5	~10	K 281, I+ L 239, 45
24	237,4	~13,4	К 286,9
25	254,3	37,3+3,8	L 262,45
26	260,6	~10	M+N 262,45
27	272,7	~ 6	K 321,8
28	280,2	~2,1	L286,9
29	290,1	26+2,6	К 340,8
30	317,3	I2,5+I,3	K 367,4+ K 367,7+ K 371,0
31	333,3	~ 4,67	L 340,8

а) интензивности конверсионных электронов нормированы так, чтобы Уд K480 =1000.

Таблица 2

Энергии и относительные интенсивности конверсионных эле стронов при распаде ¹⁵⁵75

1616	_		[Наши д	анные	
пп	Энергия перехода (кав)	Наблют даемая линия	СПЕКТ] Энергия Электро	powerpw[2 a D= Ieu	тороидальный спектрометр Те	Данные работ <u>ы</u> Харматца и др ^{/10/}
I	2	3	4 4	5	6	7
İ.	I8 , 75	L.				90
						297
		L3				405
		M. NI				288
-	27.0		<u> </u>			67,5
C •	21,0),				6 3
		La				90
		X				~40,5
_		N				<u> </u>
3.	26,55	L.	· ·			:18
		L2				~7,2
- 1		M				~9,0
_		<u>N</u>	L			Сл.
4.	3I,43	L1				•
		L2				3 I,5
		Ls				40,5
		Н				~18
		N				
5.	39,8	L1				4
		·Lz				сл.
\rightarrow		Ls				СЛ.
6.	40,7	L				Сл.
7.	45.3	L4			.128 ^{a)}	51,3
	•	L2				19,8
		La				26
		¥.				22,5
_		N				5,4
8.	58.0	К				Сл
	,-	L.				4.1
		L2				1,2
		Ls	1			`

I	2	3	4	5	6	7
9.	60,0	к L1 L3 М N			} 344 ^a) } } 75	> 360 189 52 47 58,5 21,6
10.	60 , 3	L2 L3				4,5 4,9
II.	79, 2	к ,				~ 3,6 сл.
I2.	80,9	К				~ 2,52
13.	86,0	К				~ 9,0
I4.	86 , 5	К L1 L2 М N			1760 ^a) } 425 } 146	I332 I89 49;5 63 67,5 20,0
15.	99,0	к L1 L2			₃₀ a)	25,2 3,6 ~1,35
16.	101,15	к L1 L			₇₀ a)	58,5 9 сл.
17.	IOI,6	К				сл.
18.	105,3	к L1 L2 L3 М N	55,0 96,88	1495 } 156± 55	$\left.\begin{array}{c}1005\\236^{\mathbf{a}}\end{array}\right)\\ \end{array}\right\} 77$	900 117 22,5 29 34 12,5

				the second se		
I	2	3	4	5	6	7
19.	118,0	ĸ				~ 0,8
20.	120,5	K				~I,45
21.	138,2	к				~3,15
2Ż.	146,0	ĸ				Сле
23.	I48,65	K L, L≥ ₩ <i>N</i>	98,42	237 <u>+</u>82	366 ^{a)} } ⁴¹ }	261 39,5 1,25 10,8 3,15
24.	150,6	ĸ	I 00, 6	~9,5		~I,8
25.	158, 6	К	108,3	~4	~4,5%)	~3, 6
26.	İ 60,5	K La Lz Lz	Î10 ,3 152,2	57,6 <u>+</u> 25 }8,2 <u>+</u> 2,8	64,7 ^{b)}	58,5 7,38
27,	161 ,3	K L4 L2 L3	111,1 153	219,4 <u>+</u> 79 34 - <u>+</u> 12	246,5 ^{b)}]4I ^{d)}	207 30,6 сл. 8,4
28.	162,3	K	112 , I	22,6<u>+</u>8, 6	25,4 ^{b)}	
29.	163,3	К Lı Lz - Ж	113,1 154,8	356 <u>+</u> 125 44 <u>+</u> 11	400 ^b) 354 ^d) 15,5 ^g) ^a ,	35I 49 _{\$} 5 I I3
30.	175,2	K L ₄				2,7 сл.

•

,

_

I	2	3	4	5	6	. 7
31.	180 , I	K L1 L2 L3 M	129 ,8	458 ± 72	$\left. \right\}_{15,5^{a}}^{426}$	441 67,5 2,5 17
32.	181,6	к Lı				~ 6,3 I,35
33.	182,05	K Lı				~ 6,3
34.	192,2					
35.	200,3	К	150,4	4,0°)	4,9 ^{c)d)}	
36.	208,0	к <i>L</i> 1 М			14 ^a)	7,65 I,2 0,27
37.	208,6					
38.	216,0	к	165,6	0,82*0,24		
39.	220,0	К]	~ 2,7
40.	220 , 6	к L M N			} 21 ^a)	18,9 < 3,15 0,27
4I.	226,8	K Lı			5 a)	5,58 < 3,15
42.	233,6	К	I83 , 4	~ 0,43		
43.	239,45	K L 1 L 2	189,2	6 , 0 <i>±4,5</i>	$\left. \begin{array}{c} 8,9\\ 2,4^{a} \end{array} \right)$	7,65 3,8
44.	248,0	K			< 5,5	
45.	254,0	К	203,9	I,0 ±0,3		

· .

I	2	3	4	5	6	7
46.	262 , 45	K L1 L2 L3 M	212,2	II 7, 0	117,0 } 15,9 4,3 ^e)	117,0 16,2 3,6
47.	268,7	К	218,5	3,6±0,8	3,4	< 3,15
48.	28I,I	К	23I,I	3,6±0,8	1,9 ^{a)}	< 3,8
49.	286,9	K Lı	237	5,3±41	5,7 0,9	5,3 0,7
50.	321,8	K L1 L3	313,5	} 0,53	2,58 } 0,54})	I,62 0,36
51.	340 , 8	к L, м N	290,6 332,5 339 340,6	II, I±4,8 2, 0±95 0, 43±9 0, 18±9	II,2 2,0 %	I0,8 I,5 0,36
52.	361,0					
53. 54.	367,4 367,7 367,4 367,7 367,4 367,4 367,7	к К L1 М М	<pre>}317,4 }359,2 }365,5</pre>	} 3,03±0 0,5±0,1 0,07 ±0,025	}3,08 ^{f)} z	} 3,15 0,39
55.	371,0	K Lı	320,7 362,6	I,7 ±q 3 0,25±0	I,73f)	• I,7 0,2
56.	380,3	К	330,I	0,15±	06	
57.	384,2					
<u>.</u> 58.	391,3					
59.	395,0					

2	3	4	5	6	7
402,3	K L1	352 , I	0,59 ± 0,15		0,54 ~ 0,09
428,3	К	378,I	0,054±	0,0'35 .	
447,0					
451,3	К	400,8	0,2±0,06		~ 0,13
454,8	К				сл.
488,I	К	437,9	~0,016		
501,8	к				0,13
505,9	к				0,063
513,0	к	462,7	0,06±0,03		
532,5	к	482,2	0,084±4	,021	
542,5	к	492,3	0,041±0	,015	
555 , 4	К	505,2	0, I±0,02		
559,9	к Ц	509 , 7	0,39± ±0,07		0,4I сл.
588 , 2	к Lı M N	538,0 580,2 586,9	0,19±40 ~0,072 ~0,034 сл.	4	~ 0,18
592 , 8	к Lı м N	542,6 584,I 592,I	0,53±q, 0,064±q ~ 0,02 сл.	0 2,02	0,54 0,09
610,5	К	560 , 7	0,023±	0,015	
615,5	к	565	0,05±0	013	0,067
648,I	· K	597,8	0,036±0	0,010	
706,2	к				~ 0,063
715,3	К				~ 0,045
	2 402,3 428,3 447,0 451,3 454,8 488,1 501,8 505,9 513,0 532,5 542,5 555,4 559,9 588,2 592,8 610,5 615,5 648,1 706,2 715,3	2 3 402,3 K 428,3 K 447,0	2 3 4 $402, 3$ K $352, I$ L_4 L_4 $428, 3$ K $378, I$ $447, 0$ $451, 3$ K $400, 8$ $451, 3$ K $400, 8$ $454, 8$ K $488, I$ K $437, 9$ $501, 8$ K $505, 9$ K $513, 0$ K $462, 7$ $532, 5$ K $492, 3$ $513, 0$ K $462, 7$ $513, 0$ K $462, 7$ $532, 5$ K $492, 3$ $555, 4$ K $505, 2$ $559, 9$ K $509, 7$ L_4 $580, 2$ $588, 2$ K $538, 0$ L_4 $586, 9$ $592, 8$ K $542, 6$ L_4 $584, 1$ $592, 8$ K $542, 6$ L_4 $584, 1$	2 3 4 5 $402, 3$ K $352, I$ $0, 59$ $428, 3$ K $378, I$ $0, 054^{\pm}$ $447, 0$ - - $451, 3$ K $400, 8$ $0, 2^{\pm}a^{a}$ $454, 8$ K - - $454, 8$ K - - $488, I$ K 437, 9 $\sim 0, 016$ $501, 8$ K - - $505, 9$ K - - $505, 9$ K - - $505, 9$ K - - $513, 0$ K 462, 7 $0, 06^{\pm}a^{a}$ $513, 0$ K 492, 3 $0, 041^{\pm}a^{a}$ $542, 5$ K 492, 3 $0, 041^{\pm}a^{a}$ $555, 4$ K 509, 7 $0, 39^{\pm}$ $555, 4$ K 509, 7 $0, 39^{\pm}$ $579, 9$ K 509, 7 $0, 072$ M 586, 9 $\sim 0, 072$ $\sim 0, 072$ M 586, 9 $\sim 0, 024$ <	2 3 4 5 6 402,3 K 352,1 $0,59$ $\pm q,45$ 428,3 K 378,1 $0,054 \pm q,035$. 447,0

- а) конверсионная линия сложная; интенсивности получены разложением на компоненты из экспериментальных данных табл. I, колонка 3, с использованием данных табл. 2; колонка 7;
- б) интенсивности компонент сложной линии к юг получены из суммарной интенсивности)(табл. I) при использовании данных колонки 5 данной таблицы.
- c) вжесте с L I58,6
- d) разложение суммарной интенсивности∠ I62 проведено с использованием данных колонки 5 данной таблицы.
- e) вместе с L 268,7
 -) конверсионная линия сложная; распределение суммерной интенсивности проведено по данным колонки 5 данной таблицы.
- д) вместе M и N линии переходов 158,6; 169,5; 161,3; 162,3 и 163,3кэв.

Таблица 3

Энергии и относигельные интенсивности калибровочных

х-переходов и рентгеновского излучения

Изотоп	Энергия перехода (кэв)	I,y	Тип перехода и КВК	Флворесцентий выход для к-оболочки
203 _{Hg} a)	Х _А } лучи Х в	157,6 <u>+</u> 31		$\omega_{\mathbf{K}} = 0,955$
	279,17	1000	MI + E2 «k=0,164 <u>+</u> 0,005	
I60 _{Т6} ь)	Хадлучи Хв	7I,7 <u>+</u> I4,4	-	ω _{K=0,926}
	86,5 93,9	45,I <u>+</u> 5,0 17,3+1,8	E2, x=1 ,6±0,3	
• •	21 5,6 298 ,5	I3,8<u>+</u>I, 5 84,8+9,0		
·	879.2	IOO		and a construction of the
169 _{уд} с)	63,::2	121		
	93,6	7,2		
	109,''8	50	·	
	II8,2	5,2		
	130,13	31		
:	177,24	62		
	197,97	100		
	26 I	4,8		
	307,7	28		
а) — на ос ь) — на ос с) — на ос	нове данных и нове данных и нове данных и	з работы (<i>54</i> з работы (<i>54</i> з работы (<i>44</i>) 3) 5),	
погре не пр	шности от носи евышают 5%-	тельных инте	нсивностей у-луч	ей

Таблица 4

Энергии и относительные интенсивности до -лучей 155 Тв.

₩# ПП	Энергия перехода	Относительные ин	Гримечание	
	(Ř3B)	Нами данные	Данные раб./16/	
I	2	3	4	5
Ι	Х лучи	28150	29950	
2	60,0	218 <u>+</u> 44	350 <u>+</u> 140	
3	66,5			A
4	76,0			A
5	86,5	7 100 <u>+</u>I40 0	7040 <u>+</u> 1830	
6	105,3	5300 <u>+</u> 1060	5100 <u>+</u> 730	
7	120,5	10,6 <u>+</u> 2,1		
8	130,0			В
9	138,2	12,0 <u>+</u> 2,4		
10	146,0	18,8 ^{a)} 3,8		С
ŦI	148,65	468 ^{a)} <u>+</u> 94	505 <u>+</u> 88	С
12	150,6	42 ^{a)} <u>+</u> 9		C
13	158,6	.80 ⁶⁾ <u>+</u> 16		С
14	160,5	140 ^{b)} <u>+</u> 28		с
15	161,3	559 ⁰⁾ <u>+</u> II2	}1658 <u>+</u> 313	С
16	162,8	40 [°]) <u>+</u> 16		D
17	163,3	747 ⁰⁾ <u>+</u> 150	Υ Υ	С
18	175,2	49 <u>+</u> 10		
19	180,1	1350 ^{b)} <u>+</u> 270	1551 <u>+</u> 269	С
20	181,6	125 ⁰⁾ <u>+</u> 25		С
21	182,05	$.30^{b} \pm 9$		c
22	192,2	10 ^{c)} ± 4		D
23	200,3	52 <u>+</u> 10	36 <u>+</u> II	

63

•

I	2	3	4	5
24	208,0		51 <u>+</u> 17	С
25	208,6	}79 <u>±</u> 16		С
26	216,0	26,2 <u>+</u> 5,2		
27	220,0	}137 + 27	}I43 <u>+</u> 55	C
28	220,6) -	J	· c
29	226,8	29,7 <u>+</u> 5,9	25,5 <u>+</u> 10,5	
30	233,6	14,7 <u>+</u> 3,7		
31	239,45	52 <u>+</u> 10	39 <u>+</u> 8	
32	248,0	4,7 <u>+</u> I,9		
33	254,0	4,9 <u>+</u> 2,0		
34	262,45	1000	1000	
35	268,7	127 <u>+</u> 25	I48 <u>+</u> 37	
36	28I,I	59 <u>+</u> 12	6I <u>+</u> 18	
37	286,9	55 <u>+</u> II	6I <u>+</u> 18	
38	308			B
39	321,8	32,9 <u>+</u> 6,6	33,7 <u>+</u> 7,9	
40	340,8	227 <u>+</u> 45	224 <u>+</u> 48	
4I	36I	~ 8,4		
42	367,4	230 ^d) <u>+</u> 56	464 +97	¢
43	367,7	130 ⁰⁾ <u>+</u> 36		C
44	371,0	36 <u>+</u> 7	< 46	
45	380,3	1,9 <u>+</u> 0,5		
46	384,2	5,6. <u>+</u> I,I	4,6+1,7	
47	391,3	4,6 ± 0,9	3,I <u>+</u> I,6	
48	395,0	I,8 ± 0,5		
49	402,3	I4,I <u>+</u> 2,8	15,3+3,7	
50	428,3	7,I <u>+</u> I,4	5,6 <u>+</u> 1,7	

I	2	3	4	5
51.	447,0	~1,6		
52	45I , 3	7,0 <u>+</u> I,4	8,2 <u>+</u> 3,3	
53	454,8	3,5 <u>+</u> 0,7	4,I <u>+</u> I,6	
54	488,I	8,2 <u>+</u> I,6	<7,6	
55	501,8	6,4 <u>+</u> I,6	5,6 <u>+</u> 1,7	
56	505,9	8,5 <u>+</u> I,7	9,7 <u>+</u> 2,5	
57	513	I,I <u>+</u> 0,4		
58	532,5	10,5 +_2,I	9,2 <u>+</u> 2,4	
59	542,5	I,6 <u>+</u> 0,5		
60	555,4	5,9 <u>+</u> 1,2		
6 I	559,9	26,5 <u>+</u> 5,3	27,0 <u>+</u> 6,4	
62	588,2	I,9 <u>+</u> 0,5	I,53 <u>+</u> 0,55	
63	592,8	3,9 <u>+</u> 0,8	3,6 <u>+</u> 0,4	
64	610,5	3,4 <u>+</u> 0,7		
65	615,5	4,0 <u>+</u> 0,8	4,6 <u>+</u> I,7	
66	648,I	2,6 <u>+</u> 0,65	2,6 <u>+</u> I,I	

- интенсивности р -переходов нормированных так, чтобы
 1₂ 262,45 = 1000.
- а) Интенсивности определены графически разложенизм суммарных пиков
- b) -. Интенсивности определены разложением суммарных пиков на основе использования результатов «- д» и р-р - совпадений.
- с) Интенсивности определены из количественного анализа у~у совпадений.
- о) интенсивности определены из количественного азализа

 с γ - совпадений.
- А Линки соответствуют комптоновскому распределению от линки с энергиями 86,5 и 105,3 кев.
- В ~ Линии соответствуют суммарным пикам рентгеновского излучения и интенсивных гамма-дучей.

- С Гамма-лучи соответствующих переходов в гамма-спектре не разрежаются, но их ууществование подтверждается в опытах по с-р и р-р -совпадениям.
- D Гамма-лучи соответствующих переходов наблюдались нами тольво в стектрах у-у -совпадений в ¹⁵⁵Ть.

TAEJNUA 5

Количественные результаты е – γ – совпадений в ^{I55}Tb

•

Таблица 6 •

1 NCT. Інтенсивности совпадений

									•		
$E_{\lambda}(h, 3E)$	86,5	105,3	148,65	162	160	192	200	208	216	220	239,45
86,5	-281	~I 3	796	1008	2009		52,9	23,5		60.4	57
·	(+26)	(-13)	(89)	(77)	(87)		(84)	(61)		(70)	(5)
105,3	128	-38	32,3	1258	-16,2		0,72	21,7		151	0,07
	(14)	(-5)	(30)	(85)	(-8)		(9)	(66)		(86)	(0,9)
I48,65	781	I05 , 7	2,77	59	-0,42	7,13		I,I	17,1		
	(89)	(58)	(27)	(73)	(-2)	*)		(50)	*)		
162	1068	1617	47,6	156	93,6			7,4		33, 3	2 , I
	(78)	(88)	(33)	(70)	(58)			(69)		(85)	(49)
180	2054	36#4	4,77	108	II ,I			2,77		5,7	0,12
	(87)	(I4)	(18)	(63)	(-22)			(47)		(51)	(49)
192			9,54								
200+208	54 4	33	*) 12.7	23.2						0.6	
*	(72)	(64)	(87)	(8I)						(55)	
220	54 , 6	176,5	48,5	26,3	-0,13						
	(71)	(90)	(9 6)	(82)	(-2)						
239,45		Ι,5	I , 4	7,7	6,95						
		(22)	(34)	(85)	(83)						
262,45+268,7	693	1000	0,2	12,6	-72		67	3		5,5	
	(83)	(90)	(2)	(29)	(-35)		(86)	(64)		(62)	
281,1+286,9	81	-2		6	1						
	(85)	(-25)		(68)	(26)			~~~~~			
321,8	31	444	2,6	12,8	5,2			I,I			
	(88)	(93)	(9 0)	(93)	(86)			(90)			
340,8	328	-1,2		3,2	0,33						
•	(92)	(-6)		(35)	(5)						
361+367,6+	43	-11,1	-0,17	I,5	-0,9						
371	(4I)	(-31)	(-4)	(10)	(-7)						
380+384,2		7	0,33	0,96	8,8						
		(91)	(82)	(BI)	(98)						

Под кахдых значением антенсивности совпадений I ист (E, E,) в скобках приведени величини $\frac{I_{12}^{(12)}(\varepsilon, \varepsilon_{c}) \cdot J_{20}}{I_{11}^{(12)}(\varepsilon, \varepsilon_{c}) \cdot I_{20}^{(12)}(\varepsilon, \varepsilon_{c})}$ *) - Величины *) - Величны $\frac{\mathbf{I}_{a_{1}}^{*} \stackrel{\text{const}}{=} (r_{1} \in \mathbb{A}), e_{0}}{\prod_{a_{1}}^{*} \stackrel{\text{const}}{=} (r_{1} \in \mathbb{A}) + \Gamma_{a_{1}}^{*} (\mathfrak{T} \in \mathbb{A})} \xrightarrow{\sim} \mathbf{H}_{0}$ не приведены из-за отсутствия данных об антенсионостях \mathbf{I}_{p} в одиночных

γ - спектрах.

¢	-
	E
1	110
į	1

козоонциенты внутренней конверсии переходов в 15562

•

ринятые Ильти- Линости.			16	()E2wI7 ^C)	E2c)	E1c)	E2c)			EIc)	EIc)	+82	(/E2=26°) :/E2=29 4)	a)			(132°)
nepe-ii Jac ba Jac			51	9								+E2 MI	<u></u>	E2			8
ІНОСТИ Атекаюш Анным.			14									IR					
ILTHIOU IOB BU KBK.			-														
ký Xoz KBH		I .	Ĥ									MI(+62					
		6	[2									×1,0(+2) 2,88(+2)	5,02(+I) 6,6(+2)				
		31	H									8,I(+I) 2,29(+I)	2,34(+0) 7,59(+0)				
	киноч	IN	9									7,0(+0) (0+)0,7	8,91(-2) 1,66(-2)				
	eckne 318	6 13 6								(0+)12,5 2,51(+0)	2,62(+2) 5,62(+2)						
орсик а)	Теоретиче	53	æ									3,5(+0) 2,75(-I)	5,25(+0)				
ней конве		13	6									8,0(-I) 8,3I(-2)	2,95(-2) 5,62(-2)				
нөдтүна ытнеминицеол		3	6									•1,6 (0) (8 ,7 <u>+</u> 2,4)(−1)	(2,4 ±1,4)(-1) (2,1 ±0,9)(-1) (2,4 ±1,2)(-1) (9,9 ±4,4)(-2)				
	альные значения:	υ	2														•
	Эксперимент	I	4									(+0)(+0)	,4 ±1,8)(-1)				
R81491 (a	BNH1 BAUR) B H IR I	m						·			¥ د ×	 = >				
ទា	(ae) (ae)	I) Ieu	2	18 , 7'	21,0	26,55	3I,4:	39,8	40.7	45,3	58,0	60,0		60,3	79,2	80,9	86,0
ाउस 11/11		-ng	-		2.	~	4	5.	6.	7.	ŵ	6		.oi	н.	12.	13.
ł]		!					1 39			1			1

•

9I	Ig	()ua . m		1	BI				(12 ^{C)}	MI+82 MI/82=60 ⁽ WI/82=30	(INI)	(тя)
IS	ß				Ig					MI+82		(IN)
14 1					BI					2 1 +17	(ME)	I
13	BI				BI					• IN		(TR)
12	I,32(+2) 5,50(+I) 9,I0(+0) 6.03(+I)				6,46(+I) 2,24(+I) 5,80(+0) 2,00(+I)		3,80(+I)	(1+)61*2		I,66(+I) 4,07(+0) 8,00(-I) 2,29(+0)	(+1)72,(+I)	1,32(+I)
п	2,40(+I) 4,67(+0) 6,02(-I) 1.18(+0)				I,I8(+I) 2,34(+0) 2,88(-I) 4,36(-I)		7,24(+0)	4,46(+0)		3,47(+0) 6,16(-1) 7,80(-2) 7,59(-2)	3,31(+0)	2,82(+0)
01	2,5I(+0) 3,I6(-I) 5,02(-2) 5,0I(-3)				I,5I(+0) I,90(-I) 1,70(-2) 2,88(-3)		(0+)00 ' I	(I-)I6'9		5,75(-I) 7,4I(-2) 5,90(-3) 9,54(-4)	5 , 62(-I)	4,78(-I)
6	6,03(+0) 6,60(-I) 5,23(+I) 5,3I(+I)				3,80(+0) 3,80(-I) I,I5(+I) 1,05(+I)		2,63(+0)	I,82(+0)		I,45(+0) I,4I(-I) I,55(+0) I,23(+0)	I,4I(+0)	(0+)8I,I
8	I,78(+0) L,44(-I) I,00(+0) I,00(+0)				1,02(+0) 9,36(-2) 3,80(-1) 3,89(-1)		6,92(-I)	4,78(-I)		3,89(-1) 3,89(-2) 7,80(-2) 6,92(-2)	3,7I(-I)	5,I6(-I)
2	5,55(-I) 3,62(-2) 8,30(-3) I,I2(-2)				2,09(-I) 2,24(-2) 4,57(-3) 5,75(-3)		I,45(-I)	I,00(-I)		8,50(-2) 8,90(-3) I,45(-3) I, ⁷ 4(-3)	8,31(-2)	7,25(-2)
9	(1,8 ±0,8)(-1) (2,5 ±1,2)(-2) (3,0 ±3,1)(-3) (8,9 ±4,0)(-3) (9,5 ±4,2)(-3)	(2 ,8 <u>1</u> ,2)(-3)			(1,7 ±0,5)(-1) (2,2 ±0,7)(-2) (4,2 ±1,9)(-3) (5,4 ±2,4)(-3) (6,4 ±2,4)(-3) (2,4 ±1,0)(-3) (2,4 ±1,0)(-3)		~I,3 (-I)	~2,6 (-I)		(5,5 ±1,6)(-1) (8,5 ±3,8)(-2) (2,5 ±1,2)(-3) (2,3 ±1,0)(-2) (6,7 ±3,0)(-3)	~4,2 (-2)	~4,5 (-2)
5					2,8 (−1) }(2,9 ±1, 2)(-2)					(5,0 <u>±</u> 2,0)(−I)	~2,2 (-I)	(5,0 <u>+</u> 2,4)(-2)
4	(2.5 ±0.6)(-1) (6.0 ±1.3)(-2) (6.1 ±1.1)(-2)	•			(1,8 <u>+0,</u> 3)(-1) 4,4 (-2) 					~7,8 (-1) }(8,8 ±3,5)(-2) }(1,9 ±0,8)(-2)	-	5,6 (-2)
F_	<u>*111</u> *	2	5		~ ~		H	X		x 1 1 1 x x	X	×
2		8	I IOI	, IOI	102 ¹	118,0	I20 , 5	138 , 2	146,C	I48,6	150,6	I58,6
-	I4.	۲	16.	17.	I8.	.6I	20.	21.	22.	53. 	24.	25.

G

70

IPOZOAZZHNE TABAMUM 7
16	MI(+82)	MI+82 NI/82=8 ⁴⁾	IN	NI/E2≈150 NI/E2≈80 ⁵	EI.	95%MI+ +5%82	MI/E2=30 ⁰ MI/E2≌35 ^d		~		BI+B 2
I5	MI(+B2)	MI+52		IW	ΒI	MI+B2					
14	N1(+E2)	MI+82	IN	T		95941+ 5982					EI+M2
13	IN .	NI+E2	(MI)	ii .		MI+82					EI+M2
12	1,23(+I) 2,95(+0) 5,50(-I) I,57(+0)	I,23(+I) 2,92(+0) 5,50(-I) I,57(+0)	I,I5(+I)	I,I5(+I) 2,69(+0) 5,20(-I) I,45(+0)	8,90(+0) 2,05(+0)	7,94(+0) I,82(+0)	3,40(-I) 8,3I(-I)	7,76(+0) (0+)<7,1	7 , 76(+0) 1,75(+0)		5,37(+0)
п	2,69(+0) 4,56(-1) 5,50(-2) 5,62(-2)	2,70(+0) 4,57(-I) 5,50(-2) 5,62(-2)	2,70(+0)	2,52(+0) 4,36(-1) 5,40(-2) 5,25(-2)	2,00(+0) 3,30(-I)	(1-)06,1	3,80(-2) 3,31(-2)	(1+)08+2	1,78(+0) 2,80(-I)		I,26(+0)
0I	4,68(-I) 6,02(-2) 4,60(-3) 7,94(-4)	4,68(-I) 6,02(-2) 4,60(-3) 7,94(-4)	4,40(-I)	4,47(-I) 5,63(-2) 4,40(-3) 7,58(-4)	3,7I(-I) 4,60(-2)	3,46(-I) 4,47(-2)	3,30(-3) 5,62(-4)	3,3I(-I) 4,1U(-2)	5,31(-I) 4,I0(-2)		2,57(-I)
6	1,12(+0) 1,10(-1) 9,20(-1) 7,94(-1)	I,I2(40) I,I0(-I) 9,20(-I) 7,94(-I)	1,03(+0)	I,05(+0) I,07(-I) I,00(+0) 7,07(-I)	8,31(-1) 8,30(-2)	7 ,58(-I) 8 , I2(- 2)	5,40(-I) 4,I6(-I)	(1-)04".	7 ,4 0(-I) 7 , 50(-2)		5,25(-I)
8.	>,02(-I) 3,I6(-2) 5,40(-2) 4,78(-2)	3,02(-I) 3,I6(-2) 5,40(-2) 4,78(-2)	3,00(-I)	2,82(-I) 3,02(-2) 5,00(-2) 4,36(-2)	2,29(-I) 2,35(-2)	2,09(-1) 2,29(-2)	3,IO(-2) 2,82(-2)	2,09(-I)	2,09(-I) 2,I0(-2)		[-]14
7	7,08(-2) 7,24(-3) I,I0(-3) I,32(-3)	7,08(-2) 7,24(-3) 1,10(-3) 1,32(-3)	7,00(-2)	6,60(-2) 6,91(-3) 1,03(-3) 1,26(-3)	5,50(-2) 6,00(-3)	5,13(-2) 5,62(-3)	7,80(-4) 9,10(-4)	5,02(-2) 5,02(-2)	5,02(-2) 5,50(-3)		3,98(-2)
. و	(1)(8,1,1)(5,3,1)(-2)(-2)(-2)	(3,7 ±1,0)(-1) (5,5 ±2,4)(-2) (1,5 ±0,7)(-2)		(4,7 <u>1</u> ,1,3)(-I) (6,6 <u>1</u> 3,0)(-2) (1,3 <u>1</u> 0,6)(-3) (1,7 <u>1</u> 0,8)(-2)	(5,4 <u>+</u> 2,4)(-2)	(3,3 <u>1</u> 0,9)(-I) (5,0 +I,4)(-2)	(1,9 ±0,9)(-3) (1,3 ±0,6)(-2)	~5,0 (-2)	~2,I (-I)		
5	(4,1 <u>11</u> ,3)(-I) (5,9 <u>12,0</u>)(-2)	(3,9 ±1,6)(-1) (6,4 ±2,0)(-2)	(5,6 <u>1</u> 3,I)(-I)	(1-)(2,1 <u>+</u> 8,4) (5,9 <u>+</u> 1,9)(-2)		(I-)(6'0 1 4'£)					(7,7 ±2,7)(-2)
4	4,6 (-I) (I-) 1,7	⁴ , ⁴ (-1) 7, 4 (-2)	6,3 (-I)	5,3 (-I) 7,2 (-2) 2,1 (-2)		(3 ,2 <u>+</u>0, 7)(-1) 15,3 (-2)	1,1 (-2)				9,4 (-2)
ŕ	~ × 1 1 1	w R L L L H	8 X	M N	<u>т</u> ж	H H	צריו	6 7 7	05 K	2	3 K
2	160,	161,	I62,	I63,	175 ,	180 ,		18I,	182 ,	192,	200,
-	26.	27.	28.	-62 -	30.	31.		32.	33.	34.	35.

EPOGOLITERINE TAEAMUM 7

-	2	m	4	5	٠ و	2	60	6	8	Ħ	12	13	I4	15	16
1	160,5	×111	4,6 (-I) 7,1 (-I)	(4,1 ±1,3)(-I) }(5,9 ±2,0)(-2)	(#,2 <u>1</u> ,8)(-I) (5,3 <u>1</u> 2,3)(-2)	7,08(-2) 7,24(-3) I,I0(-3) I,32(-3)	5,02(-I) 3,I6(-2) 5,40(-2) 4,78(-2)	1,12(+0) 1,10(-1) 9,20(-1) 7,94(-1)	4,68(-I) 6,02(-2) 4,60(-3) 7,94(-4)	2,69(+0) 4,56(-I) 5,50(-2) 5,62(-2)	1,23(+I) 2,95(+0) 5,50(-I) I,57(+0)	IN .	M1(+EZ)	k I(+E2)	MI(+E2)
	I61 , 3	≍JJJJª,	4,4 (−I) }7,4 (-2)	(3,9 ±1,6)(-1) (6,4 ±2,0)(-2)	(3,7 ±1.0)(-1) (5,5 ±2,4)(-2) (1,5 ±0,7)(-2)	7,08(-2) 7,24(-3) 1,10(-3) 1,32(-3)	3,02(-I) 3,I6(-2) 5,40(-2) 4,78(-2)	I,I2(+0) I,I0(-I) 9,20(-I) 7,94(-I)	4,68(-I) 6,02(-2) 4,60(-3) 7,94(-4)	2,70(+0) 4,57(-I) 5,50(-2) 5,62(-2)	I,23(+I) 2,92(+0) 5,50(-I) I,57(+0)	MI+82	NI+B2	MI+62	NI+E2 NI/E2=8 ^d)
	I62,8	×	6 , 3 (-I)	(5,6 <u>+</u> 3,I)(-I)		7,00(-2)	3,00(-I)	1,03(+0)	4,40(-I)	2,70(+0)	I,I5(+I)	(NI)	IN		MI
	I63 , 3	≍ŢŢı≍	5,3 (-I) 7,2 (-2) 2,1 (-2)	(4,8,±1,9)(-1) }(5,9±1,9)(-2)	(4,7 <u>1</u> ,3)(-1) (6,6 <u>1</u> 3,0)(-2) (1,3 <u>1</u> 0,6)(-3) (1,7 <u>1</u> 0,8)(-2)	6,60(-2) 6,91(-3) 1,03(-3) 1,26(-3)	2,82(-I) 3,02(-2) 5,00(-2) 4,36(-2)	1,05(+0) 1,07(-1) 1,00(+0) 7,07(-1)	4,47(-I) 5,63(-2) 4,40(-3) 7,58(-4)	2,52(+0) 4,36(-1) 5,40(-2) 5,25(-2)	I,I5(+I) 2,69(+0) 5,20(-I) I,45(+0)	IJ.	ТМ	IN	∎I NI/E2≈150 NI/E2≅809
	I75,2	<u>ر</u> ×			(5,4 <u>+</u> 2,4)(-2)	5,50(-2) 6,00(-3)	2,29(-I) 2,35(-2)	8,3I(-I) 8,30(-2)	3,7I(-I) 4,60(-2)	2,00(+0) 3,30(-I)	8,90(+0) 2,05(+0)			EI	EI
	1,081	<u>بر א</u>	(3, 2 ±0,7)(-1)	(I-)(6°0∓ 4°€)	(3,3 <u>1</u> 0,9)(-I) (5,0 <u>1</u> 1,4)(-2)	5,13(-2) 5,62(-3) 7.80(-4)	2,09(-I) 2,29(-2) 3.I0(-2)	7,58(-I) 8,I2(-2) 5,40(-I)	3,46(-I) 4,47(-2) 3.30(-3)	I,82(+0) 4,90(-I) 3.80(-2)	7,94(+0) I,82(+0) 3.40(-1)	NI+B2	95%MI+ 5%E2	MI+E2	95%MI+ +5%82 MI/B2=30 ^C
		≡ Ľ ľ] 1,1 (-2)		(I,9 <u>1</u> 0,9)(-3) (I,3 <u>1</u> 0,6)(-2)	(+-)0I,e	2,82(-2)	4,I6(-I)	5,62(-4)	3,3I(-2)	8,3I(-I)				MI/B2#354
	18I,6	× 1			~ 5,0 (-2)	5,02(-2) 5,50(-3)	2,09(-I)	7,40(-I)	3,3I(-I) 4,IO(-2)	I,78(+0) 2,80(-I)	7,76(+0) 1,75(+0)				
	I82,05	L K			~2,I (-I)	5,02(-2) 5,50(-3)	2,09(-I) 2,IO(-2)	7,40(-I) 7,50(-2)	5,31(-1) 4,10(-2)	1,78(+0) 2,80(-1)	7,76(+0) 1,75(+0)				
	192 , 2														
	200,3	Я	9,4 (-2)	(7,7 ±2,7)(-2)		3,98(-2)	(I-)15,I	5 , 25(-I)	2,57(-I)	I,26(+0)	5,37(+0)	EI+#2	EI +M2		11+1

IIPOZIORNEHME TAEJMUDI 7

9I	MI+(E2)		EI	(EI)	(IR)		NI	ßI	MI (+B2)		NI	R	BI	52
IS	MI+82			(EI)	(IN)		ijij		ij				Iä	B2
I4			BI					EI	%I+8%		IN	•	ß	Я
13					(11)		ИI		IM			•	(BI)	(E2)
12	4,57(+0) I,00(+0)		(0+)86 , è	3,63(+0)	3,63(+0) 7,50(-I)		3,39(+0) 6,60(-I)	2,95(+0)	2,63(+0) 5,36(-I) 9,30(-2) 1,58(-I)		2,30(+0)	I,9I(+0) 3,47(-I) 6,40(-2) 9,50(-2)	I,74(+0)	1,44(+0)
п	I,I2(+0) I,82(-I)		9,76(-I)	9,IO(-I)	(I-)01 [•] 6		8,3I(-I) I,28(-I)	7 , 58(-I)	6,92(-I) 1,I2(-I) 1,35(-2) 8,I0(-3)		5,50(-I)	5,02(-I) 7,75(-2) 9,80(-3) 5,30(-3)	4,80(-I)	4,07(-I)
0I	2,29(-I) 2,88(-2)		2,04(-I)	I,95(-I)	1,95(-1) 2,90(-2)		I,78(-I) 2,29(-2)	3 , 62(-I)	1,52(-T) 2,00(-2) 1,50(-3) 2,40(-3)		I,30(-I)	I,I7(-I) I,5I(-2) I,I8(-3) I,85(-4)	2,I2(-I)	9,75(~2)
6	4,57(-I) 5,50(-2)		4,47(-I)	3,80(-I)	3,80(-I) 4,30(-2)		3,54(-I) 3,98(-2)	3,I6(-I)	2,88(-I) 3,46(-2) 1,22(-I) 8,40(-2)		2 , 50(-I)	2,I4(-I) 2,57(-2) 7,7I(-2) 4,80(-2)	2,04(-I)	I,77(-I)
80	[, 3 2(-1) 1,53(-2)		1,32(-I)	I,I2(-I)	I,I2(-I) I,20(-2)		I,03(-I) I,I2(-2)	9,55(-2)	8,70(-2) 9,75(-3) 9,00(-3) 6,70(-3)		7,50(-2)	6,75(-2) 7,41(-3) 6,20(-3) 4,40(-3)	6,30(-2)	5,50(-2)
6	3,4 (-2) 3,93(-3)		3,39(-2)	3,02(-2)	3,02(-2) 3,35(-3)		2,82(-2) 3,16(-3)	2,63(-2)	2,40(-2) 2,75(-3) 5,10(-4) 5,40(-4)		2,IO(-2)	I,9I(-2) 2,I9(-3) 2,35(-4) 2,55(-4)	I,78(-2)	I,57(-2)
9	(9,7 <u>1</u> 4,5)(-2) (1,5 <u>1</u> 0,7)(-2) (3,4 <u>1</u> 1,5)(-3)			∿I,0 (-2)	(I, F <u>1</u> 0,7)(-I)	c2,8 (-2) (2,4 <u>1</u> 1)(-3)	(I, 9 <u>±</u> 0,8)(-I) <i,1 (-I)</i,		(I,6 ±0,6)(−I) (7,3 ±3,3)(−2)			1,17(-1) 1,62(-2)	2,5 (-2)	<6,4 (-2)
2			(3,I ±1,I)(-2)					(2-)(1'I ⁺ 6'2)	(I-)(4 ,0± 2,I)		(2,I ±1,I)(-I)	(I-)/I'I	(2,8 ±0,8)(-2)	(6,2 ±1,7)(-2)
4	I ,8 (-I)		•	_	{ I,9 (-I)		(I-) (-I)		~1,7 (-1) 4, 6 (-2)] 1,59(-2)	~2,9 (-2)	3,3 (-2)
~	x J x		×	×	х _	a 2	L ×	ы	≚_1_1_1_ ∽	<u> </u>	ж	× :	×	К
2	208,0	208,6	2I6,0	220 , 0	220,6		226,8	233,5	239,4	248,0	254,0	262,4	268,7	28I,I
н	36.	37.	58.	39.	40.		4I.	42.	43.	.#	45.	46.	47.	48.

продолжник таблицы 7

									2						
9I	IN	IN .	TN		IZ	Ig		IN	N+13				I	B	
IS	IN	1	T)		II	81		ИI					ИI		
17†	И	NI	LI N		12	II	·	И	EI+W2	•			N	EI	
5	IM	IJ	Ħ		Ξ			ЦЯ							
12	I,35(+0) 2,5I(-I)	8,70(-I) I,55(-I) 2,55(-2) 3,I0(-2)	6,91(-1) 1,26(-1)		5 , 25(- I)	9,I0(-2)		5,I2(-I) 9,I0(-2)	4,67(-I)				3,80(-I) 6,45(-2)	3,02(-I)	
п	3,80(- I) 5,90(-2)	2,63(-I) 3,98(-2) 4,65(-3) 2,II(-3)	2,19(-1) 3,31(-2)		[1-)4/.I	2,5I(-2)		I,66(-I) 2,5I(-2)	I,55(-I)				I,29(-I) I,9I(-2)	I,05(-I)	
ទ	9,32(-2) 1,23(-2)	6,76(-2) 8,90(-3) 6,50(-4) I,07(-4)	5,75(-2) 7,75(-3)		4,78(- 2)	6,30(-3)		4,68(-2) 6,30(-3)	4,36(-2)				3,80(-2) 5,02(-3)	3,I6(-2)	
6	I,62(-I) 2,00(-2)	I,I2(-I) I,4I(-2) 2,85(-2) I,47(-2)	9,55(<i>-?</i>) I,20(-2)		7,58(-2)	9,55(-3)	-	7,24(-2) 9,35(-3)	6,75(-2)				5 , 75(-2) 7 , 40(-3)	4,67(-2)	
8	5,25(-2) 3,63(-3)	3,62(-2) 4,17(-3) 2,68(-3) 1,72(-3)	3,16(-2) 3,63(-3)		2, 57(–2)	3,02(-3)		2,5I(-2) 2,95(-3)	2,34(-2)				2,04(-2) 2,40(-3)	I,77(-2)	
7	I,5I(-2) I,74(-3)	I,I5(-2) I,29(-3) I,25(-4) I,32(-4)	1,00(-2) 1,15(-3)		8 , 30(–3)	9,55(-4)		8,13(-3) 9,35(-4)	7,58(-3)				6,60(-3) 7,94(-4)	5,75(-3)	
6	(9.7 ±4.3)(-2) (1.3 ±0.6)(-2)	(4,9 <u>+</u> 2,2)(-2) (1,4 <u>+</u> 0,5)(-2)	(4, 3 <u>1</u> 2,1)(-2) (6,7 <u>1</u> 3,0)(-3) (1, 6 <u>1</u> 0,7)(-3)	•	(e,7 ±3,0)(-3)	(8,2 ±3,7)(-4)		(4,7 <u>12,1</u>)(-2) (5,4 <u>12,4</u>)(-3)					(3,8 ±1,7)(-2) (6,4 ±2,8)(-3)		
5	(9 ,7 <u>1</u> 2,7)(-2)	}(I,6 ±0,5)(-2)	(4,9 ±1,3)(-2) (8,8 ±2,8)(-3) (1,8 ±2,6)(-3) (7,8 ±2,6)(-4)		}(e,4 ±2,0)(−3)) ([, 1 ±0,3)(-3)	{(1,5 ±0,6)(-4)	(4,¥ ±1,2)(-2) (6,9 ±2,3)(-3)	(8,0 ±3,¥)(-2)			•	(4,2 <u>1</u> ,3)(-2)	(7,6 ±5,2)(-3)	
4	~I,0 (-I) ~I,6 (-2)	~7,8 (-2) }1,6 (-2)	(4,9 <u>1</u> 1,1)(-2) ~8 ,8 (-3)		}e,5 (-3)			~4,7 (-2)							
ñ	L H	تہتتہ≓	×⊥∎≥		M	× -1-	3≡∑ . + ~	L ×	X			0	Ľ K	3 K	
2	286,	321,	340,8	36I,(367 4	367	367	371,(380.	384,6	.146	395,(402.	428.	447,0
	.64		51.	52.	53.	54.		55.	56.	57.	26.	59.	60.	6I.	62.

n Manufacteries Tax Astass 7

,

											1						
16	I		ТЗ	IN	EI+M2		23	EI+W2	IN	IM	EO+NI+E2	EO+MI+E2		MI	H		
15	IN			I										Щ.			
I4	MI		ІЯ		EI+#2	MI, W2, E3	55	MI,EI+M2	IN	IN	> ¥3 B0+¥I1+B2	> M3 B0+MI+B2	EL, E2, MI	MI	MI		
n																	
12	2,5I(-I)		(I-)56,1	I,78(-I)	I,78(-I)	I,66(-I)	1,45(-I)	I,35(-I)	I,26(-I)	I,20(-I) I,82(-2)	I ,05(-I) 2,55(-2)	I,00(-I) I,5I(-2)	9,I2(-2)	R , 9⊥(–2)	7,58(-2)		
11	9,IO(-2)		7.08(-2)	6,60(-2)	6,45(-2)	6,30(-2)	5,50(-2)	5,25(-2)	4,90(-2)	4,78(-2) 6,93(-3)	4,17(-2) 6,00(-3)	4,6′(-2) 5,58(~3)	3 , 7I(-2)	3,63(-2)	3,16(-2)		
IO	2,75(-2)		2.24(-2)	2,09(-2)	2,09(-2)	2,00(-2)	I,82(-2)	I,74(-2)	1,66(-2)	I,57(-2) 2,I4(-3)	I,4I(-2) I,90(-3)	I,38(-2) I,82(-3)	I,29(-2)	1,26(-2)	1,I2(-2)		
6	3,98(-2)		{ 'IE(-2)	2,88(-2)	2,82(-2)	2,75(-2)	2,46(-2)	2,29(-2)	2,I4(-2)	2,09(-2) 2,88(-3)	I,82(-2) 2,46(-3)	I,78(-2) 2,40(-3)	I,66(-2)	1,59(-2)	I,4I(-2)		
8	I,53(-2)		1-174-1	I,I8(-2)	I,I5(~2)	I,I2(-2)	I,02(-2)	9,76(-3)	9,31(-3)	9,I2(-3) I,07(-3)	7,92(-3) 9,60(-4)	7,76(-3) 9,32(-4)	7,25(-3)	7,08(-3)	6,I6(-3)		
2	5,02(-3)		<u>ו דבן בז</u>	3,98(-3)	3,90(-3)	3,80(-3)	3,46(-3)	3,3I(-3)	3,I6(-3)	3,09(-3) 3,7I(-4)	2,82(-3) 3,35(-4)	2,75(-3) 3,3I(-4)	2,57(-3)	2,51(-3)	د,29(-3)		
6	~1,9 (-2)			(2,I ±1,0)(-2)	(7,4 ±3,3)(-3)					(I,69 <u>+</u> u,75)(-2)	~9,5 (-2)	(1,4 ±0,6)(-1) (2,3 ±1,0)(-2)		(I, 7 ±0,7)(-2)			
5	(2-)(6,0± 6,2)		(2) (1)			(5,4 ±2,8)(-2)	(8,0 ±2,6)(-3)	(2,5 ±1,1)(-2)	(I,7 ±0,5)(-2)	(1 ,5 ± 0, 4)(-2)	(I,0 ±0,3)(-I) (3,8 ±1,4)(-2) (I,8 ±0,7)(-2)	(k , ³ 4 <u>+</u> 0, ³ 8)(-I) (I,6 <u>+</u> 0,5)(-2) (5,0 <u>+</u> 2,9)(-3)	(6.8 ±4,4)(-3)	(I,2 ±0,4)(-2)	(1,4 ±0,5)(-2)		
4				•													
m	ы		:4	¥	х	К	х	К	К	K L,	X T X X	X K L M	•	Я	K		
2	451,3	454,8	T*004	50I,8	505,9	513.0	532,5	542,5	555,4	559,9	588,2	592 , 8	6I0 , 5	6I5 , 5	648,I	706,2	715 , 3
н	63.	64.	.00	66.	67.	68.	.69.	70.	71.	72.	73.	74.	75.	76.	-77.	78.	79.

ПРОДОЛЖЕНИЕ ТАБЛИЦЫ 7

•

•

•

Продолжение табакцы 7

а) Истийные значения КВК равны указанным в таблище числам, умножеенным на IO в степени той цифры, которая заключена в скобиже.

4) В случаях, когда экспериментельный КВК нами не определялоя, наблюдаемые конверсионные лании не укванивлится.

с) Сведении о мультипольности перехода взяти из работи /10/

Сведения о мультипольности перехода взяты из работы /I7/

 При расчете КБК использовались интенсивности конверсионных электронов, полученные при измерениях на тороядальном шестнаваораюм в -спектрометре (см. табл.2). П. При расчете КВК использовались интенсявности конверсионных электронов, полученные на 🖉 -спектрометре с фокусировкой электронов HB YFOR 2 7 12 (CM. TROR.2).

(см. табл.2). Ш. При расчете КВК использовались интенсивности конверсионых электронов, полученые в работе Во всях трех случаях (I, П, Ш) при расчете КВК аспользовались интенсивности 2/-лучей, полученые в данной работе (см. табл.4).

допускают также выбор мужьтипольвости типа 2. Поэтому указанный выбор мужьтипольности паланатся наиболее вероятным, но не единственно возможным. для MI или 62 или смеся (MI+RZ). Кроме того,ощибки в определении экспериментельных KBK често вместо мультипольности типа MI или смеся (MI+RZ) ЫТ И Е2 или их смеси, всегда можно подобреть текую смесь (E1+MZ), что значение α(α(α₁,...) для этой смеси будет совладать с теоретическими Примечание. При определении иупътипольности 3°-перехода по абсолотным значение козерфициента внутренней конверсия на К(L,,...)-оболочке однозвачно устанвытивается только мультипольность типа ЕІ. Для значений од (од.,...), Олизник к теоретическим для мультипольности

7,

•

Таблица 8 Абсолютные изтенсивности переходов при раснаде 155 .

bb nu	Эпергия перехода (кэв)	Начальный урсвень (1:94)	Конечный уровень (к96)	I _{K+L+M} (%) •100	L 2(*) •100	I (\$) • 100	Примечание
I	2	3	4	5	6	'7	8
I.	18,75	105,3	86,5	2088 ^{a)}	1,56	2090	A, B
2.	21,0			75,6	0,02	75,62	
3.	26,55	86,5	60,0	16,25	10,9	27,15	В
4.	31,43	118, 0'	86,5	34,7	0,09	34,79	A
5.	39,8	326,0	286,8	I,47		I,47	
6.	40,7	146 ,0	105,3	C.I.		CI.	A
7.	45,3	105,3	60,0	60	137	197	В
8.	58,0	II8 , 0	60,0	19,2	15,4	34,6	
9.	60,0	60, 0	0	70I	79	78 0	B
10.	60,3	427,4	367,7	4,57	0,3	4,87	B
II.	79, 2			I , 3	2,75	4,05	
I2.	80,9	367,7	286,8	I,07	2,43	3,5	
13.	86, 0	146,0	60,0	3,75	1,17	4,92	
I4.	86,5	86,5	ο	836	2573	3409	A,B
15 .	99, 0	367,7	268,6	13,1	7,25	20,35	
I6.	101,15	367,7 427 4	266,6 326.0	26 , I	13,3	39,4	
17.	101,6	427,1	326,0	CI.	CI.	ся.	
18.	105,3	105,3	0	532,5	1922	2455	A,B
19.	118,0	118,)	0	0,29	1,8	2,09	
20.	120,5	488,8 266,6	367,7 146,0	0,52	3,85	4,37	
21.	138,2			I, I4	4,34	5,48	
22.	146,0	I46,()	0	5,05	6,8	11,85	
23.	148,65	235,2 266,6	86,5 118,0	120,1	>137,1 <32,6	>234 <55,67	▲ , B (▲)B

Таблица 8

Абсолютные интенсивности переходов при распаде 155 ть .

њњ пп	Энергия перехода (хэз)	На чальный уровень (к94)	Конечний уровень (к96)	^I K+L+N (≸) •100	L 2(*) •100	I (5) • 100	Примечание
I	2	3	4	5	6	• 7	8
I.	18,75	105,3	86,5	2088 ^{a)}	1,56	2090	A, B
2.	21,0			75,6	0,02	75,62	
3.	26,55	85 ,5	60,0	16,25	10,9	27,15	В
4.	31,43	ПЗ,0	86,5	34,7	0,09	34,79	A
5.	39,8	326,0	286,8	I,47		1,47	
6.	40,7	I46,0	105,3	C.I.		CI.	*
7.	45,3	105,3	60, 0	60	137	197	B
8.	58, 0	118 , 0	60,0	19,2	15,4	34,6	
9.	60,0	6(),0	0	701	79	780	B
I0.	60 , 3 ·	421,4	367,7	4,57	0,3	4,87	В
п.	79, 2			I , 3	2,75	4,05	
12.	80,9	361',7	286,8	1,07	2,43	3,5	
13.	86, 0	146,0	60,0	3,75	1,17	4,92	
I4.	86,5	86,5	0	836	2573	3409	A, B
15.	99, 0	367,7	268,6	13,1	7,25	20,35	
16.	101,15	36'',7 42'' 4	266,6 326,0	26,1	13,3	39,4	
17.	101,6	427,4	326,0	CJ.	ся.	CJ.	
18.	105,3	105,3	0	532,5	1922	2455	A,B
19.	118,0	118,0	0	0,29	1,8	2,09	
20.	120,5	488,8 266,6	367,7 146,0	0,52	3 , 85	4,37	
21.	138,2	•		I, I4	4,34	5,48	
22.	146,0	146,0	0	5,05	6,8	II,85	
23.	148,65	235,2 266,6	86,5 118,0	120, I	>137,1 <32,6	>234 <55 , 67	A , B (A)B

Пределжение таблицы 8

Ī	2	3	4	5	6	7	8
24.	150,6	268,6	118,0	3,44	15,3	18,'74	
25.	158,6	427,4	268,6	9,76	29	38, '76	A,B
26.	160,5	427,4	266,6	27,4	50,77	78 , .:7	A,B
27.	161,3	266,6	105,3	96 , 2	202,6	298, 8	▲ ,E
28.	162,8	488,8	326,0	8,40	14,5	22,9	*
29.	163,3	268,5	105,3	I63	270,7	433,7	▲, B
30.	175,2	235,2	60,0	I , I3	17,9	19,(13	В
3I.	180 , I	266,6	86,5	200,5	490	690,5	▲, B
32.	181,6	286,8	105,3	2,77	45,3	48,1	
33.	182,05	268,6	86,5	2,28	10,9	13,18	A
34.	192,2	427,4	235,2	0,18	3 , 8I	3,99	*
35.	200,3	286,8	86,5	I , 46	18,9	20,36	▲, B
36.	208,0	326,0	118,0	5,62	22,0	27,62	•
37.	208,6	2 68, 6	60,0	0,23	6,6	6,83	B
38.	216,0	451,3	235,2	0,297	9,49	9,79	A
39.	220 , 0	647,8 488,8	427,4 268,6	I,44	18,I	19,54	(▲) ▲,B
40.	220,6	326,0	105,3	8,76	32,6	41,35	▲,В
4I.	226,8	286,8	60,0	2,29	10,76	13,05	B
42.	233 ,6	559,9 235,2	326,0 0	0,156	5,32	5,48	
43.	239,45	326,0	86,5	4,38	18,7	23,08	A,B
44.	248,0	615,5	367,7		I,69	I,69	
45.	254,0	488,8	235,2	0,377	I , 77	2,15	
46.	262,45	367,7	105,3	50 , II	362,6	412,7	▲, B
47.	268,7	268,6	ο	I , 3	46, I	47,4	▲, B
48.	281,1	367,7	86,5	I,6I	21,2	22,8]	▲, B
49.	286,9	286,8	0	2,2	19,8	22,0	
50.	321,8	427,4	105,3	0,74	II,95	12,69	▲, B
51.	340,8	427,4	86,5	4,97	82,15	87,12	A ,B

Пределжение таблици 8

,

I	2	3 ·	4	5	6	7	8
52.	361,0	647,,8	286,8		3,05	3,05	1 - 2 -
53.	367,4	427 ,4	60,0	0,8	102,15	102,95	В
54.	367,7	7, 367	0	0,5	64,22	64,72	(B)
55.	371 ,0	488,8	118,0	0,71	13,2	13,91	A
56.	380,3	647,6 615,5	266,6 235,2	0 , 055	0 ,7 0	0,755	A
57.	3 84 , 2	488,8	105,3	0,044	2,02	2,06	A
58.	39 1,3	451,3 [.]	60,0	0,04	I ,6 6	I , 7	
59.	395,0			0,015	0,66	0,675	
60 • [°]	402,3	488,8	86,5	0,254	5,13	5,38	
61.	428,3	427,4 468,8	0 60,0	0,0196	2,59	2,61	
62.	447,0	592,6	146,0		0,58	0,58	
63.	451,3	451,3	0	0,074	2,53	2,61	
64.	454,8	55£1 , 9	105,3	C.I.	I,265	1,27	
65 .	488,I	488 , , 8 592, 6	0 105,3	0,006	2,96	2,97	
66.	501,8	64'',8	146,0	0,049	2,32	2,37	
67.	505,9	59 2,6	86,5	0,023	3,08	3,10	
68 • '	513,0			0,021	0 , 39 5	0,416	
69.	532,5	59? , 6	60,0	0,13	3,81	3,94	
70•	542,5	647,8	105,3	0,015	0,595	0,61	
7I.	555,4	615,5	60,0	0,036	2,13	2,17	
72.	55 9, 9	559,9	0	0,14	9,62	9,76	
73.	588, 2	647,8	60,0	0 , II	0,682	0,792	
74.	592,8	5 92,6	0	0,22	I,425	I,645	
75.	610,5			0,008	I ,22 6	I , 23	
76.	615,5	6 15, 6	0	0,018	I , 45	I , 47	
77.	648,I	647,8	0	0,013	0,943	0,95 6	
78.	706,2			0,023		0,023	
79.	715,3			0,016		0,016	×

•

Продолжение таблицы 8

а) - Абсолютная интенсивность конверсионных электронов получена

из анализа спектров $\gamma^{2}\gamma^{2}$ - совпадений.

- А расположение перехода подтверждается в опытах по 3-3 совпадениях.
- В располежение перехода подтверждается в опытах по е у совпадениях.

габлица 9

Каскад		κ * ε ₁₂
I80,I→	86,5	I,8 ·
281,1>	86,5	1,7
340,8>	86,5	1,6
262,5>	105,3	I , 5
321,8>	105,3	2,0
384,2>	105,3	I , 9
262 , 5>	18,7	6
32I,8 7	18,7 86,5	8,I

TAБЛИЦА IO

Интенсивности заселения уровней ¹⁵⁵Gd, значения log ft и классификация ветвей электронного захвата в ¹⁵⁵Tg, ведущих на основное и возбужденные состояния ¹⁵⁵Gd.

1949	Енергия	MHTCHC.	Значени	e log ft	j	Классификация		
	уровня (к 36)	ypoBHR (%)	для С =800кав	для Q =1000кав	$I_{f} K_{f}^{m} [N_{m_{\epsilon}}\Lambda]$	перехода по превилам Алаги ^а)	AN Ame	AA AI
н	2	3	4	Ŋ	9	7	Ű	
Ι.	0,	31,8	6,9	7 , I	3/2 3/2 [521]	ΙW	I+ I+	0
5.	60,0	3,7	7.7	8,0	5/2 3/2 ⁻ [521]	110	14 14	0
3.	86,5	~ I8,2	0 * 2	7,2	5/2 + :			
4.	105,3	~18 , 2	2,0	7,2	3/2 +			
5.	0'8II	0,13	1 ' 6	9,3	¥. 12. 12 +			
6.	I46,0	0,12	I' 6	9,4	7/2 3/2" [521]	1*w	I+ I+	0
7.	235,2	2,9	7,6	6,7	3/2 + .			
œ.	266,6	0 ° 6	1 ' 2	7,4	5/2 +			
<i>5</i> ,	268,6	4,5	7,3	7,6	3/2 3/2* [402]	ah	I- 0	0 I+
.0I	286,8	96'0	8,0	8,3	3/2 3/2 ⁻ [532]	I Å	+I +2	0 I+
II.	326,0	0,48	8,2	C 4 2	5/2 5/2 [402]	ΰ k	н с)	0 11
12.	367,7	5,4	I' ²	4*2	I/2 I/2 ⁺ [400]	ah	I- 0	7 7
I3.	427,4	3,4	7 , I	7,5	3/2 1/2 ⁺ [400]	ah	I- 0	7 7
14.	45I,3	0,14	8,4	8,9	3/2 1/2 ⁻ [530]	110	+I +2	- -

~	1 7 7	I- 0	000	I- 0	0 0
3	I - 0	I + I+	I+ I+	I+ I+	I+ I+
٤.	ah	IW	IM	п	IW
9	5/2 3/2+ [400]	I/2 I/2 ⁻ [521]	3/2 3/2 ⁻ [521] ₈	3/2 1/2 [521]	5/2 3/2 ⁻ [521] _β
5	8,2	8,7	8,7	0° 6	8,4
4	2.2	8 , I	8,0	8,2	7,4
· 3	0,59	0,I4	0 , II	0,05	0,18
2	488,8	559,9	592,6	6I5 , 5	647,8
н	I5.	.9I	I7.	I8.	.6I

ĩ

Продолжение таблицы 10

2

в) Принимается, что основние состояние $^{\rm I55}{\rm T}\ell$ имеет квантовые харантеристики 3/2, 3/2⁺ [411] (cmpTpm 4.4.1.).

٦

Состояние	1/2-/521/	1/27/530/	1/2+/400/	2/2+/660/	
Величина пара- метра развязки (теор).	0,9	-0,31	0 , 35	6 , I	

Таблица 12

Таблица II

K [#] [Nn Λ] ~ ∎	3/2-/521/	5/2-/523/	1/2~/521/	11/2 ⁻ /505/ 3/2 ⁻ /532/ 1/2 ⁻ /530/ 9/2 ⁻ /514/	Κ ⁷⁷ [Να _χ Λ]	,3/2+/402/	I/2+/400/	3/2 ⁺ /65ī/	1/2 ⁺ /660/	7/2+/633/	5/2*/642/
3/2-/521/					3/2+/402/						
5/2~/523/	ac				1/2+/400/	ac					
1/27/521/	да	0			3/2 */5 51/	0	ac				
II/2 ~/ 50 5/	•0	0	0		1/2+/660/	ac	ac	дa			
3/2-/532/	0	да	да	0	7/2 ⁺ /633/	0	0	0	0		
I/2 ~/ 530/	да	0	да	o ac	5/2+/642/	ac	0	да	0	да	
9/27/514/	0	0	0	да о о							

о - матричный элемент кориолисового взаимодействия равен нулю;

.

да - кориолисово взаимодействие разрешено;

ас - кориолисово взаимодействие запрещено по асимптотическим квантовым числам.

ТАБЛИЦА 13

	Энері (1	тия уровня сэв)		Структура	COCTO	яния	
KT	эксп.	Teop.				•	
3/2-	0	0	52I↑ 9I% ;	521 + Q1(22)	6%		
I/2 ⁺		-50	660† 63%;	$660 \neq + Q_1(20)$	30%		
5/2 †		85	642 † 8 I%;	642 ↑ + Q₁(2 0)	I5%		
3/2+		13 5	`65I↑9 I%;	65 I \$ + Q (20)	3%;	660†+Q ₁ (22)	
II/2 ⁻		I90	505↑ 90%;	$505 + Q_{1}(20)$	7%		
5/2-		300	523↓88%;	521 + + Q1(22)	7%;	$523 \neq + Q_1(20)$	2%
3/2-	286,8	400	532 71%;	532 * +Q(20)	I2%;	5301 + Q1(22)	10%
I/2		400	530† 60%;	530 ↑ + Q,(20)	I5%;	532 ↓ + Q ₁ (22)	I3%
I/2	559,9	550	52I¥ 42%;	52 1 (+ Q,(22)	37%;	523¥+Q, (22)	I6%
3/2+	268,6	590	402 † 5 9%;	400 ‡ + Q,(22)	24%;	404¥ + Q1(22)	8%
I/2*	367,7	740	4004 64%;	402¥ +Q(22)	22%;	400 1 + Q ₁ (20)	10%
3/2+		850	65I † 3%;	651 † +Q ₁ (20)	95%;		
3/2-	592 , 6	980	52I 1 0,7%;	52 I ↑ +Q₁(20)	9 9%		
3/2-		9 9 0	532¥ II%;	532# +Q ₁ (20)	88%		

ТАБЛИЦА 14

Coordenad	Энергия основ-	Параметр				
COCTONER	полосы	A	B.	a		
κ ⁷⁷ [Νm ₂ Λ]	(кэв)	(кэв)	(эв)			
I	2	3	4	5		
3/2- [521]	0	II,7 I2,0	23,8 0	-		
3/2 ^{-`} [52I] _ß	592,6	11,6 11,0	-4.8 , 6 0	-		
1/2 [521]	559,9	13,5	0	+0,37		
I/2 ⁺ [400]	367,7	16,1	0	+0,24		
3/2* [402]	268,6	II,5	0			

Параметры вращательных полос в ягре 155Gd.

	and f pu		haula T cal b n		. 2 0					
дное состояние	Конечное состояние		Энергия Уровней	Классиф. перехода	[log (1t	z] α) 1] 3KCD.	fog	$\frac{(ft)_{i}}{(ft)_{i}}$	a, b) 1309.	
T; K; ^{\$7} ; [NmeA]	It Kt "I [Nma N]		(K3B)	JAN ARALA	Q =800k36	<i>Q</i> =1000 cc	7=0	L = 1	L =2	
1	2	в	4	5	9	2	8	6	10	
3/2 3/2 ⁺ [411]	3/2 3/2 [521]	0	0	14	0	0	0	0	0	
	5/2		60, 0	140	8 °0	6'0	×	0,18	-0,41	_
	7/2		146,0	$1^{*}\omega$	2,2	2,3	×	×	-0, 16	
 	3/2 3/2 ⁺ [402]	0	268,6	ah	0	0	0	0	0	_
	5/2		326,0	al	6,0	6' 0	×	0,18	-0,41	-
	7/2		1	2.10	. 1	1	×	×	-0,16	
 	3/2 3/2 ⁻ [521] _A	0	592,6	140	0	0	0	0	0	_
	5/2		647,8	14	-0,6	-0,3	×	0,18	-0,41	
	7/2		1	1*w	I	I	×	×	-0,16	

TABJNUA IS

Сравнение отношений приведенных вероятностей, полученных из эксперимента и расчитанных по правилам Алаги для ветвей электронного захвата ¹⁵⁵76 *Комици* на уговни влашательних полос в ¹⁵⁵71

Продолжение таблицы 15

10	()	()	()	()	() ()	c)
9	. 0	0,1	0,7	ö	0,1	0.7
80	Х	() ()	×	×	() ()	×
7	0	I*0	0,8	.0	0,3	ı
9	0	0	0,6	0	I ' 0	1
5	ah	ah	ah	1.	1,10	1,11/
4	367,7	427,4	488, 8	559,9	615,5	1
3 4	1 367,7	427,4	468,8	1 559,9	615,5	•
2 3 4	1/2 1/2 ⁺ [400] 1 367,7	3/2 427,4	5/2 488,8	1/2 1/2 ⁻ [521] 1 559,9	3/2 615,5	5/2 -

(a

 д - номер возбужденного состояния данной ротационной полосы.
- Для расчета [eg (ft),]; вор. использовались козффициенты Клебша -Кордана согласно / 54 /, L - мультипольность перехода. а) В

-данный переход запрецен правилами отбора по квантовому числу К ିତ

		_				_				_	_	_		_	_
L L	→I4,)	>I42)	теоретич.	۰ ۲	-										
травилам Алат	B(ot;I;	B(TL;I;-	эксперим.	6		0,15	1	0,89	1	70	1	8,1 ± 2,6			2,4
יווטיות' נסיולובפות היית נוס	- чи по ль –	ность – перехода	٩L	5	1 1 1	Е1	E1	E1	(E1)	E1	(E1)	E1	ł	(E1)	(E1)
	รม คุณ ส	-nepexod	(кэв)	4	86,5	26, 55	105,3	45,3	118,0	58,0	(235,1)	175,2	1	206,55	120,5
Teo peraconana nom	Нвантовые характе-	ристики конечного	YPOBHA TA [Nmy A]	. 3	3/2 3/2 ⁻ [521]	5/2	3/2 3/2 - " -	5/2	3/2 3/2" - " -	5/2	3/2 3/2" - " -	5/2	3/2 3/2 - " -	5/2	7/2
состояния 155 64 с	уровень	Квантовые характерис.	Ι; Κ; ^Ψ ;[Ν _m ,Λ]	2	5/2 +		3/2 +		3/2 5/2 7/2 +		3/2 +		5/2 +		
	Начальный	Энергия	(K3B)	1	86,5		105,3		118,0		235,2		266,6		

TABJNUA I6

% -переходов, Сравнение экспериментальных отношений приведенных вероятностей \mathcal{X}^* -переходов, разряжающих возбужденные уровни ¹⁵⁵ Gd на уровни вращательной полосы основного

6	I 0,66	1 0,66	I 1,43	н (1 2,57 1,4	I 1,43	1 0,96 1,8
9	I 0,3	I I,I ± 0,3	I I,0±0,3	H 1	I 4,6 ± I,3 ~ I,7	I 2,0 ± 0,6	I 0,98 ± 0,34 5,3 ± 1,8
ۍ.	E		LA EN	5	සි සි සි		ы (19) тя (19)
4	268 , 7 208,6	286 , 9 226 , 8	451,3 391,3	- -	592 , 8 532 , 5 447	615 , 5 555 , 4	648,I 588,2 501,8
ñ	3/2 3/2 ⁻ [52 1] 5/2	3/2 3/2 ⁻ [521] 5/2	3/2 3/2 ⁻ [521] 5/2	3/2 3/2 ⁻ [521] 5/2	3/2 3/2 ⁻ [521] 5/2 7/2	3/2 3 / 2 ⁻ [521] 5/2	3/2 3/2 ⁻ [521] 5/2 7/2
	[402]	[532]	[530]	[521]	[521]م ام	[52]	[521] 9
	3/2 3/2+	3/2 3/2	3/2 1/2	1/2 1/2	3/2 3/2 ⁻	3/2 1/2 ⁻	5/2 3/2
н	268,6	. 286 , 8	451,3	559,9	- 592 , 6	6I5 , 5	647,8

-

.

89

Продояжение таблици 16

Рис. 1. Схематическое изображение геометрии опыта по y - y - совпадениям.

Рис. 2. Блок-схема аппаратуры для измерения у-у-совпалений. D - Ge(Li) -детекторы, < -усилители, РА -зарядо чувствительные предусилители, А -амплитудные анализаторы, К -время-амплитудный конвертор, С -схема тоойных совпадений, МРА -многоканальный амплитудный знализатор, Х,Х', Y - подключение многоканального анализатора в зависимости от режима работы.

Рис. 3. Участки спектра конверсионных электронов Ть, измеряемые с помощью тороидайьного шестиза зорного β-спектрометра.

Рис. 4. Кривые эффективности регистрации электронов в β -спектрометрометрометрометрометрования и самона в режиме двукратной (а) и однократной (b) фокусировки.

Рис. 5. Участок спектра конверсионных электронов в ¹⁵⁵Τь, измејенный с помошью β-спектрометра типа π √2. Пунктирными линиями показаны соответс вующие компоненты спектра, полученные при разложении на ЭВМ.

Рис. 8. Спектр у -лучей ¹⁸⁶ Гь, измеренный с помощью коаксиального Ge(Li) -детектора с чувствительным объемом ~ 12 см³ (препарат III).

e.

Рис. О. Спектры е-у -совладений при распаде

.

Рис. 11. Спектры е - у -совпадений при раснаде

gewekwob N

demekmop N_e2

Рис. 12. Схематическое изображение регистрации у-у -совпадений.

Рис. 13. Спектры у -лучей ¹⁶⁶ Ть, полученные из анализа двукмерного слектра совладений у-лучей в облаети Е₁ = (80+230) ков с у -лучами в области Е_k = (80+230) ков. С-совћадения (у 86,5) (у Е,),

$$D = (\gamma 105,3)(\gamma E_i); E = (\gamma 148,6)(\gamma E_i);$$

$$F = (\gamma 162) (\gamma E_1); G = (\gamma 180)(\gamma E_1);$$

$$K = (\gamma 200 + \gamma 205)(\gamma E_1); L = (\gamma - 220)(\gamma E_1).$$

ственно. Показания шкалы относительного счёта, умноженные на 10, 3 10, 3 10, 3 10, -1 10° , 10° , 10^{-2} , 10^{-1} , 10^{-1} , 10° , дают счёт в импульсих для спектров, обозначенных индексами A, B, C, D, E, F, G, K и L, соответственно.

спектра соблагений у -лучей в области $E_i = (2304380)$ кэв с у -лучами в о јласти $E_k = (804230)$ кэв. В'-собладения (у 239,4) (у E_k^{+} ; С - (у 262,45 + у 268,7) (у E_k^{-}); D - (у 281 + у 36,9) (у E_k^{-}); Е - (у 321,8) (у E_k^{-}); F - (у 340) (у E_k^{-}); С - (у 367,6 + у 371,0) (у E_k^{-}); L - (у 86,5) (у E_1^{-}); M- (у105,3) (у E_1^{+}); N - (у162) (у E_i^{-}), O - (у 180) (у E_1^{-}).

Индексами А и К обозначены одиночные у -спектры вдоль оси "k" и "i", соответственно. Показания шкалы относительного счета, умиоженные на 10⁻⁷, 10⁻⁷, 10⁻⁴, 10⁻¹, 10⁻³, 10⁻¹, 10⁰, 10⁻⁵, 10⁻⁴, 10⁻¹, 10⁻³, дают счёт в импульсах для спектров, ' обозначенных индексами А, В, С, D, E, F, C, K, L, M, N и О соответс венно.

Рис. 16. Участок схемы Нильссона для ядер с нечётным числом нейтронов.

105

Рис. 18. Фрагменты схем уровней Gd, ¹⁵⁵ Gd.