A-139

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Million

Дубна

P6 · 3496

AP, 1968, T. 8, Ban. 4 C. 633-638

AASOPATOPHAS SAERBUX RPOGAEM

А.А. Абдуразаков, К.Я. Громов, Ж.Т. Желев, В.Г. Калинников, Я. Липтак, У,К. Назаров, Я. Урбанец

О СХЕМЕ РАСПАДА¹⁵⁸ Er

1967,

P6 - 3496

А.А. Абдуразаков, К.Я. Громов, Ж.Т. Желев,

В.Г. Калинников, Я. Липтак, У.К. Назаров,

Я. Урбанец

о схеме распада¹⁵⁸ Er

Направлено в ЯФ

5386/3 np.

Абдуразаков А.А., Громов К.Я., Желев Ж.Т., Р6-3496 Калинников В.Г., Липтак Я., Назаров У.К., Урбанец Я.

О схеме распада ¹⁵⁸ Ег

Исследованы спектры гамма-лучей, конверсионных электронов и β^{*}распад ¹⁵⁸ Ег . Обнаружены новые гамма-переходы 270, 294,1 и 341,6 кэв. Вводятся новые уровни в схеме распада ¹⁵⁸ Ег с энергиями 160,3кэв (2[°]), 408,9 кэв (1[°]), 425,6 кэв (1[°]). Определены мультипольности переходов 386,9 кэв, 358,3 кэв и 341,6 кэв. Оцениваются мультипольности некоторых других гамма-переходов.

Установлены квантовые характеристики уровней с энергиями 67,2 кэв (2) и 454,2 кэв (1). Определена разность масс ядер ¹⁵⁸ Ег и ¹⁵⁸ Но (1860 + 60 кэв). Обсуждается схема распада ¹⁵⁸ Ег

Препринт Объединенного ниститута ядерных исследований. Дубна, 1987.

Abdurazakov A.A., Gromov K.Ya., Zhelev Zh.T., P6-3496 Kalinnikov V.G., Liptak J., Nazarov U.K., Urbanec J.

On the Decay Mode of 188 Er

Gamma-ray and conversion electron spectra, and β^+ -decay of ¹⁶⁸Er are investigated. New y-transitions of 270 $_{
m R}$ 294.1, and 341.6 keV are observed. New levels of energies 160.3(2), 408.9 keV(1⁺), and 425.6 keV(1) are introduced into the decay mode of ¹⁶⁸Er. The multipolarities of transitions are determined to be 386.9, 358.3, and 341.6 keV. The multipolarities of some other y-transitions are estimated .

Quantum characteristics of 67.2 keV(2) and 454.2 keV(1) levels are determined. The mass difference of ^{158}Er and $^{168}\text{H}_{\circ}$ nuclei is found to be (1860+60 keV).

The decay mode of ¹⁵⁸ Er is discussed.

Preprint. Joint Institute for Nuclear Research. Dubna, 1967.

В настоящее время число экспериментальных и теоретических работ, посвяшенных изучению возбужденных уровней нечетно-нечетных ядер, очень ограниченно. Поэтому представляет интерес получить экспериментальные данные о схеме распада ¹⁵⁸ Ег.

Изотоп эрбия с массовым числом A = 158 был открыт в Дубне Днепровским /1/ при изучении продуктов облучения Та-мишени протонами с энергией Ep =660 Мэв. Сведения о распаде ¹⁵⁸ Er были получены в последующие годы при изучении спектра конверсионных электронов и позитронного излучения в работах ^{/2,3,4,5/}. Было установлено изомерное состояние дочерного ¹⁵⁸ Но с энергией 67,2 кэв. Периоды полураспада ¹⁸⁸ Er (T_{1/2}=2,3 ± 0,1 ч), изомерного (T_{1/2} = 27 мин) и основного (T_{1/2} = 10,9 ± 0,6 мин) состояний ¹⁸⁵ Но наиболее точно были измерены Стенстремом и Юнгом ^{/5/}. В указанных работах были разногласия в определении квантовых характеристик основного и изомерного состояний ¹⁵⁸ Но . Экспериментальные исследования распада

¹⁵⁸ Ег до настоящего времени практически ограничивались изучением спектра конверсионных электронов. Только в недавней работе Легарда и др. /6/ изучался у -спектр разделенного изотопа ¹⁵⁸ Ег на сцинтилляционном у -спектрометре.

В настоящей работе, наряду с исследованием спектра конверсионных электронов, проведено изучение у -лучей и позитронного излучения, возникающих при распаде¹³⁸ Ег . Обнаружены новые У -переходы с энергиями 270, 294,1 и 341,6 кэв. Вводятся новые уровни с энергиями 160,3 кэв (2⁻), 408,9 кэв (1⁺) и 425,6 кэв (1⁻). Устанавливаются квантовые характеристики уровней 67,2 кэв (2⁻) и 454,2 кэв (1⁻). Определены мультипольности переходов 386,9, 358,3 и 341,6 кэв. Оцениваются мультипольности некоторых других у - переходов.

Экспериментальные результаты

Спектр у-лучей ¹⁸⁸ Ег исследовался при помощи у -спектрометра с Ge(Li) детектором. При изучении у -спектра был использован детектор с чувствительным объемом 5 см³ и разрешающей способностью на линии 1332 кэв ⁶⁰ Со около 5 кэв. Регистрация у -лучей производилась с помощью 2048-канального амплитудного анализатора. Для определения относительных интенсивностей у-лучей использовалась кривая эффективности детектора, которая была получена по у -лучам ^{22,24} Na,⁴⁶ Se и ¹⁶⁹ Yb. Погрешность в определении интенсивностей у -линий, вносимая при этом, была не более 10%.

Источником служила фракция эрбия, полученная в результате глубокого расщепления тантала протонами с энергией 660 Мэв. Облучение проводилось в течение 2 часов. Фракция Er выделялась хроматографически. Измерения начинались обычно через 2,5 часа после приготовления источников – с тем, чтобы исключить вклад короткоживущих изотопов эрбия, а также и их дочерних активностей (¹⁸⁹ Er <u>38 мин.</u>¹⁸⁹ Но <u>33 мин.</u>¹⁸⁹ Dy ¹⁵⁷ Er <u>24 мин.</u> ¹⁸⁷ Но <u>187</u> Dy).

Гамма-спектр изучался в области энергии 50 + 3000 кэв. В спектре, снятом в таких условиях, наблюдались у -лучи, возникающие при распаде¹⁶¹ Er, ¹⁵⁸ Er и их дочерних изотопов, а также очень слабо проявились сильные У -переходы ¹⁶⁹ Er , ¹⁵⁹ Ho и ¹⁶⁰ Er + ¹⁶⁰ Ho. При идентификации У -лучей ¹⁵⁸ Er мы принимали во внимание оценки периодов полураспада У -линий и литературные данные^{/6-10/} об изотопах, которые помимо ¹⁵⁸ Er присутствовали в нашем препарате.

Спектр конверсионных электронов эрбиевой фракции исследовался на трех бета-спектрографах с постоянным магнитным полем $^{/11/}$. Градуировка по энергиям производилась по конверсионным линиям 160 Но, энергии которых измерены с точностью = 0.02% $^{/12-14/}$. Точность наших определений энергий линий конверсионных электронов 168 Er была не хуже 0.05%. Источники для бета-спектрографов готовились методом электролитического осаждения $^{/15/}$ на платиновую проволочку диаметром 0.1 мм. Электроны регистрировались фотопластинками типа Р - 50 мк. Инстенсивности конверсионных электронов определялись методом, описанным в работе $^{/16/}$. Исследовался спектр электронов внутренней конверсии в интервале энергии от 20 до 2000 кэв при разрешающей способности приборов

0,05%. Опенивая скорость убывания интенсивности линий конверсионных электронов в последовательно экспонированных фотопластинах, мы могли отобрать линии, интенсивность которых убывала с периодом полураспада (T_{1/2} = 2,3±0,1час). Конверсионные электроны, возникающие при распаде дочернего ¹⁵⁸Но, исключались по разности K, - L₁, - L₁₁, -L₁₁₁-линий, а также по данным работы /10/, которая была выполнена на том же бета-спектрографе.

Полученные данные приведены в табл. 1 и 3. Шкала интенсивностей у -переходов выбрана так, чтобы отношение l_k / l_y для перехода 218, 2 кэв ¹⁵⁸ Но, который находился в равновесии с¹⁵⁸ Ег. равнялось теоретическому значению a_k для перехода типа Е2. Сравнивая экспериментальные отношения l_k / l_y для других переходов с теоретическими значениями a_k /17/, мы определили мультипольности некоторых переходов в ядре¹⁵⁸ Но (табл. 3). В табл. 1 и 3 для переходов 314,9 и 294,1 кэв дается предел интенсивностей у -лучей, так как они совпадают с У -переходами ¹⁶¹ Ег с энергиями 314,9 и 295,5 кэв. Гамма-переходы 310,8 и 248,6 кэв совпадают с сильными линиями ¹⁵⁹ Но, вклад которых был учтен. Переходы с энергиями 76,3; 89,7 и 93,05 кэв в У -спектре проявились очень слабо. Интенсивность У -лучей этих переходов была подсчитана по интенсивностям конверсионных линий с использованием теоретических значений коэффициентов конверсии a_k (M1)

Сравнением экспериментальных отношений интенсивностей L₁, - L₁, -- L₁₁ конверсионных линий с теоретическими значениями коэффициентов конверсии были определены мультипольности у -переходов 67,2 и 71,9 кэв (табл. 2).

Позитронное излучение ¹⁵⁸ Fr было исследовано на спектрометре с двойной двухкратной фокусировкой пучка на угол $\pi\sqrt{2}$. Источником служила фракция эрбия, выделенная из Та -мишени через 4 часа после конца облучения. Источник приготовлялся методом выпаривания фракции эрбия на алюминиевую подложку размерами 0,8 x 15 мм толщиной 5 мк. Измерения начинались через час после конца разделения. За это время короткоживущие изотопы Fr

 $(T_{160}^{2} \leq 30 \text{ мин})$ распадались практически полностью. Был учтен малый вклад $f_{160}^{2} = 4^{160}$ но в β^{+} -спектре. Обнаружены 4 компоненты β^{+} -излучения с граничными энергиями 1300 \pm 30; 1850 \pm 25; 2890 и 700 \pm 60 кэв, интенсивность которых убывала с периодом полураспада $T_{1/2} = (2.4 \pm 0.2)$ час. Компоненты с граничными энергиями 1300, 1850 и 2890 кэв, как было показано в рабонте $f_{10}^{10/2}$, относятся к распаду ¹⁵⁸но. Компонента β^{+} -спектра $E_{rp} = 700\pm60$ кэв

леньалежит распаду ¹⁵⁸ Ft . Относительные интенсивности позитронов для компонент 1300 и 700 кав составляют 1 : 0,15 соответственно.

обсуждение результатов. Схема распада на

уровни с малыми спинами.

Основное состояние $\frac{155}{68} \mu_{90}$, жак и у всех других чётно-чётных ялер, имеет квантовное состояние $\frac{155}{68} \mu_{90}$, Характеристики основного состояния $\frac{155}{67} \mu_{00}$, можно определить по правилу Галлахера-Мошковского, согласно которому они должны быть 5⁺, если 67 и 91 нейтрон находятся в состояниях $p 7/2 \ [523] + a 3/2 \ [521] \ B работе /10/ было установлено, что основной уролень$ $<math>15^{4} \mu_{0}$ имеет именно эту структуру. В данном случае β -распад в основное $15^{4} \mu_{0}$ колест именно эту структуру. В данном случае β -распад в основное $15^{4} \mu_{0}$ колест имеет имеет имеет имеет и распад $15^{6} \mu_{10}$ (66) $15^{6} \mu_{10}$ сильно эту структуру. В данном случае β -распад в основное $15^{6} \mu_{0}$ сильно запрешен и распад $15^{6} \mu_{10}$ согласно существляться через

Для выяснения спина изомерного уровня необходимо определить мультипольность перехода 67,2 кав. Из табл. 2 следует, что вероятная мультипольность этого перехода ¹³. Данное определение не является строгим, так как для этой анергии отношения теоретических козффициентов конверсии на подоболочлают и установита теоретических козффициентов конверсии на подоболочдают и установить квантовые характеристики изомерного состояния затруднитольно. Обратимся к экспериментальным фактам, которые дают возможность установить спин и чётность изомерного уровня.

Мультипольность F2 перехода 67,2 кэв исключается тем, что трудно ожидать изомерный переход типа F2 с такой энергией. Остается две возможности: изомерный переход типа F4 (квантовые характеристики уровня 67,2 кэв - 1⁺) или -E3 (характеристики уровня 2⁻).

Если слин и чётность изомерного уровня — 1^{*}, то существует только одна возможность для их объяснения, а именно : р 7/2 ⁻ [523] – a 5/2 ⁻ [523] . В этом случае β -распад с основного состояния ¹⁵⁸F1 на изомерный уровень ¹⁵⁵ II, и с снего в основное состояние 158 Dy был бы разрешенным незадержаниым (log ft = 4,6 - 4,8). Это означало бы, что с этого состояния должны обыли бы разрешенным незадержанраспаде изомерного состояние ¹⁵⁸ Dy был бы разрешенным незадержан- 155 II, и с него в основное состояние 158 Dy был бы разрешенным незадержанпым (log ft = 4,6 - 4,8). Это означало бы, что с этого состояния должны распаде изомерные 158 D, то с этого состояния должение β -перехсды. Между тем при состояние 156 Dy /10/.

При распаде¹³⁸ Ег интенсивность у -перехолов (табл. 1) на уровень 67,2 кэв (рис. 1) примерно равна полному числу распадов изомерного (67,2кэв) состояния¹⁵⁸ По /10/, т.е. заметного β -распада¹⁵⁵ Ег на изомерный уровень¹⁵⁸ По не наблюдается. Таким образом, спин и чётность 1⁺ для уровня 67,2 кэв исключаются. По тому можно считать установленным, что изомерный переход имеет мультипольность ЕЗ и квантовые характеристики основного и наомерного состояний¹⁵⁸ По должны быть 5⁺ и 2⁻ соответственно.

Фактор торможения, вычисленный на основании экспериментальных данных с использованием теоретических значений коэффициентов конверсии, равен:

$$F_{\text{TOPM}} = \frac{B_{\text{SKCH}}(E3)}{B_{\text{SKCH}}(E3)} = 1.5 \cdot 10^4$$

Характеристики изомерного уровня могут быть образованы следующими протон-нейтронными состояниями р 7/2 $[523] - n 3/2^+ [651]$, р 1/2 [411] + n 3/2 [521] и р 1/2 [411] - n 5/2 [523]. Высвечивание первых двух происходит путем одночастичного перехода, фактор торможения для вероятности которого не должен быть так велик. Эти соображения позволяют приписать изомерному уровню с энергией 67,2 кэв конфигурацию р 1/2 [411] - n 5/2 [523], и изомерный переход может быть объяснен изменением состояний двух частиц р 1/2 [411] + p 7/2 [523] и n 5/2 [523] + n 3/2 [521].

Предполагаемые квантовые характеристики уровия 143,5 кэв (2⁻) могут рассматриваться как р 7/2⁻ [411] - в 3/2⁺ [651].

Из мультипольности перехода 71,9 кэв (табл. 2) следует, что характеристики уровня 139,1 кэв 1⁻; 2⁻; 3⁻; спины 2 и 3 исключаются из-за большой заселенности (~ 78%) и малой величины fog ft = 5,6. Такое состояние может иметь следующую структуру:

$$p \frac{1}{2} + [411] - n \frac{3}{2} - [521]$$
.

Характеристики уровня 160,3 кэв (2⁻), возможно, образованы этими же протоном и нейтроном в состоянии р 1/2⁺ [411] + в 3/2⁻ [521].

В схеме распада ¹⁵⁸ Ег предполагаются уровни с энергиями 408,9 кэв (1⁺), 425,6 кэв (1⁻) и 454,3 кэв (1⁻). Величина log ft и процент заселенности указанных уровней приведены на рис. 1.

В работе Легарда и др. $6 k_{\rm bin}$ был введен предположительно уровень 1045кав, который работе Легарда и др. $6 k_{\rm bin}$ был введен предположительно уровень 1045кав, который разряжается двумя переходами, 906 и 977 кав, на уровни 67,2 кав (2) и 139,1 кав (1[°]). Эти переходами, 906 и 977 кав, на уровни 67,2 кав (2[°]) и 139,1 кав (1[°]). Эти переходами, 906 и 977 кав, на уровни 67,2 кав (2[°]) и 139,1 кав (1[°]). Эти переходами, 906 и 977 кав, на уровни 67,2 кав (2[°]) и 139,1 кав (1[°]). Эти переходами, 906 и 977 кав, на уровни 67,2 кав (2[°]) и 139,1 кав (1[°]). Эти переходами, 906 и 977 кав, на уровни 67,2 кав (2[°]) и 139,1 кав (1[°]). Эти переходами, 906 и 977 кав, на уровни 67,2 кав (2[°]) и 139,1 кав (1[°]). Эти переходами, 906 и 977 кав, на уровни 67,2 кав (2[°]) и 139,1 кав (1[°]). Эти переходами, 906 и 977 кав, на уровни 67,2 кав (2[°]) и 139,1 кав (1[°]). Эти переходами, 906 и 976 кав и 139,1 кав (1[°]). Эти переходами, 906 и 976 кав и 139,1 кав (1[°]). Эти переходами, 906 и 976 кав и 135 кав (1[°]). Эти переходами, 906 и 976 кав и 136,1 кав (1[°]). Эти переходами (2[°]) и 139,1 кав (1[°]). Эти переходами (2[°]) и 139,1 кав (1[°]). Эти переходами (2[°]) и 139,1 кав (1[°]). Эти переходами (1[°]) и 138,1 кав (1[°]). Эти переходами (1[°]) и 138,1 кав (1[°]). Объта (1[°]) и 138,1 кав (1[°]) и 138,1 кав (1[°]). Эти перехода (1[°]) и 138,1 кав (1[°]

Обнаруженная компонента позитронного излучения ($E_{p} = 700\pm60$ хав) по периоду полураспада ($T_{1/2} = 2,4 \pm 0,2$ час) может принадлежать пибо ¹⁵⁸ Fz, побо дочернему¹⁵⁸ Ho. Однако эту компоненту нельзя приписать распаду ¹⁵⁸ Ho. Однако эту компоненту с полжен был бы наблюдаться позбужденный уровень ¹⁵⁸ Dy с очень большой заселенностью и энергией око-

Большая интенсивность заселения уровня 138,1 кэв позволяет считать, что наблюденная позитронная компонента связана с распадом на этот уровень.

Действительно, вычисленное при этом предположении отношение интенсивно-

стей электронного и позитроннного распада равно 180. Полученное теоретически отношение - 120, т.е. эти значения в пределах точности (точность определения интенсивности позитронов невелика - ±50%) совпадают. Энергия распада¹⁵⁸Er + ¹³⁸Ho тогда равна (1360 ± 60) кэв.

Результаты изучения у -спектра позволяют сделать заключение, что суммарная интенсивность у -лучей выше 400 кэв не превышает 2% от полного числа распадов ¹⁵⁸Ег. В схему распада не размешены переходы с энергиями 195,4 и 239,0 кэв, интенсивность которых составляет около двух процентов на распад ¹⁵⁶Ег.

ваутваэтиЦ

N.С.Днепровский. Атомная энергия, <u>В</u>. 46 (1960).
 К.Я.Громов, И.С.Днепровский. Изв. АН СССР, сер. физ., <u>25</u>, 1105 (1960).
 А.А.Абдурезаков, К.Я.Громов, Б.С.Джелепов, В.А.Халкин. Изв. АН СССР, сер. физ., 25 (1960).

- N.A.Bonch-Osmolovskaya, B.S.Dzhelepov, O.E.Kraft and Young Yu Wang, Nucl.Phys., <u>27</u>, 581 (1961).
- 5. T.Stenstrom and Jung. Nucl. Phys., <u>64</u>, 209 (1965).
- 6. P.Lagarde, I.Treherne, A.Gizon, J.Valentin. J. de Phys., 27, 116(1966).
- 7. К.Я.Громов, Ф.Н.Мухтасимов. Ядерная физика, 4, 1102 (1966).
- А.А.Абдуразаков, К.Я.Громов, В.В.Кузнецов, Ма Хо Ик, Г.Музиоль, Ф.Молнар, А.Молнар, Ф.Мухтасимов, Хань Шу-Жунь. Ядерная физика, <u>1</u>, 951 (1965).
- Бонч-Осмоловская, Я.Врзал, Е.П.Григорьев, Я.Липтак, Я.Урбанец. Препринт ОИЯИ, Р-2817, Дубна, 1966.
- А.А.Абдуразаков, Я.Врзал, К.Я.Громов, Ж.Т.Желев, В.Г.Калинников, Я.Липтак, Ли Сон Гыя, Ф.И.Мухтасимов, У.К.Назаров, Я.Урбанец. Материалы Х совешания по ядерной спектроскопии и теории ядра. Препринт ОЯИЯ, Р6-3404, Дубна, 1967.
- А.А.Абдуразаков, Ф.М.Абдуразакова, К.Я.Громов, Б.С.Джелепов, Г.ЯУмаров.
 Изв. АН УзССР, серия физ-мат наук, <u>3</u>, (1961).
- A.Backstrom, I.Lindskog, O.Bergman, E.Bashady, A.Backlin, Arkiv. Fys., <u>15</u>, 121 (1959).
- 13. G.T.Ewan, R.L.Graham, I.S.Geiger. Nucl. Phys., 22, 610(1961).
- 14. F.Boehm, I.Rogers. Nucl. Phys., <u>41</u>, 553 (1963).
- 15. А.Ф.Новгородов, В.А.Кочетков, М.А.Лебедев, В.А.Халкин. Радиохимия, <u>6</u>, 73 (1963).
- А.А.Абдумаликов, А.А.Абдуразаков, Ф.М.Абдуразакова, К.Я.Громов, Г.Я.Умаров. Изв. АН УЗССР, серия физ- мат. наук, <u>1</u>, 37 (1962).
- 17. Гамма-лучи. Под редакцией Л.А.Слива. Изд. АН СССР, 1961, стр 400.
- 18. C.I.Gallangher, S.A.Moszkowski. Phys.Rev., <u>11</u>1 1282 (1959).

Рукопись поступила в издательский отдел 5 сентября 1967 года.

Еу кэв	K	L,	L,,	٨,,,	۶M	Ń	<u>Ī</u> ,	I полный	
67,20	-	< 300	6000	6000	3000	800	-	16100	
7 I, 90	I 3000	1400	IIO	17	200	80	2200	17000 <u>+</u> 3000	
76,30	I200	слож.	слож.	слож.	слож.	-	250	1600	
89,70	400	40	слаб.	-	-	-	I 3 0	580	
93,05	500	слож.	-	-	-	-	I 80	740	
94 , IO	слож.	-	-	-	-	-	-	-	
195,4	80	12	~3	-	~3	-	230	330	
239,0	20	~3	-	-	-	-	90	I 15	
248,6	≼20 (слож)	-	-	-	-	-	400	420	
270,0	-	-	-	-	-	-	~60	~ 60	
286,5	6	слаб.	-	-	-	-	~ 60	~ 66	
294,I	3	-	-	-	-	-	≼ 40	≼ 43	
310,8	35	4	-	-	-	-	350	390	
314,9	слож.	-	-	-	-	-	≲ 90	90	
34I,6	3	-	-	-	-	-	250	253	
358,3	25	3	-	-	-	-	300	330	
386,9	65	IO	~2	-	3	-	1000	1080	
218,2	1000 ^{*}						8000		

ТАБЛИЦА І

Энергия и относительные интенсивности гамма-лучей и электронов внутренней конверсии ¹⁵⁸Ег.

Примечание: ж - интенсивность К-218,2¹⁵⁸Но, находящаяся в равновесии с ¹⁵⁸Er, принята за 1000 ед. и нормировка произведена по козффициенту конверсии Е2-перехода этой линии. слож. - линия сложная; слаб. - линия слабая.

Таблица 2

	Определени	е мультипол	ьности	ү - пер	еходов п	ри распа;	де	¹⁵⁸ Er			
Энергия перехода (кэв)	Цетод определе- ния мульти- польности	Эксперим. значения	EI	Te E2	<u>оретичес</u> : ЕЗ	<u>кие знач</u> Е4	ения ШІ	112	MЗ	314	<u>Зывод</u> о мультиполь – ности
67,2	L,: L, L, : L,	<0,05 1,0 <u>+</u> 0,2	3,0 0,8	0,04 0,9	0,016 0,97	0,014 1,20	12 <u>,</u> 6 5,8	9,7 0,35	7,2 0,09	5,5 0,05	23
71,9	Li: Lii Lii: Liii	12,7 <u>+</u> 3 6,5 <u>+</u> 2	3,I 0,79	0,04 0,9	0,0I6 I,00	-	12,6 5,9	9,4 0,39	6,92 0,10	-	MI

 F.	T	I	.10300011	Энвод о муль-			
КЭВ	TK		эксп. ДІ	52	.11	i La	типольности
67,2							E3
71,90	I3000	5500	5,9 0,615	2,10	5,90	64,0	.11
76,30	1200	250	4,8 0,530	I , 87	4,76	62,0	(III)
89 , 70	400	I30	3,0 0,350	I,30	3,00	29,0	(211)
93,05	500	180	2,7 0,320	£,20	2,75	24,5	(111)
94 , IO	слож.	-		~ ~	-	-	
I95 , 4	03	230	0,35 ± 0,1 4,6.10 ⁻²	I,73.IO	3,4.10	1,7	11In
.:39,4	20	90	0,2 ± 0,07 2,7.10 ⁻²	9 ,5.IO	I,9.IO ⁻¹ ,	6,5.IO ⁻¹	`II
248 ,6	≼ 20	400	≼ 0,05 2,5.10 ⁻²	8,8.10 ⁻¹¹	1,75.10 ⁻¹	7,9.10 ⁻¹	$(\mathbb{D}_{\mathbf{L}})$
270,0	-	~60	· · ·	-	-	-	
286,5	6	~60	~ 0,I I,75.10 ⁻²	6,0.10 ⁻²	1,17.10 ⁻¹	4,6.10	· · · · ·
294,I	3	≤ 40	≥0,075 I,6 .10 ⁻²	5,5.10 ⁻²	I,06.IO ⁻¹	4.L.IO ⁻¹	
3I0 , 8	35	350	0,I <u>+</u> 0,03 1,4 .IO ⁻²	4,8.10-2	9,3 .IO ⁻²	3,6.10	
3I4 , 9	слож.	≼ 90	-	-	-	- ' '	
341 , 6	3	250	0,012 <u>+</u> 0,004 1,0.10 ⁻²	3,6.10	7.I.IO ⁻²	2,8.10)⊥
356 , 3	25	300	0,08+0,03 9,9.10 ⁻³	3,1.10 ⁻²	6,5.IO ⁻²	2,4.10 ⁻¹	
386,9	65	0001	0,65 <u>+</u> 0,02 ε,4.IO ⁻³	2 ,5. 10 ⁻²	5,3.10 ⁻²	1,9.IO ⁻¹	····
H	IPIEEMAHIE:	переход указанн	ы 76,30;89,70;93,05 кэв в у ых переходов были подсчитаны	- спектре пре из теоретиче	оявились оче: ского значен	нь слабо, по ил поэўўнцие:	этошу І _ў нтов

Таблица З

Цультипольности некоторых переходов в ядре 158 но.

конверсии в предположении, что они имеют мультипольность (Ш).

کر ا

Рис. 1. Схема распада ¹⁵⁸ Ег.