

P6 - 3605

Ю.П.Попов, М.Стэмпинский

СПЕКТРЫ *Ф*-ЧАСТИЦ ПРИ РАСПАДЕ ВОЗБУЖДЕННЫХ СОСТОЯНИЙ ¹⁴⁸ Sm СО СПИНАМИ 3⁻ И 4⁻

1967,

MEAN

АБОРАТОРИЯ НЕЙТРОНИОМ

P6 - 3605

Ю.П.Попов, М.Стэмпинский

СПЕКТРЫ *а*-частиц при распаде возбужденных состояний ¹⁴⁸ Sm со спинами 3⁻ и 4⁻

Направлено " "Письма в ЖЭТФ"

Введение

Исследование спектров *а*-частиц в реакции (и, *а*) позволяет получить новые данные о структуре высоковозбужденных состояний ядер и новые характеристики *а*-распада. Наиболее интересным является, по-видимому, изучение вероятности образования *а*-частиц на поверхности ядра, характеризуемой приведенной шириной, для различных состояний составного ядра.

Исследования такого рода трудны и проводились до сих пор на тепловых нейтронах^{/1-5/}. Однако интерпретация таких данных часто неоднозначна из-за неопределенности квантовых характеристик возбуждаемых состояний. На резонансных нейтронах исследованы лишь полные *а* -ширины реакции^{/6,7/}.

В настоящей работе сообщаются первые результаты измерения спектров а -частиц в отдельных резонансах.

Методика и результаты измерения

Изучение спектров *а* -частиц в резонансах реакции ¹⁴⁷ Sm (n, *a*)¹⁴⁴ Nd проводилось на импульсном реакторе ИБР. Спектрометрия нейтронов осуществлялась по методу времени пролета. Спектры *а* -частиц измерялись с помощью двойной ионизационной камеры с сеткой с разрешением 200 кэв (для Е_{*a*} =4,2 Мэв). Импульсы с камеры анализировались двухмерным анализатором на магнитной ленте в режиме время-амплитуда. Мишенью служил слой обогащенного изотопа ¹⁴⁷ Sm (300 мкг/см²) общей площадью 1200 см².

В результате измерений были получены спектры ^а-частиц в резонансах с Е₀=3,4 эв и 18,3 эв, имеющих спины и четности Ј^ⁿ=3⁻ и 4^{-/8/} соответственно (рис. 1).

3

Обсуждение результатов

При захвате нейтронов с нулевым орбитальным моментом ядрами ¹⁴⁷ Sm образуются возбужденные состояния ядер ¹⁴⁸ Sm с $J^{\pi} = 3^{-}$ и 4^{-} . Поскольку α -переходы $4^{-} \rightarrow 0^{+}$ запрещены, то наличие α -перехода в основное состоязие дочернего ядра ¹⁴⁴ Nd (характеристики уровней ¹⁴⁴ Nd приведены в таблице) в резонансе 3,4 эв и отсутствие его в резонансе 18,3 эв подтверждают идентификацию резонансов по спинам, приведенную в работе^{/8/}, но противоречит идентификации Хейфетца и др.^{/2/}, основывающейся на косвенных соображениях.

Интересно отметить, что в измеренных нами спектрах а -переходы в наинизшие состояния не являются преобладающими, как это имеет место в традипионном а -распаде для четно-четных ядер.

В результате сравнения интенсивностей α -переходов в отдельные состояния были получены эначения приведенных парциальных ширин $\delta_{01}^2 = 2\pi \Gamma_{\alpha1} / P_1$, где P_1 - проницаемость ядерного барьера для α -частицы с энергией и орбитальным моментом, соответствующими данному переходу⁹. Для получения абсолютных значений $\Gamma_{\alpha1}$ использовались величины полных α -ширин $\Gamma_{\alpha} = \Sigma \Gamma_{\alpha1}$, измеренные в работе⁶.

Анализируя значения приведенных ширин реакции (см. таблицу), можно отметить следующие особенности:

1. Величины δ²₀₁ флуктуируют в эначительных пределах и в каждом резонансе независимо. Последнее связано с различием в природе исходных возбужденных состояний и указывает на несправедливость предположения, используемого обычно в анализе *α* -спектров при захвате тепловых нейтронов, о том, что величины δ²₀₁ одинаковы для разных возбужденных состояний.

2. Значения δ_{01}^2 для α -переходов в возбужденные состояния с F_{BO3} < 1,5 Мэв оказываются заметно меньше среднего расстояния между уровнями составного ядра, которому в среднем они должны равняться соглано статистической теории ($\delta_{CTAT}^2 = 0 = 14$ эв).

Отметим, что в реакции 149 Sm (п, а) на тепловых нейтронах $^{/5/}$ наблюдалось возрастание δ_{01}^2 (до значений $\delta_{CTAT}^2 = 6$ эв) для а-переходов на уровни дочернего ядра, расположенные выше энергии спаривания последних нейтронов.

4

Возможно, эти факты связа́ны с эффектом парных корреляций нейтронов сверх замкнутой оболочки N =82. Вель для а -распада в основное или возбужденные состояния с E _{воз} < E _{сп} необходимо образование в составном ядре не только а -частицы, но еще и спаренных нейтронов. Это должно привести к уменьшению велячин $\delta_{0,1}^2$ для переходов в состояния со спаренными нейтронами.

Можно отметить, что эффект парных корреляций нейтронов должен проявиться и в уменьшении экспериментальных значений Γ_{α} по сравнению с рассчитанными по статистической теория, что наблюдалось для изотопов ¹⁴⁷ Sm ¹⁴⁹ Sm /10/

Для более высоких резонансов статистика отсчетов оказалась недостаточной для анализа спектров а -частиц, однако наличие а -перехода в основное состояние в резонансе 27,1 эв говорит о том, что спин этого резонанса равен 3⁻.

В заключение авторы приносят свою благодарность Ф.Л. Шапиро за интерес к работе, К.Г.Родионову, Е.И. Нечаевой, Р.Ф.Руми, А.В.Грачевой, Й. Томиковой за помощь в проведении эксперимента.

Литература

- 1. R.D.Macfarlane, I.Almodovar . Phys. Rev., 127, 1665 (1962),
- 2. E.Cheifetz, J.Gilat et al. Phys. Lett., 1, 289 (1962),
- 3. В.Н. Андреев, С.М. Сироткин. Ядерная физика, 1, 252 (1965).
- F. Poortmans, H.Ceulemans, J.A.Deruiter, M.Neve Mevergnies Nucl. Phys., 82, 331 (1966).
- 5. N.S.Oakey, R.D.Macfarlane. Phys. Lett., 24B, 142 (1967).
- 6. I.Kvitek, Yu.P.Popov. Phys. Lett., 22, 186 (1966).
- 7. И. Квитек, Ю.П. Попов. Письма в ЖЭТФ 5, 365 (1967).
- 8. Neutron Cross Sections. BNL-325 . II Edition. Washington (1966).
- А.Ф. Дадакина. Бюллетень Информационного центра по ядерным данным, № 3, стр. 226. Атомиздат 1967.
- Ю.П. Попов, П. Квитек, М. Стэмпинский. Contributions International Conference on Nuclear Structure. 7 – 13 Sept. 1967. Tokyo, Japan, p.311.

Рукопись поступила в издательский отдел 28 ноября 1967 г.

5

Таблица

Характеристики	уровней	дочернего	ядра и	приведенные	вероятности
а -переходов	на эти у	ровни в ре	закции	¹ ⁴ Sm (n,α) ¹⁴⁴	Nd

Е воз.	. I [#]	E _o =(Е _о ≈3,4 эв; Ј [″] =3		Е _о = 18,3 эв; Ј [#] =4				
Мэв		Na	Ган мкэв	$\delta_{01}^2 \xrightarrow{XX}_{3B}$) _{Na}	Г _{аі мкэв} х)	$\delta_{0i \ \Im B}^2 xx$		
0	0+	627	0,70 <u>+</u> 0,03	1,6 <u>+</u> 0,1	_	-	-		
0,696	2 ⁺	716	0,80 <u>+</u> 0,03	5,2 <u>+</u> 0,2	78	0,05 <u>+</u> 0,02	1,0 <u>+</u> 0,4		
1,31	4 ⁺	98	0,11 ^{+0,05} -0,08	7,2 ^{+3,3} -5,2	170	0,11 <u>+</u> 0,02	7,2 <u>+</u> 1,2		
1,50 1,56	(3) 2 ⁺	197	0,22 <u>+</u> 0,0ö	12 <u>+</u> 3	62	0.04 <u>+</u> 0,02	3,2 <u>+</u> 1,6		
2,29	4 ⁺	~ 35	0,04 <u>+</u> 0,03	100 <u>+</u> 80	≈ 10	0,007 <u>+</u> 0,006	26 <u>+</u> 22		
2,37	2 ⁺								

х) Для неразрешенных по энергии переходов на уровни 1,50-1,56 Мэв и 2,29-2,37 Мэв приводятся суммарные ширины.

xx) Для неразрешенных переходов указаны средние приведенные ширины. Указанные в таблице ошибки не включают ошибки нормировки.

Рис. 1. На рисунке представлены энергетические спектры *а*-частии при распаде возбужденных состояний ¹⁴⁸ Sm со спинами и четностями Jⁿ = S и 4⁻ (нейтронные розонансы с E₀ = 3,4 эв и 18,3 эв, соответственно). Нижняя кривая характеризует фон, измеренный в промежутке между указанными резонансами. Под энергетической шкалой для *а*-частии приведено положение энергетических уровней дочернего ядра¹⁴⁴ Nd, на которые происходит *а*-распад.