3494

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

in the second

Дубна

P6 · 3494

Эка. чит. зал

И. Бачо, Д.Д. Богданов, Ш. Дароци, В.А. Карнаухов, Л.А. Петров

> ИЗМЕРЕНИЕ β⁺ - р -СОВПАДЕНИЙ ДЛЯ ИЗЛУЧАТЕЛЯ ЗАПАЗДЫВАЮЩИХ ПРОТОНОВ **Т**е¹¹¹

P6 - 3494

И. Бачо, Д.Д. Богданов, Ш. Дароци, В.А. Карнаухов, Л.А. Петров

ИЗМЕРЕНИЕ В⁺ - р -СОВПАДЕНИЙ ДЛЯ ИЗЛУЧАТЕЛЯ ЗАПАЗДЫВАЮЩИХ ПРОТОНОВ **те**¹¹¹

Направлено в ЯФ и в Nucl. Physics

1. Введение

В наших предыдущих работах исследовались излучатели запаздывающих протонов с периодами полураспада (4,3+0,2) сек и (19,5+0,5) сек; которые получались при облучении молибдена ионами неона и палладия ионами углерода. Эти излучатели были идентифицированы как Te¹⁰⁹ и Te¹¹¹ /1-3/. Те же самые протонные активности наблюдались и исследовались Макфарланом /4/.

В нашей работе ^{/2/} был проведен расчет усредненной формы протонного спектра. Расчетный спектр хорошо описывает экспериментальный для Te¹¹¹ в предположении, что <M²> ρ = const , где <M²> – усредненный квадрат матричного элемента β^+ – перехода, ρ – плотность уровней дочернего ядра со спинами и четностями, отвечающими разрешенному переходу. Сравнение расчетного спектра и экспериментального позволило определить максимальную энергию запаздывающих протонов (E_{pmax}) для Te¹¹¹. Для величины E_{pmax} справедливы следующие соотношения:

$$E_{pmax} = Q_0 - B_p = M_1(Z,N) - M_2(Z-2;N+1) - m_{H_2}(I)$$

где Q_0 – полная энергия β^+ – перехода, ^{x)} B_p – энергия связи протона в дочернем ядре, M_1 и M_2 – массы исходного и внучатого атомов (в нашем случае это Te¹¹¹ и Sn¹¹⁰), m_H – масса водорода.

Таким образом, экспериментальное определение E_{р max} дает величину M₁-M₂, которая может быть использована для проверки правильности предсказаний на основе различных полуэмпирических формул для масс ядер. Это было сделано для Te¹¹¹ в^{/2/}.

x) Q₀ - равно энергии К - захвата.

Нам представляется полезной утилизация спектров запаздывающих протонов для проверки расчетов по массовым формулам в области ядер с большим нейтронным дефицитом. Сейчас известно несколько различных подходов для описания массы ядра. Различия между ними в области изотопов, близких к дорожке стабильности, незначительны и не могут быть основанием для предпочтения одной формулы другим. Однако по мере удаления от дорожки стабильности тонкие детали становятся более заметными. Таким образом, только проверка в области значительного нейтронного дефицита позволит выбрать формулы для наиболее корректного предсказания энергий связи и распада ядер с избытком протонов.

В настоящей работе величина $Q_{,0} - B_{,p}$ определена для пары Те¹¹¹ – Sb¹¹¹ путем измерения спектра протонов в совпадении с позитронами. Суть метода заключается в сдедующем. Запаздывающие протоны появляются в результате разрешенного позитронного распада и К-захвата в протоннонестабильные состояния. Введение β^+ - р -совпадений выделяет только позитронную ветвь перехода. Известно, что для разрешенного β^+ -перехода $\frac{W_k}{W_{\beta^+}}$ -отношение вероятностей К-захвата и β^+ -распада не зависит от ядерных матричных элементов, а целиком определяется энергией перехода Q при фиксированном Z.

Это означает, что отношение интенсивностей протонов с данной энергией в совпадении с позитронами и без совпадений будет равно

$$N_{\beta_{\mathfrak{p}}}(E_{\mathfrak{p}})/N_{\mathfrak{p}}(E_{\mathfrak{p}}) = \omega_{\beta}/(1 + \frac{W_{k}}{W_{\beta^{+}}}), \qquad (2)$$

т.е: будет известной функцией парциальной энергии β -перехода Q. Нетрудно видеть, что Q = Q₀ - B_p - E_p. Таким образом, отношение интенсивностей описывается известной функцией энергии, зависящей от двух параметров: Q₀ - B_p и ω_{β} -эффективности регистрации β^+ -частиц. Величина ω_{β} может быть измерена экспериментально, и определение Q₀ - B_p сводится к нахождению значения параметра, соответствующего наилучшему согласию экспериментального отношения N_{β p}/N_p с расчетным. Такие измерения и анализ были проделаны для те¹¹¹. Для величины Q₀ - B_p получено значение (5,07 +0,07) Мэв.

2. Экспериментальная методика

Опыты проводились на выведенном пучке 300-сантиметрового пиклотрона ОИЯИ. Мишень из разделенного изотопа Pd¹⁰² (= 40%) облучалась ионами C¹² с энергией, соответствующей максимуму сечения реакции Pd¹⁰² (C¹²,3n)Te¹¹¹ (= 65 Мэв).

Использовался метод собирания ядер отдачи с помощью газовой струи, развитый Р. Макфарланом и Р. Грифиоеном /5/. Схема нашей установки показана на рис. 1^{X/}. Мишень помещалась на входе в небольшую цилиндрическую камеру, заполненную гелием при давлении 1 атм. Ядра отдачи, вылетавшие из мишени, тормозились и увлекались газом, который вытекал в виде струи через отверстие ($\phi = 0.4$ мм) в другую камеру, находившуюся под непрерывной откачкой. Струя разбивалась об алюминиевый сборник толщиной 6.5 мк. и ядра отдачи адсорбировались на его поверхности. Сборник периодически поворачивался на угол 45°, и собранная активность помещалась между кремниевым поверхностно-барьерным детектором протонов (площадь 2 см², г = 2.000 ом.см) и сцинтилляционным счетчиком В-частиц. До попадания в счетчик В-частицы проходили 13 мк А1. Время экспозиции сборника под струей и время обсчета составляло 40 сек. Электронная аппаратура была собрана по схеме быстромедленных совпадений. С полупроводникового детектора бралось два импульса. Импульс напряжения с п-слоя направлялся в спектрометрический тракт, состоявший из лампового предусилителя, транзисторного усилителя с экспандером. многоканального анализатора АИ-4098. Токовый импульс с р-слоя подавался на вход быстрой схемы совпадений через быстрые предусилитель и усилитель. На второй вход быстрой схемы совпадений приходил импульс от сцинтилляци онного счетчика через быстрые катодный повторитель и усилитель. Импульс с выхода схемы совпадений поступал на блок управления многоканального анализатора.

Вход анализаторов блокировался на время подачи высокочастотного напряжения на дуанты циклотрона. Одновременно измерялись два спектра протонов: в совпадении с позитроном и без совпадений.

Время нарастания импульсов на входах схемы совпадений было = 20 нсек. Разрешающее время схемы совпадений выбрано равным = 30 нсек. Это должно было обеспечить независимость эффективности регистрации совпадений от соотношения амплитуд импульсов на входе. Электроника проверялась по $\alpha - \gamma$ -совпадениям от U²⁸⁵. Было показано, что увеличение разрешающего времени схемы совпадений до величины, большей 30 нсек, не приводит к увеличению скорости счета.

х/ Детальное описание установки с собиранием ядер отдачи приведено в работе^{/2/}. В качестве сцинтиллятора в β -счетчике использовался диск из люминеспирующей пластмассы диаметром 40 мм и толщиной 1 мм. Малая толщина пластика обеспечивала низкую эффективность к фону γ -лучей и делала незначительной перегрузку умножителя в условиях регистрации мягких электронов на фоне интенсивного потока энергичных β -частиц. Использовался фотоумножитель типа M-12 FS 60 (производства ГДР).

На рис. 2 показан спектр импульсов от конверсионных электронов Се¹³⁹ (Е_γ = 165 кэв), измеренный на входе схемы совпадений. Этот источник использовался для определения энергетического порога схемы совпадений по β-каналу. Измерения дали величину (15-20) кэв.

На рис. З представлена относительная эффективность регистрации β – частиц с различной максимальной энергией, измеренная со схемой совпадений, когда на оба входа подавался импульс с β -тракта. В этих измерениях схема совпадений использовалась, по существу, как быстрый дискриминатор, порог которого менялся с помощью делителя. Таким образом были получены спектры импульсов от источников с различной максимальной энергией. Приведенные эначения эффективностей учитывают ослабление потока β -частиц после прохождения 13 мк Al (сборник ядер отдачи + отражатель на сцинтилляторе) и влияние порога схемы совпадений. Измерения проводились в рабочей геометрии с β -источниками Со⁶⁰ (309 кэв), Св¹⁸⁷ (520 кэв), Na²⁴ (1400 кэв).

3. Результаты измерений

На рис. 4 и 5 приведены спектры запаздывающих протонов Te¹¹¹, измеренные в совпадении с позитронами и без совпадений. Поскольку скорость счета совпадений была невелика, на рис. 5 произведено усреднение по интервалам в 100 кэв. Возрастание счета в области малых амплитуд (< 2,0 Мэв) связано с β - и γ -фоном. Опыты с алюминиевым поглотителем толщиной 150 мк показали, что β - γ -фон незначителен в области энергий > 2 Мэв. Для определения вклада случайных совпадений использовалась следующая процедура. Регулярно во время облучения перед протонным детектором помещался калибровочный источник a-частип (Pu^{238}). Одновременное измерение спектра a-частип в режиме совпадений и без совпадений с импульсами от спинтилляционного счетчика давало отношение числа случайных совпадений к числу импульсов с полупроводникового детектора – (N_a)_{ое}/ N_a . Вклад в (N_a)_{ое} истинных совпадений между *a* -частицей и *у*-квантом с первого уровня ротационной полосы пренебрежимо мал. Совпадения *a*-частиц с конверсионными электронами нацело исключались, посколько подложка *a*-источника полностью поглощала мягкие электроны. Спектр случайных совпадений получался умножением спектра протонов без совпадений на усредненный по времени фактор (N_a)_{ее}/ N_a . Во время облучения предпринимались специальные меры для поддержания постоянства потока ионов. По нашим оценкам, точность определения случайных совпадений, таким образом, не хуже 10%. Прямые опыты по измерению случайных совпадений (введение линии задержки) дали согласующиеся результаты. Интенсивность пучка выбиралась такой, чтобы случайные совпадения были на уровне 10% от числа истинных для протонов с энергией, соответствующей максимуму в спектре совпадений.

На рис. 5, где представлены суммарные данные по нескольким опытам, хорошо видна разница в форме двух спектров. В режиме совпадений спектр протонов имеет максимум при меньшей энергии, относительная интенсивность в области 3,5-5 мэв подавлена. Это естественный результат того, что по мере приближения к максимальной энергии протонного спектра падает энергия β – перехода и возрастает относительная вероятность К -захвата, практически не дающего вклад в спектр совпадений.

На рис. 6 приведено отношение интенсивностей протонов в совпадении с позитронами и без совпадений (N $_{\beta p}$ (E $_{p}$)/N $_{p}$ (E $_{p}$)) после вычета β -фона и случайных совпадений.

Для определения парциальных энергий β-распада отношение N_{Вр}(Е_р)/N_р(Е_р) сравнцвалось с расчетной функцией

$$F = (\omega_{\beta} + \omega_{k} - \frac{\overline{W}_{k}}{\overline{W}_{\beta^{+}}}) / (1 + \frac{\overline{W}_{k}}{\overline{W}_{\beta^{+}}}).$$
(3)

Эта функция отличается от (2) введением поправки $\omega_k \frac{w_k}{w_{\beta^+}}$, которая учитывает вклад совпадений между протоном и характеристическим излучением после К-захвата. Эта поправка невелика, в пределах спектра совпадений она меняется от 0,002 до 0,004. Относительный ход эффективности регистрации пози-

Обсуждение результатов

тронов с данной максимальной энергией брался из рис. 3. Геометрический фактор $\omega_{\beta \circ}$ (дающий абсолютное значение ω_{β}) считался свободным параметром. Следует отметить, что кривая на рис. 3 построена на основании измерений с β^- -источниками. Переход к β^+ -излучению может несколько изменить ω_{β} за счет изменения формы спектра. Однако оценки показывают, что за счет низкого порога схемы совпадений по β -каналу относительный ход ω_{β} практически не меняется в интересующем нас диапазоне энергий.

Отношение вероятностей К -захвата и позитронного распада ($\frac{W_k}{W_{\beta^+}}$) в функции парциальной энергии перехода Q = Q₀ - В_р - Е_р рассчитывалось согласно работе Цвайфеля^{/6/}. В величину $\frac{W_k}{W_{\beta^+}}$ была введена также поправка на L -захват. Расчеты Цвайфеля проделаны для разрешенных переходов. Сравнение с экспериментальными эначениями $\frac{W_k}{W_{\beta^+}}$, проведенное рядом авторов (см., например, ^{/7/}), показало, что расчетные величины согласуются с экспериментальными в основном в пределах 10%.

Таким образом, функция F зависит от двух параметров: $Q_0 - B_p H \omega_{\beta_0}$. При изменении параметров теоретическая кривая линейно смещается по оси абсписс и ординат соответственно. Оптимальные значения параметров находились из экспериментальных данных для N_{β_p}/N_{β} методом наименьших квадратов. Для установления погрешности в определении параметров рассчитывалась маттрица ошибок и находились ее диагональные члены⁸. Точность определения $Q_0 - B_p$ зависит не только от статистической ошибки, но и от погрешности при калибровке энергетической шкалы. Эта компонента ошибки также была учтена. Окончательный результат следующий: $Q_0 - B_p = (5,07+0,07)$ Мэв.

Значение второго параметра $\omega_{\beta 0} = 0.25 \pm 0.02$ согласуется с прямыми оценками абсолютной эффективности. Кривая на рис. 5 является расчетной и соответствует оптимальным значениям параметров.

Для того чтобы убедиться в правильности учета относительной эффективности регистрации β -частиц, были проведены специальные опыты с повышенным порогом в β -тракте (60 кэв). Кроме того, на пути β -частиц вместо 13 мк Al было помещено 75 мк. Измеренные спектры были обработаны описанным выше образом (с учетом несколько изменившейся величины ω_{β}). Полученное значение оказалось равным (5,04+0,08) Мэв.

На рис. 6 демонстрируется отклонение экспериментальных точек от расчетной кривой. Разброс точек относительно нулевой линии согласуется со статистической точностью измерений. 1. Мы рассматриваем настоящую работу прежде всего как проверку метода позитрон-протонных совпадений для определения такой энергетической характеристики ядер, как Q₀ - B_p(1). Действительно, эта величина может быть определена достаточно точно.

2. К настоящему времени имеется целый набор широко известных полуэмпирических формул для масс ядер. В табл. 1 проведено сравнение полученного намв значения для Q₀ - B_р с предсказаниями различных авторов.

	Таблица 1 Q ₀ — В _р = $M(Te^{111}) - M(Sn^{110}) - m_H$ Мэв							
-	Экспер.	Камерон /9/	Сигер	10/ ^{Святец-} кий/11//11/ Майерс	Винг ^{/12/} Варли	М.Хил- ман ^{/13/}	Зель- /14/ дес	Гарви, Келсон /15/
5	6,07 +0 ,07	6,7	6,0	6,15	2,5	3,1	4,9	5,0

Наиболее близки к эксперименту расчеты по Зельдесу и Гарви-Кельсону. По-видимому, таблицы Зельдеса и массовое соотношение Гарви и Кельсона могут быть использованы для наиболее реалистических предсказаний для пересыщенных протонами ядер в районе олова.

3. В нашей предыдущей работе $^{/2/}$ величина Q₀ - В_рдля Те¹¹¹ - Sb¹¹bпределялась из формы протонного спектра. Расчет исходил из предположения, что < M² > $\rho = con st$. Было получено, что Q₀ - В_р = $(5,0^{+0,3}_{-0,1})$ Мэв. Это значение согласуется с определенным в настоящей работе. Отсюда следует, что при расчете усредненной формы протонного спектра использовались правильные предпосылки. Условие < M² > $\rho = const$ означает, что вероятность β распада в данный интервал энергии возбуждения дочернего ядра является только функцией энергии перехода и не зависит от плотности уровней ядра.

Спин Те¹¹¹, по-видимому, 5/2. В протонном распаде будут участвовать возбужденные состояния Te¹¹¹ со спинами $3/2^+$ в $5/2^+$. Если в β -переходе будут заселяться состояния $7/2^+$, то они будут распадаться в основном радиационным путем, так как протонная ширина будет подавлена центробежным барьером. По оценкам на основе статистической модели, число уровней Sb¹¹¹ со спинами $5/2^+$ и $3/2^+$ в диапазоне энергий возбуждения, соответствующем наблюдаемому спектру протонов, равно нескольким сотням. Это уровни сложной структуры. В процессе β -распада они будут заселяться неодинаково. При

данной парциальной энергии β -распада вероятность заселения уровня будет определяться вкладом той компоненты волновой функции, которая соответствует разрешенному переходу.

Уменьшение усредненного квадрата матричного элемента с ростом плотности уровней отражает тот факт, что вклад этих компонент в среднем уменьшается по мере усложнения состояний возбужденного ядра.

В протонном спектре наиболее четко будут проявляться уровни с максимальным вкладом волновых функций, подобных волновой функции исходного ядра. Пики в спектре Te¹¹¹, по-видимому, связаны с распадом неразрешившихся уровней, которые группируются около состояний с наиболее "чистой" структурой. Дополнительная модуляция в интенсивности протонных групп может появиться также из-за флюктуаций относительной протонной ширины Γ_{-}/Γ_{-} .

Вывод, что $< M^2 > \rho = const$, представляет известный интерес также при рассмотрении запаздывающих нейтронов. Это соотношение должно быть одинаково справедливо и для β^- -распада с высокой энергией. До сих пор во всех расчетах спектров и вероятностей испускания запаздывающих нейтронов исходили из предположения о постоянстве среднего квадрата матричного элемента: $<M^2 > = const$. Это допущение заведомо некорректно. Возможно, что некоторые противоречия в интерпретации данных по запаздывающим нейтронами связаны с этим и картина прояснится, если будет использовано более правильное соотношение $< M^2 > \rho = const$.

В заключение авторы выражают признательность проф. Г.Н. Флерову за интерес к работе, В.Г. Субботину и Д. Матэ – за помощь в вопросах электроники, Г.М. Тер-Акопьяну – за участие в обсуждениях, циклотронной группе, руководимой Б. Загером, – за обеспечение облучений.

Литература

- В.А. Карнаухов, Г.М. Тер-Акольян, Л.С. Вертоградов, Л.А. Петров. ЯФ, <u>4</u>, 457 (1966); Nucl. Phys. <u>A90</u>, 23 (1967).
- 2. Д. Богданов, Ш. Даропи, В.А. Карнаухов, Л.А. Петров, Г.М. Тер-Акопьян. Препринт ОИЯИ - Еб 3142; ЯФ (в печати).
- Д.Д. Богданов, И. Бачо, В.А. Карнаухов, Л.А. Петров. Препринт ОИЯИ Р6-3138, Дубна, 1967; ЯФ (в печати).
- 4. R.Macfarlane. Доклад на конференции в Люсикиле в 1966 г., Arkiv för Fysik (ь печати).

5. R.D.Macfarlane, R.D.Griffioen. Nucl.Instr. Meth. 24, 461 (1963).

P.F.Zweifel. Phys.Rev. 96, 1572 (1954); 107, 329 (1957).

7. D.Berenyi. Nuclear Phys., <u>48</u>, 121 (1963).

 Н. Клепиков, С. Соколов. Анализ и планирование экспериментов методом максимума правдоподобия. Изд. "Наука", 1964.

9. A.G.W.Cameron, At.Energy Can. Ltd.Repot CRL-41, 1957.

10. P.Seeger. Preprint LA-3380, 1965.

11. W.Mayers, W.J.Swiatecki. Preprint UCRL-11980, 1965.

12. J.Wing, J.D.Varley. Preprint ANL-6886, 1964.

13. M.Hillman, Preprint BNL-846 (T-333), 1964.

14. N.Zeldes. Таблицы масс, частное сообщение, 1966.

15. G.T.Garvey, I.Kelson. Phys.Rev.Lett., 16, 197 (1966).

16. A.Gilbert, A.G.N.Cameron, Can. J. Phys., 43, 1446 (1965).

Рукопись поступила в издательский отдел 31 августа 1967 г.

Рис. 1. Схема установки: 1-пучок конов С¹; 2-мишень; 3-ядра-отдачи; 4-камера торможения; 5-вакуумный цилиндр Фарадея; 6-отверстие в камере торможения; 7-сборник ядер отдачи; 8-сцинтилляционный счётчик в -частиц; 9-поверхностно-барьерный детектор протонов; 10-диск с поглотителями и калибровочным альфа-источником.

Рис. 3. Относительная эффективность сцинтилляционного счётчика для регистрации в -частиц с различной максимальной энергией.

Рис. 6. Отношение интенсивностей протонов в совпадении с позитронами и без совпадений в функции энергии протонов (β-γ -фон и случайные совпадения вычтены). Кривая является расчётной, соответствующей оптимальным значениям параметров.

