

1967.

P6 · 3468

18. × 1967 .

Ж.Т. Желев, В.Г. Калинников, Я. Липтак, Л.К. Пекер

ОБ ИЗОМЕРНЫХ СОСТОЯНИЯХ ТИПА I^{II} II/2⁻ (hII/2)¹³⁷Nd И ¹³⁷Р 60 77 59 78 НОВЫЙ ИЗОТОП ¹³⁶Nd 60 76

изовления вланых вослем Берлгерия нейтренном онлики

P6 · 3468

ОБ ИЗОМЕРНЫХ СОСТОЯНИЯХ ТИПА I^{fl} II/2⁻ (h II/2)¹³⁷ Nd и ¹³⁷ P 60 · 77 59 78 НОВЫЙ ИЗОТОП ¹³⁶ Nd 60 76

5346/, 2P.

1. В ведение

Недавно сообщалось об открытии изотопа ${}^{137}_{80} Nd_{77}$, период полураспада которого составляет $T_{1/2} = 55.0 \pm 1.5$ мин^{/1/}.

В настоящей заметке мы хотим обратить внимание на то, что обнаруженное у 55-минутной активности неодима излучение ^{/1/} повитроны с Е ≈ 3000 кэв и у -лучи с Е_у = 540 и 553 кэв связаны с распадом нового изотопа ¹³⁶Nd, также имеющего период полураспада Т_{1/2} = 55 мин.

Рассмотрим ожидаемые свойства изотопа ¹³⁶Nd – первого члена в цепочке ¹³⁶Nd – пе

138 Nd <u>5,2 час</u> 138 Pr <u>1,5 мин</u> 138 Се [2]

Известно, что указанные в цепочках основные состояния \Pr и \Pr и \Pr и \Pr и и почках основные состояния \Pr и \Pr и почках основные состояния \Pr и \Pr и \Pr имеют характеристики $I^{\pi} = I^{+}$ и конфигурацию $\{p \ (d_{5/2}), n \ (d_{3/2})\}$. Бета-переходы ядер \Pr на основные состояния $\operatorname{Ce}(I^{\pi}_{1} = I^{+} + I^{\pi}_{1} = 0^{+})$ связаны с превращением $p(d_{5/2}) \rightarrow n \ (d_{3/2})$, что обеспечивает разрешенный

3 \

характер бета-переходов ¹³⁹ Pr \rightarrow ¹³⁸ Ce ($\log_{10} \text{ft} = 4,7\pm0,2$)^{/2,4/} μ^{140} Pr \rightarrow^{140} Ce ($\log_{10} \text{ft} = 4,40\pm0,05$)^{/3,5/}.

Можно ожидать, что β -переходы в первой половине цепочек ¹³⁸Nd - ¹³⁸Pr и ¹⁴⁰Nd - ¹⁴⁰Pr типа I $\frac{\pi}{1} = 0^+ + I \frac{\pi}{1} = 1^+$ (связывающие аналогичные конфигурации) должны иметь близкие значения log 10 ft .

Что касается цепочки с A = 136, то сопоставление значений $T_{1/2} \mu Q_{\beta}^+$ распада¹³⁶ Pr со значениями этих величин для¹³⁸ Pr и¹⁴⁰ Pr показывает, что ссновное состояние¹³⁶ Pr не принадлежит к конфигурации {p(d_{5/2}), n(d_{3/2})}₁₌₁+. В противном случае период полураспада этого изотопа составлял бы не 13,5 мин, a < 1 мин. С этим выводом согласуются и другие данные о схеме распада¹³⁸ Pr /6/.

Однако несомненно, что состояние $I^{\pi} = 1^{+} \{p(d_{5/2}), n(d_{3/2})\}$, аналогичное основным состояниям соседних ядер 138 Pr и 140 Pr , у 138 Pr должно находиться среди его нижних возбужденных уровней и β -распад 136 Nd \rightarrow 136 Pr , в основном, будет идти через этот уровень $(I_{1}^{\pi} = 0^{+} \rightarrow I_{r}^{\pi} = 1^{+})$.

К сожалению, мы не знаем из опыта энергин β -переходов в первой половине всех трех пепочек, однако, ее можно грубо оценить, например, по методу Леви⁷⁷: $Q_{\beta^+} \approx 330$ кэв (¹⁴⁰ Nd), $Q_{\beta^{+}} \approx 1100$ кэв (¹³⁸ Nd), $Q_{\beta^{+}} \approx 1900$ кэв (¹³⁶ Nd). Вычисленные с этими Q_{β^+} значения \log_{10} ft для ¹⁴⁰ Nd ($\approx 5,2$) я ¹³⁸Nd ($\approx 5,1$) совпадают с ожидаемыми и в какой-то мере оправдывают такие оценки.

Принимая log ft 5,1 и $C_{\beta}^{+=1900}$ кэв, легко получить значение периода полураспада ¹³⁶ Nd $T_{1/2}^{=}$ 1-2 часа, что совпадает с наблюдавшимся на опыте значением $T_{1/2}^{=}$ 55 мин.

2. Экспериментальные результаты

В спектре у -лучей и электронов внутренней конверсии Nd сТ_{1/2}=55 мин наблюдается ряд линий (табл. 1 и 2). Измерения спектра у -лучей выполнены при помощи спектрометра с Ge(Li) -детектором с чувствительным объемом 12 см³. Разрешающая способность спектрометра - 4,5 кэв на у -линии ⁶⁰Со с Е_у=1332 кэв.

Измерения конверсионного спектра выполнялись на магнитном бета-спектрометре с двойной двукратной фокусировкой пучка частиц на угол $\pi\sqrt{2}$. Разрешающая способность бета-спектрометра - = 0,2% при светосиле = 0,1% от полного телесного угла.

Кроме того, выполнены измерения β⁺-спектра 55-минутной активности Nd. Уточнена г;аничная энергия жесткой компоненты позитронного излучения (E _{гр} = 2970 <u>+</u>50 кэв) и обнаружена более мягкая компонента (E _{гр}=1350<u>+</u>50 кэв) (рис. 1).

Во всех измерениях в качестве источников служила фракция неодима, хроматографически выделенная из Gd –мишени, облученной быстрыми протонами (Ep =660 Мэв). Фракция содержит помимо активности неодима с $T_{1/2}$ =55 мин другие нейтронодефицитные изотопы Nd с A =141 ($T_{1/2}$ =2,4 часа), A = = 140($T_{1/2}$ =3,3 дн.), A =139($T_{1/2}$ =5,53 час), A =138($T_{1/2}$ =5,2 час).

Обращает на себя внимание совпадение характеристик излучения Nd с $T_{1/2} = 55$ мин и ¹³⁶ Pr ($T_{1/2} = 13,5$ мин). Это подтверждает существование це-почки распада, начинающейся с ранее неизвестного изотопа ¹³⁶ Nd :

136 Nd 55 мин 138 Pr 13,5 мин 136 Се

Используя данные из табл. 1 и 2, можно показать, что наиболее интенсивные у -переходы (с hv =538,9; 551,5 и 1090,4 кэв) осуществляются в ядре Се (Z = 58) (см. табл. 3).

Прежде чем перейти к обсуждению схемы уровней ¹³⁸ Се , возбуждаемых из распада ¹³⁸ Pr , мы приведем наши данные о мультипольностях некоторых переходов в ¹³⁶ Се (табл. 4). Чтобы выразить относительные интенсивности у -лучей и конверсионных электронов (табл. 2 и 3) в одних единицах, используем тот факт, что у -переход с $h\nu = 108,8$ кэв в ядре ¹³⁷ Pr , интенсивность которого спадает с таким же периодом полураспада $T_{1/2} = 55$ мин, типа M1. Это позволит нам определить КВК перехода 551,5 кэв в ¹⁵⁶ Се , что совместно с данными по отношению K/L приводит к заключению о Е2-типе рассматриваемого перехода. Переходы с $h\nu = 538,9$ и 1090,4 кэв также имеют мультипольность типа E2.

3. Схема распада ¹³⁶ Nd ------ ¹³⁸ Pr ------- ¹³⁶ Се

Система уровней ¹³⁸ Се , возбуждаемых при распаде ¹³⁶ Рг (Т_{1/2}=13.5 мин), известна по работе ^{/6/}. В своей работе мы принимаем эту схему за основу, внося некоторые изменения. Такой вариант схемы представлен на рис. 2.

В качестве квантовых характеристик основного состояния ядра $\frac{135}{59}$ Pr₇₇ мы выбираем I^{*n*} = 2⁺ или 3⁺. Это следует из баланса интенсивностей при распаде $\frac{136}{59}$ Pr \rightarrow $\frac{136}{59}$ Ce. По модели оболочек основному состоянию $\frac{136}{59}$ Pr₇₇ можно приписать конфигурацию {p (d _{5/2}), n (s _{1/2})}.

Баланс интенсивностей проведен в предположения, что бета- распад ¹³⁹ Рг на основное состояние ¹³⁶ Се практически не происходит. Это позволило нам подсчитать вероятности заселения уровней ¹³⁸ Се из распада ¹³⁶ Рг. Ветвление w_{ϵ}/w_{β^+} для β -переходов на каждый уровень ¹³⁶ Се мы принимали равным теоретическому ⁽¹⁰⁾, считая бета-переходы разрешенными. На рис. 2 для каждого уровня ¹³⁶ Се приводится вероятность его заселения и соответствующее значение \log_{10} ft бета-перехода на этот уровень. В качестве функиии f(E, Z) использовалась f ⁺ (E, Z)⁽¹¹⁾ и f^ε (E, Z)⁽¹⁰⁾.

Полученные нами данные о мультипольностях y -переходов 538,9; 551,5 и 1090,4 кэв позволяют однозначно приписать уровням 551,5 и 1090,4 кэв характеристики I $\pi = 2^+$.

Уровню с энергией 1551,5 кэв в работе^{/6/} приписаны характеристики $I^{\pi} = 0^+$ или 2⁺ на основании того, что бета-переход на этот уровень носит разрешенный характер. В связи с тем, что нами изменены квантовые характеристики основного состояния ¹³⁶ Pr, мы считаем возможным оставить у уровня 1551,5 кэв характеристики $I^{\pi} = 2^+$.

В работе ¹⁶⁷ введен уровень с энергией 760 кэв. Мы считаем, что этот уровень нельзя отнести к ядру ¹³⁶ Се , так как переход с $h\nu$ =760 кэв, по нашим данным, не связан с распадом ¹³⁸ Pr \rightarrow ¹³⁶ Се . Переход с $h\nu$ =673 кэв, которым заселяется уровень 760 кэв, также, по нашему мнению, не имеет места при распаде ¹³⁹ Pr . Дополнительным аргументом против введения уровня с энергией 760 кэв в ядре ¹³⁶ Се₇₈ является тот факт, что в четно-четных ядрах трудно ожидать еще одно состояние вблизи первого возбужденного уровня с $1^{\pi} = 2^{+}$.

Заканчивая краткое рассмотрение схемы распада ¹³⁶ Nd 55 мин ¹³⁶ Pr^{13,5 м136}Ce, отметим. что уровень с $I^{\pi} = 1^+$ (конфигурация {p(d $_{5/2}$), n (d $_{3/2}$)} в ядре ¹³⁶ Pr лежит вблизи основного состочния. Именно через этот уровень должен идти, в основном, β -распад ¹³⁶ Nd - ¹³⁶ Pr. В у-спектре 55-минутной активности Nd мы не смогли обнаружить прямой у -переход с уровня

 $\{p(d_{5/2}), s(d_{3/2})\}_{p=1}^{+B}$ основное состояние ¹³⁶ Pr . Можно утверждать, что энергия такого перехода < 100 кэв.

Рассмотрим некоторые свойства ядер ${}^{137}_{60}$ Nd ${}_{77}$ и ${}^{139}_{60}$ Nd ${}_{79}$. В работе ${}^{/12/}$ было показано, что при β^+ -распаде изомерного состояния 139 Nd с 1 ${}^{\pi}$ = = 11/2⁻(h) в дочернем ядре 139 Pr возбуждается изомерный уровень с энергией 820 кэв с 1 ${}^{\pi}$ = 11/2⁻(h ${}_{11/2}$) (рис. 3). Это состояние распадается как прямым переходом типа ЕЗ в основное состояние 139 Pr ${}_{59}$ Pr ${}_{50}$ с 1 ${}^{\pi}$ = 5/2 ${}^+$ (d ${}_{5/2}$), так и на промежуточный уровень 113,8 кэв с 1 ${}^{\pi}$ = 7/2 (${}_{87/2}$) у -переходом 707 кэв. Хотя время жизни уровня 820 кэв пока не измерено, в работе ${}^{/12/}$ показано, что у -лучи 707 кэв практически не дают быстрых совпадений ни с одной у -линией сложного спектра, кроме ${}_{714}$. Это прямо указывает на достаточно большое время жизни уровня 820 кэв.

Появление такого долгоживущего уровня h_{11/2} в изотопе ¹³⁹ Pr , а равно в ¹⁴⁹ Pm , ¹⁴⁷ Eu , ¹⁴⁹ Eu , ¹⁵¹ Eu , представляется интересным, так как эти ядра находятся вне обычно рассматриваемых в модели оболочек границ "острова" изомерии Z > 64.

На рис. 4 приведены данные об энергии уровней $d_{5/2}$, $g_{7/2}$ и $h_{11/2}$ в этих ядрах, которые в соответствии с ожиданиями демонстрируют понижение энергия уровней $g_{7/2}$ и $h_{11/2}$ по мере удаления от полумалических ядер с N =82.

Рассмотрим более подробно данные о распаде ${}^{137}_{60}$ Nd₇₇. Обычно 77-ой нейтрон в основных состояниях нечетных ядер находится на уровне d ${}_{3/2}$ (${}^{129}_{52}$ Te ${}_{77}$, ${}^{131}_{54}$ Xe ${}_{77}$, ${}^{135}_{58}$ Ce ${}_{77}$). Можно думать, что и ${}^{137}_{60}$ Nd₇₇ не является исключением и его основное состояние будет типа d ${}_{3/2}$. Изучение схемы распада дочернего ядра ${}^{137}_{59}$ Pr ${}_{78}$ показало, что основное состояние этого ядра ${}^{*}_{-d}{}_{5/2}$. Бета-переходы между такими состояняями d ${}_{5/2}$ \longrightarrow d ${}_{3/2}$ относятся к типу разрешенных и имеют log ${}_{15}$ ft \approx 5,1 (см. табл. 5).

Если принять для распада ¹³⁷ Nd \rightarrow ¹³⁷ Pr экспериментальное значение $E_{\beta} + \approx 3$ Мэв⁽¹⁾ (приблизительно такое же значение ≈ 2.8 Мэв получается по оценке Леви⁽⁷⁾), то для этого β -превращения \log_{10} ft>5.9. Слишком большая величина \log_{10} ft свилегельствует о том, что рассматриваемый переход

не типа $d_{3/2} \rightarrow d_{5/2}$, так как переход $d_{3/2} \rightarrow d_{5/2}$ при распаде основного состояния должен был бы доминировать (ему соответствует наибольший матричный элемент). Следует признать, что наблюдаемый переход (и $T_{1/2}^{=55}$ мин) не может быть связан с распадом основного состояния $d_{3/2}$. Единственной альтернативой остается вывод о том, что состояния $d_{3/2}$. Единственной альтернативой остается вывод о том, что состояние ¹³⁷ Nd с $T_{1/2} = 55$ мин не основное $d_{3/2}$, а изомерное с $1^{\pi} = 11/2^{-}$ ($h_{11/2}$), аналогичное изомерному состоянию 1^{139} Nd с $T_{1/2} = 5,53$ час (рис. 3). Это состояние может распадаться на относительно долгоживущий уровень $\frac{137}{59}$ Pr ₇₈ с $1^{\pi} = 11/2^{-}$ ($h_{11/2}$), причем, согласно систематике (рис. 4), этот уровень должен иметь энергию возбуждения меньше, чем в 1^{139} Pr (<820 кэв).

5. О периодах полураспада основных состояний Nd и Nd

Используя систематику данных о β^+ -переходах типа d $_{5/2} + d_{3/2}$ (табл.5), рассмотрим вопрос об основных состояниях ядер Nd и Nd .

В работе ^{/17/} было установлено, что распад ¹³⁹ Nd <u>5,5 час</u>¹³⁹ Pr сопровождается испусканием позитронов с граничной энергией $E_{\rm rp} = 1000 \pm 100$ кэв. Нет сомнения, что этот β^+ - переход происходит между изомерными состояниями типа h _{11/2} ядер ¹³⁹ Nd и ¹³⁹ Pr (рис. 3). Отсюда мы получаем энергию β^+ -распада ¹³⁹ Nd (d_{3/2}) \rightarrow ¹³⁹ Pr (d_{5/2}) $Q_{\beta}^+ = 2610 \pm 100$ кэв. Если принять, что β^+ -переходы типа d $_{5/2} \div d_{3/2}$ характеризуются величиной \log_{10} ft=5,15±0,15 (среднее значение из табл. 5), то для периода полураспада ¹³⁹ Nd (d_{3/2}) получаем: T_{1/2} = (52±20) мин.

Отметим, что величина Q_{β}^+ для перехода между основными состояниями ядер ¹³⁹ Nd и ¹³⁹ Pr хорошо согласуется со значением, предсказанным из систематики величин Q_{β}^+ β -переходов типа $d_{5/2} \stackrel{\rightarrow}{}_{+} d_{3/2}$ для ядер, соседних с ¹³⁹ Nd₇₉ и ¹³⁹ Pr₈₀ (см. рис. 5а).

Рассмотрим теперь данные относительно распада основного состояния ¹³⁷Nd. В 1951 г. Стовер^{/18/} при облучении окиси празеодима протонами с энергией 40-50 Мэв обнаружила ранее неизвестную активность неолима с периодом полураспада T_{1/2} = 22±2 мин. Эту активность Стовер предположительно принисала изотопу ¹³⁸Nd , возникшему в реакции ¹⁴¹ Pr(p,4n) . По данным Стовер^{/18/} распад 22-минутной активности Nd сопровождается испусканием

позитронов . Максимальная кинетическая энергия β⁺ -частиц была измерена методом поглошения: Е _{гр} = 2,4 Мэв.

Как показано в работах $^{/3,12,2/}$, взотоп ¹³⁸ Nd вмеет период полураспада . $T_{1/2} = 5,2 \pm 0,1$ час. Ядро $^{138}_{80}$ Nd₇₆ – четно-четное и в нем нельзя ожидать изомерного состояния с большим временем жизни. Кроме того, превращение 139 Nd \rightarrow 139 Pr не может сопровождаться испусканием позитронов со столь большой кинетической энергией $E \approx 2,4$ Мэв (по Леви $^{/7/2}Q_{+} \approx 1100$ кэв). Поэтому обнаруженная Стовер $^{/18/7}$ активность с $T_{1/2} = 22 \pm 2$ мин не относится к 139 Nd , а принадлежит другому изотопу неодима.

В частности, этот период может относиться к основному состоянию¹³⁷ Nd. Образование этого изотопа энергетически было возможным в опытах Стовер по реакции¹⁴¹ Pr (p, 5 n).

На рис. 5б дана систематика энергий β^+ -распада между состояниями d $_{5/2}$ и d $_{3/2}$ для ядер, соседних с $_{60}^{137}$ Nd $_{77}$ и $_{59}^{137}$ Pr $_{78}$. Из этого рисунка видно, что бета-переход между основными состояниями 137 Nd и 137 Pr должен иметь энергию Q $_{\beta}$ += 3350 кэв. Это значение очень хорошо согласуется с экспериментальной величиной, установленной Стовер $^{/18/}$ для β^+ -распада 22-минутной активности Nd (Q $_{\beta}$ += 3420 кэв). Поэтому мы считаем, что обнаруженная ранее $^{/18/}$ активность Nd с $T_{1/2}$ = 22±2 мин принадлежит изотопу 137 Nd(d $_{3/2}$) (рис. 3). Значение log 10 ft бета-перехода 137 Nd(d $_{3/2}$) \rightarrow 137 Pr (d $_{5/2}$), подсчитанное с указанными величинами Q $_{\beta}$ + и $T_{1/2}$, будет равно 5,4, что характерно для β^+ -переходов типа d $_{5/2}$; d $_{3/2}$ (см. табл. 5).

В заключение авторы считают своим приятным долгом поблагодарить В. Докузову и А. Липтак за помощь в работе.

Литература

- K.Gromov, V. Kalinnikov, V. Kuznetsov, N. Lebedev, G. Musiol, E. Hermann, Zh.Zhelev, B.Dzhelepov, A. Kudrvavtseva, Nucl. Phys., 73, 65 (1965).
- K.Gromow, J.Demeter, Sch.Schelew, W.Kalinnikow, Kim En Su, N.Lebedew, F.Molnar, W.Morosow, G.Pfrepper, V.Chalkin, E.Herrmann, D.Christow, Nucl. Phys., <u>88</u>, 225 (1966).

- Б.С. Джеленов, Л.К. Пекер, В.О. Сергеев. Схемы распада радиоактивных ядер с > 100. Изд. АН СССР, М-Л, 1963.
- 4. В.С. Бутцев, Ж.Т. Желев, В.Г. Калинников, А.В. Кудрявцева, Я. Липтак, Ф. Молнар, У. Назаров, Я. Урбанец. Пр. и тозисы докладов XVII ежеголного совещания по ядерной спектрс колии и структуре атомного ядра. Изл. "Наука", Ленинград, 1967.
- Л.Н. Абесалашвили, Ж. Желев, В.Г. Калинников, Я. Липтак, У. Назаров, Я.Урбанец. Препринт ОИЯИ Р6-3343, Дубна 1967.
- 6. A.R.Brosi, B.N.Ketelle, J.R.Van Hise. ORNL-3994 (1966).
- 7. J.Riddell, AECL-339 (1967).
- 8. М.П. Авотина, Ж.Т. Желев, В.Г. Калинников. Препринт ОИЯИ № 2412, Дубна 1965.
- Л.А. Слив, И.М. Банд. Таблицы КВК гамма-излучения на К и L -оболочках. В книге "Гамма-лучи", изд. АН СССР, М-Л, 1961.
- 10. Л.Н. Зырянова, Уникальные бета-переходы. Изд. АН СССР, М-Л, 1960.
- 11. Б.С. Джелепов, Л.Н. Зырянова. Влияние электрического поля атома на бета-распад. Изд. АН СССР, М-Л, 1956.
- К.Я. Громов, А.С. Данагулян, Л.Н. Никитюк, В.В. Муравьева, А.А. Сорокич, М.З. Шталь, В.С. Шпинель. ЖЭТФ, <u>47</u>, 1645 (1964).
- 13. K.Kotajima, K.W.Brockman and G.Wolzak, Nucl. Phys., 65, 109 (1965).
- 14. Л.Н. Абесалашвили, Ж. Желев, В.Г. Калинников, Я. Липтак, У. Назаров, Я. Урбанец. Преприят Р6-3341, Дубна 1967.
- 15. J.D.King et al., Nucl. Phys., A99, 433 (1967).
- 16. J.R.Van Hise, B.H.Ketelle and A.R.Brosi. Phys.Rev., 153, 1287 (1967).
- Н.А.Бонч-Осмоловская, Б.С.Джеленов, О.Е.Крафт, Чжоу Юе-ва. Изв. АН СССР, сер. физ., 25, 826 (1961).
- 18. B.J. Stover. Phys.Rev., 81, 8 (1961).

Рукопись поступила в издательский отдел 28 июля 1967 г.

<u>Таблица</u> I

<u>Гамма – лучи 136 Pr</u>

融	Работа [6]		Данная	работа	
	E _₽ , кэв	I OTH.	Е д , кэв	<u>Тұ.</u> отн.	Примечание
ı.	460	I 4	461,2	I3, 5 <u>+</u> 0,5	
2.	540	100 ^x)	539,3	1 00 x)	
3.	552	I44	551,7	I43 ± 3	
4.	673	0,6	-	-	не принадлежит ^{I36} Р
5.	760	3.I			_ 11_
6.	976	I, 6	(971)	2,0 <u>+</u> 0,6	
7.	1001	8,5	999,5	9,3 <u>+</u> 1,2	
8.	I047	2,1	1 045,5	2,6 <u>+</u> 0,6	
9.	1092	36	1090,4	33,0 <u>+</u> I,6	
10.	1361	2,3	1358	3,3 <u>+</u> 0,8	
II.	I433	2,2	1430	2,7 <u>+</u> 0,8	
12.	1519	3 ,1	1511	2,5 <u>+</u> 0,9	,
13.	1 578	I,6	1 573	2,0 <u>+</u> 0,8	
I 4.	1 60 I	5,0	1596,6	слож	
15.	1 904	I,7	-	-	
I 6.	2074	3,5	-		
17.	2249	I ,4	-	-	
1 8.	2458	I,I	-	-	
	1				

х) I _{¥540} принята за 100 ед.

Таблица 2

Электроны внут зенией конверсии 136 Рг

記記	Pador	a[8] xx)	Данная работа					
	Ее, кэв	стносит. интенсивн.	Ее, кэв	относит. интенсивн.	Идентификация линий			
I.	498,7	765 <u>+</u> 60	498,4 <u>+</u> 0,4	756 <u>+</u> 60	K 538,9			
2.	511,25	1000 ^{x)}	5II,0 <u>+</u> 0,4	1000 ^{x)}	K 55 I, 5			
3.	533,5	276 <u>+</u> 28	-	-	L539+ K575,5 I37 Nd			
4.	545,5	I43 <u>+</u> I5	-	-	L 552,0			
5.	-	- '	1050,0 <u>+</u> 0,7	45 <u>+</u> 4,5	к 1090,4			

x) І_{К551,5} принята за 1000. x) Данные работы⁽⁸⁾ заново пересмотрены. xx)

Таблица 3

Определение заряда ядра, в котором происходят гамма-переходы с энергиями 538,9; 551,5 и 1090,4 кэв.

Переход	Разность, Е ₄ – Е _{ек} (кэв)						
(RSB)	Эксперимент	Теория[5]					
		Z = 59	Z = 58	z = 57			
538,9	40,9 <u>+</u> 0,6	h					
55 I, 5	40,7 <u>+</u> 0,6	42,00	40,45	38,93			
1090,4	4 0,4 <u>+</u> 0,9)					

	Вывод о муль-	M3 типоль-	9,65(-2) E2	5 , 8),0(-2)	(,05(-2) E2
e C G	Теория <mark>(</mark> 9)	M2	3,63(-2)	6,7	3,4(-2)	5,3(-3)
в ядре 136		IM	I,I6(-2)	7,2	I,I0(-2)	2,15(-3)
гамма-переходов в		E3	I,97(-2)	4,5	I,85(-2)	3,1(-3)
			7,6(-3)	6,3	7,2(-3)	I,5(-3)
некоторых		EI	2,72(-3)	7,6	2,57(-3)	6,4(-4)
Nytervoulocra	Окстеримстт		(7,95 <u>+</u> 0,95)I0 ⁻³	7,0+0,9	7,2(-5)	(I,/r6±0,30)I0 ⁻³
	tero. Anneev	пения	α_{κ}	KIL	ά, K	*
	(100) -	And Another Andrews and Andrews and Andrews	e t 363			1.090,4

Таблица 4

Бета-превращение	I, ⁷	ī,	QB KSB	I % ^{\$*}	Ι% ε	Tyz	log,, ft	Ссылка
¹⁴³ Eu ¹⁴³ Sm	5/2+	3/2+	5000 <u>+</u> 200	-	-	2,3 <u>+</u> 0,2м	5 , I	[13]
143 Sm - 143 Pm	3/2*	5/2+	3520	43	57	8,6 <u>+</u> 0,IM	4,8	[3]
141 Pm 141 Nd	5/2+	3/2+	3620	60	40	22 <u>+</u> Ім	5,4	[3]
141 Nd 141 Pr	3/2+	5/2+	1810<u>+</u>20	2,6	94,7	2,42 час	5,2	(3],(I4]
139 Pr 139 Ce	5/2*	3/2*	2 11 0 <u>+</u> 20	22,2	76,5	4,5 час	5;2	[15]
139 Ce -> 139 ha	3/2*	5/2 *	104	0	I 00	140 дн.	5,3	[3]
137 Pr 137 Ce	5/2⁺	3/2+	I740 <u>+</u> I0	27	67	76,6 <u>+</u> I,5⊻	4,9	[16]
137 Ce - 137 La	3/2+	5/2 *	1190	-	97	9,0 час	5,3	(3)

Таблица 5

Систематика данных о бета-переходах типа d 5/2 = d 3/2

Рис. 1. График Кюри-Ферми позитронного спектра 55-минутной активности.

Рис. 3. Фрагменты схем распада изомеров 137 Nd и Nd.

N - число нейтронов

Рис. 4. Систематика энергий уровней с $I^{n} = 5/2^{+}$, $7/2^{+}$ и $11/2^{-}$ в нечетных ядрах ₅₉ Pr, ₆₁ Pm, ₆₃ Eu.

массовый номер

Рис. 5. Систематика энергий β^+ -распада для переходов типа $d_{3/2} \rightarrow d_{5/2}$; а) бета-превращения ядер, соседних к 139 Nd $\rightarrow {}^{139}$ Pr ;

б) бета-превращения ядер, соседних к ¹³⁷ № 77 → ¹³⁷ Рг 69 78 .