С 341.16 В-818 объединенный институт ядерных исследований

and the second

Пубна

P6 · 3312

Chechose. J. Phys, 11/1-68 1969, v. 19 Ser & N.S. p. 11

Я. Врзал, П. Галан, Т.И. Галанова, Я. Липтак, Я. Урбанец, М. Фингер

ИССЛЕДОВАНИЕ РАСПАДА¹⁶⁰ Тв + ¹⁶⁰ Dv

1967.

Врзал Я., Галан П., Галанова Т., Липтак Я., Урбанец Я, Фингер М. Р6-3312

Исследование распада 160 Ть - 160 Dy

С помощью двух полупроводниковых германиевых детекторов проведено исследование спектра гамма-лучей ¹⁶⁰ Ть. Определены абсолютные интенсивности и мультипольности переходов в ядре ¹⁶⁰ Dy. Сделан вывод о двухквазичастичной природе уровня с энергией 1264,4 кэв и предположение о существовании ротационной полосы на этом состоянии. Экспериментальные данные сравниваются с предсказаниями различных моделей ядра.

Препринт Объединенного института ядерных исследований. Дубиа, 1967.

Vrzal J., Galan P., Galanova T., Liptak J., Urbanec J., P6-3312 Finger M.

The Decay 116 Tb- 160 Dy

Gamma-ray spectrum of 160 Tb was investigated by using two germanium semiconductor detectors. The absolute intensities and multipolarities of γ -transitions in a 160 Dy nucleus have been investigated. A conclusion was drawn about two-quasiparticle nature of the 1264.4 keV energy level and an assumption was made about the existence of rotational band on this state. Experimental data are compared with the predictions of different nuclear models.

Preprint, Joint Institute for Nuclear Research. Dubna, 1967.

P6 - 3312

Я. Врзал, П. Галан, Т.И. Галанова, Я. Липтак, Я. Урбанец, М. Фингер

ИССЛЕДОВАНИЕ РАСПАДА¹⁶⁰ Тв - ¹⁶⁰ Dy

Введение

Радиоактивный изотоп ¹⁶⁰ Ть распадается с периодом полураспада 72,4 дня путем β^- -излучения в стабильный изотоп ¹⁶⁰ Dy. Исследование излучения, сопровождающего распад ¹⁶⁰ Ть, после открытия этого изотопа в работе Боте ^{/1/} проводилось многими авторами.^{/2/}. В течение многих лет подробно исследовались β -спектры, спектры конверсионных электронов, фотоэлектронов и электронов отдачи с помощью различных магнитных спектрометров, а также спектры у -лучей с помощью сцинтилляционных и кристалл-дифракционных спектров.

Исследования спектра β^- -излучения ^{/3,4/}, спектров $\beta^- e^-$ -совпадений ^{/5/} и $\beta^- \gamma$ -совпадений ^{/3,6,7/} показали, что β^- -спектр ¹⁶⁰ Ть сложный и состоит по меньшей мере из 6 компонент.

Спектр конверсионных электронов, возникающих при распаде ¹⁶⁰ Ть, наиболее подробно исследован в работах . Юан и др. ⁹ изучали спектр конверсионных электронов с помощью безжелезного магнитного β -спектрометра с двойной фокусировкой на угол $\pi\sqrt{2}$ при разрешении 0,04 – 0,1%.

Спектры у -лучей ¹⁶⁰ Ть исследовались в основном с помощью сцинтилляционных спектрометров. В работах ^{/4,5,8,10/} изучались спектры фотоэлектронов и электронов отдачи, возникающих при взаимодействия у -квантов с различными мишенями. Наиболее точные данные об энергиях и интенсивностях мягких у -лучей (Е_γ < 400 кэв) получены на прецизионных кристалл-дифракционных спектрометрах .

Изучались также спектры е - у -совпадений^{/9/}, у-у -совпадений^{/3,13,14,15/} и суммарных совпадений^{/15/} при распаде¹⁶⁰ Ть. Большое количество работ^{/13-19/} посвящено исследованию у - у - угловых корреляций. Наиболее точные результаты получены в работе Яклевича и др.^{/19/}, в которой впервые изучались угловые корреляции у -лучей¹⁶⁰ Ть с помощью полупроводникового Ge(Li)-детектора. В работе^{/19/} приводятся также относительные интенсивности некоторых у -переходов в ядре¹⁶⁰ Dy, определенные с помощью Ge(Li) - детектора.

2. Результаты измерений

2.1.Спектр и относительные интенсивности у-лучей ¹⁶⁰ Ть

Нами изучался спектр у -лучей, сопровождающих распад ¹⁶⁰ Ть \rightarrow ¹⁶⁰ Dy. Препарат был получен на реакторе по реакции ¹⁵⁹ Tb (a, y) ¹⁶⁰ Tb. Спектр у -лучей измерялся с помощью двух Ge(Li) -детекторов коаксиального типа с чувствительным объемом \approx 5 см³ и \approx 13 см³. Разрешающая способность обоих детекторов составляла 5 - 6 кэв при энергии \approx 1 Мэв. Измерения были начаты спустя \approx 15 месяцев после изготовления препарата. К этому времени все возможные радиоактивные примеси с периодом полураспада значительно меньшим, чем у ¹⁶⁰ Ть (72,4 дня), распались. Препарат содержал лишь небольшое количество (< 0,4%) долгоживущего изомера ($T_{1/2} = 12$ лет) ¹⁵² Еu.

Были проведены 3 серии измерений. Отдельные участки у -спектра ¹⁶⁰ Ть представлены на рис. 1-4. Для определения энергий использовались данные работ ^(9,12), в которых точность измерения энергии была лучше чем 0,05%. Энергии слабых линий, которые ранее не наблюдались или наблюдались только на сцинтилляционном спектрометре, определены по положению в у -спектре с точностью ± 0,5 кэв.

В спектре у -лучей ¹⁶⁰ Ть мы наблюдали, кроме хорошо известных уже переходов, несколько новых линий. Переходы с энергией 486,5; 1069,0 и 1102,5кэв ранее при исследовании излучения ¹⁶⁰ Ть не наблюдались. Переход с энергией 1069,0 кэв известен из распада ¹⁶⁰ Но /20,21/и расположен между уровнями 1155,6 и 86,8 кэв.

В у -спектре ¹⁶⁰ Ть, полученного с помощью кристалл-дифракционного у -спектрометра /11,12/, обнаружены новые у -линии малой интенсивности с энергией 230,7 и 337,1 кэв. Наши данные подтверждают существование указанных переходов.

На рис. 4 представлена жесткая область у -спектра ($E_{\gamma} > 1000$ кэв), измеренная с помощью Ge(Li) -детектора с чувствительным объемом ~ 13 см³. Эти измерения проводились с фильтром, состоящим из 5 мм свинца, 1 мм меди и 1 мм кадмия с целью обнаружения жестких переходов малой интенсивности с энергией больше 1300 кэв. Однако в этой области проявилась только линия с энергией 1408 кэв, принадлежащая долгоживущему изомеру ¹⁵² Еu. Линия с энергией 1250,8 кэв ранее в одиночных спектрах у-лучей и конверсионных электронов ¹⁶⁰ Ть не наблюдалась. Этот переход был обнаружен в работе Михаэлиса^{/15/} в спектре суммарных и у -у совпадений с переходом 197 кэв.

Относительные интенсивности у -переходов определялись с погрешностью 10%, обусловленной в основном погрешностью кривой эффективности детектора. Результаты измерений приведены в табл. 1 и сравниваются с данными работ Юана и др.⁹⁹, Михаэлиса¹¹⁵ (сцинтилляционные у -спектрометры), Бэма и Роджерса²¹¹, Дагласа¹¹¹ (кристалл-дифракционные у -спектрометры) и Яклевича и др.¹⁹⁷ (полупроводниковый у-спектрометр). Получено хорошее согласие наших данных об относительных интенсивностях у -лучей с результатами указанных работ.

В табл. 2 указаны верхние пределы интенсивностей некоторых предполагаемых переходов с высоковозбужденных уровней на состояния основной ротационной полосы ¹⁶⁰ Dy.

> 2.2.М ультипольности и абсолютные интенсивности переходов в ядре¹⁶⁰ Dy

Мультипольности переходов определялись путем сравнения эксперименталь ных коэффициентов внутренней конверсии (КВК) с теоретическими^{/22/}. Для вычисления КВК мы использовали наиболее точные данные о спектре конверсионных электронов ¹⁶⁰ Ть ^{/9/}. В этой работе определены абсолютные интен-

сивности конверсионных линий с погрешностью ≤ 10%. Связывание шкал интенсивностей у -лучей и конверсионных электронов проводилось таким образом, чтобы экспериментальное значение КВК для пяти наиболее интенсивных переходов чистой мультипольности как можно точнее совпало с теоретическим значением. В качестве реперных мы использовали переходы: 86,8 (E2); 197,0 (E2); 298,6 (E1); 879,2 (E2) и 1177,7 (E1) кэв.

Сравнение экспериментальных занчений КВК с теоретическими представлено в табл. 4. Выводы о возможных мультипольностях перехолов, сделанные на основе этого сравнения, приведены в последнем столбие таблицы. При окончательном эпределении мультипольностей переходов мы учли также результаты работ /13-15, 17,19/ по измерению угловых у-у- корреляций (табл. 3), а также выводы, сделанные в работах /20,21/ по изучению распада ¹⁶⁰ Но - ¹⁶⁰ Dy

На основе полученных нами элачений КВК и данных об абсолютных интенсивностях конверсионных электронов⁹⁹ мы определили абсолютные интенсивности у -лучей и полные интенсивности переходов, возникающих при распаде ¹⁶⁰ Ть (табл. 5). Используя полученные интенсивности переходов в % на распад, мы составили баланс интенсивностей гамма-переходов (табл. 6) и определили интенсивности компонент β^- -распада на отдельные уровни ¹⁶⁰ Dy. Для определения значений log ft мы приняли в качестве энергии распада ¹⁶⁰ Tb значение 1830 ± 10 кэв, соответствующее граничной энергии 1745 ± 10 кэв^{/6/} наиболее жесткой β^- -компоненты, заселяющей уровень 86,8 кэв в ¹⁶⁰ Dy.

3. Обсуждение

Структура уровней чётно-чётного деформированного ядра ¹⁶⁰ Dy исследовалась в вышеупомянутых работах по взучению радиоактивного распада ядер ¹⁶⁰ Tb и ¹⁶⁰ Ho, а также методом кулоновского возбуждения ²³-25/ и методом ядерных реакций (а, 4 в) ^{26,27/}. На основе результатов этих исследований и данных настоящей работы нами предлагается схема распада ¹⁶⁰ Tb + ¹⁶⁰ Dy, представленная на рис. 5.

3.1.Основное состояние¹⁶⁰ Ть

Спин основного состояния 160 Ть определялся по измерению углового /28/ распределения у -излучения ориентированных ядер , а также методом магнитного резонанса атомных пучков . В этих работах получено значение спина 1 = 3. Ядро ¹⁶⁰Ть состоит из 65 протонов и 95 нейтронов. В схеме Нильссона 65-ому протону соответствует орбиталь 3+[411], относящаяся к основному состоянию в ядрах тербия с А = 155 + 163. Поэтому можно считать, что в ядре ¹⁶⁰ Ть нечётный протон находится в состоянии <u>3</u>⁺[411]. 95-му нейтрону в ядре ¹⁸¹ Dy в основном состоянии соответствует орбиталь 5+ [642], а в возбужденном состоянии с энергией 75 кэв - орбиталь 3-[521], которая, кроме того, относится также к основному состоянию ядра ¹⁵⁹Gd(N=95). Если принять, что нечётный нейтрон в основном состоянии ¹⁶⁰ Tb занимает орбиталь 5+ [642], то правило Галлахера - Мошковского /30/ приводит к квантовым характеристикам 1" = 4 +. Это противоречит указанным выше экспериментальным фактам, а также значениям log it для β . -переходов на уровни ¹⁶⁰ Dy (рис. 5). В работе Джонсона и др. /28/ сделано предположение, что основному состоянию 160 Ть соответствует конфигурация р 411f + + в 5217, приводящая к значению $1^{\pi} = 3^{-}$, что хорошо согласуется с экспериментальными данными.

3.2,Уровни ¹⁶⁰ Dy с положительной чётностью

В ядре ¹⁶⁰ Dy хорошо известна типичная для чётно-чётных деформированных ядер ротационная полоса основного состояния. При распаде ¹⁶⁰ Ть наблюдаются только два нижних уровня полосы с 1^{*n*} = 2⁺ и 4⁺, соответственно; третий уровень с 1^{*n*} = 6⁺ и с энергией 581,0 кэв образуется только при распаде основного состояния ¹⁶⁰Но с 1^{*n*} = 5⁺ /20,21[/]. Нижние три состояния ротационной полосы наблюдались в опытах по кулоновскому возбуждению ядер ¹⁶⁰ Dy. Уровни основной ротационной полосы с более высокими значеями спинов (1 = 8; 10; 12; 14,) были обнаружены в работах ^{/26,27/} по изучению спектров у -лучей, возникающих при реакции (*a*,4*n*).

 β^{-} -распад ¹⁶⁰ Ть (1^{*π*} К = 3⁻ 3) на уровни ротационной полосы основного состояния ¹⁶⁰ Dy запрешен по квантовому числу К (Δ K > λ). Однако в работах ^{/3,4/} была обнаружена жесткая компонента β^{-} -спектра с $E_{rp.}$ 1740 кэв. Бэкстрём и др. ^{/5/} исследовали β^{-} - с -совпадения при распаде ¹⁶⁰ Ть и показали, что эта компонента идет не первый возбужденный уровень основной ротационной полосы ¹⁶⁰ Dy. В работах ^{/6,7/} по изучению β^{-} - γ -совпадений было показано, что жёсткая часть β -спектра ¹⁶⁰ Ть состоит из двух компонент с граничными энергиями 1745 и 1552 кэв, заселяющими уровни 2⁺ и 4⁺ ротационной полосы основного состояния ¹⁶⁰ Dy. В связи с этим следует отметить идентичность характера β -распада ядер ¹⁵² Eu, ¹⁵⁴ Eu, ¹⁶⁰ Tь и ¹⁸² Ta с характеристиками 1^{*π*} = 3⁻. Во всех четырех случаях β -распад на уровни основной ротационной полосы дочерних ядер является К -запрешенным, а соответствующие значения log it находятся в пределах 11,9 $\leq log$ it $\leq 13,9$.

 β - переходов ¹⁶⁰ Ть и показано, что их вероятности можно объяснить примесями по квантовому числу К в начальном и конечном состояниях. Эти выводы имеют место и для распада ¹⁸² Тв. Однако, как показано в работе Хансена и др. ^{/32/}, наличие примесей по квантовому числу К имеет значительно меньшее влияние на вероятность β -распада в ядрах переходной области в ¹⁸² Еu и ¹⁵⁴ Еu.

На рис. 6 показано сравнение экспериментальных данных о ротационной полосе основного состояния ¹⁶⁰Dy с предсказаниями различных модельных представлений о структуре ядра. Обращает на себя внимание исключительно хорошее согласие экспериментальных значений энергий уровней с энергиями, вычисленными по так называемой вращательно-колебательной модели (RV – модель), развиваемой Фэсслером и др. ^{/31/}. Получено также довольно хорошее согласие с предсказаниями модели аксиально-несимметричного ядра (эти энергия вычислены в работе ^{/31/} по несколько видоизмененной модели Давыдова). Сравнение данных еще раз доказывает полную неприменимость простой ротационной формулы, как однокомпонентной, так и двухкомпонентной, для расчёта энергий уровней с высокими спинами.

Состояния с энергией 965,8 и 1048,9 кэв в ядре ¹⁶⁰ Dy известны ужє давно. В работе Натана^{/3/} они впервые рассматриваются с точки эрения обобщенной модели ядра и трактуются как состояния у -вибрационной полосы с К^{*π*} = 2 + .

Уровень с энергией 965,8 кэв разряжается тремя переходами типа E2 на уровни ротационной полосы основного состояния. Это позволяет однозначно определить его квантовые характеристики 1^{*π*} = 2⁺, что подтверждается также ланными по измерениям угловой *у* - *у* -корреляции (табл. 3).

Уровень с энергией 1048,9 кэв высвечивается двумя переходами на состояния 2⁺ и 4⁺ основной ротационной полосы. Оба перехода имеют небольшую примесь мультипольности М1, что приводит к эначению 1^{*π*} = 3⁺. Такой же вывод получается из опытов^{/19/} по измерению угловых корреляций каскада (у 962) (у 87).

Третий уровень у -вибрационной полосы с характеристиками 4⁺ и энергией 1155,6 кэв интенсивно заселяется при распаде основного состояния ¹⁶⁰ Но. В схему распада ¹⁶⁰ Ть он введен впервые в работе Бэма и Роджерса ^{/12/} на основе двух слабых переходов, разность энергий которых хорошо совпадает с разностью энергий уровней 1155,6 и 1048,9 кэв. Рассматриваемый уровень разряжается двумя переходами с энергией 1069,0 и 871,8 кэв на состояния 2⁺ и 4⁺ основной ротационной полосы. Эти переходы обнаружены в спектрах конверсионных электронов и у -лучей при распаде ¹⁶⁰ Но ^{/20,21/}, где установлена также их мультипольность – Е2. В напих измерениях довольно отчётливо проявился пик с энергией 1069 кэв (рис. 3 и 4). Однако переход 872 кэв мы не обнаружили и можем оценить только верхний предел его интенсивности $J \leq 0,18\%$ на распад (табл. 2).

При изучении распада основного состояния ¹⁶⁰ Но [/] 20,21/ обнаружены еще два состояния у -вибрационной полосы с энергиями 1288,4 (5⁺) и 1438,0 кэв (6⁺). На рис. 7 проводится сравнение экспериментальных значений энергия уровней полосы с теоретическими. Как и в случае ротационной полосы основного состояния, наилучшее совпадения получено с расчётами по вращательно-колебательной модели Фэсслера.

На основе полученных интенсивностей γ -лучей нами вычислены отношения приведенных вероятностей E2 - переходов с уровнями γ -вибрационной полосы на состояния основной ротационной полосы. Эти данные приведены в табл. 7 вместе с данными по распаду 160 Ho $/21/\mu$ 160 Tb $/9,15/\mu$ сравниваются с величинами, вычисленными по правилам интенсивностей Алага, без учёта и с учётом взаимодействия между полосами с K = 2 и K = 0. При значении параметра Z₂ = 0,05 можно получить хорошее согласие между экспериментальными и теоретическими данными.

Коллективная природа состояния с энергией 965,8 кэв подтверждается также опытами по исследованию кулоновского возбуждения вибрационных состояний в ядре ¹⁶⁰ Dy ионами ¹⁶ 0 ^{/24/}. Для величины В (E2, 0⁺ + 2⁺¹) получено значение $(0,07 \pm 0,02)e^2$ барн², что соответствует (2,7 ± 0,8) одно-частичным единицам.

Экспериментальное значение энергии у-вибрационного уровня 965,8 кэв очень хорошо согласуется с результатами вычислений, основанных на сверхтекучей модели ядра. В обзорной работе Соловьева^{/33/} указано значение энергии для первого возбужденного уровня с К = 2⁺ в ядре ¹⁶⁰ Dy, равное 970 кэв. Расчёты по сверхтекучей модели ядра показывают, что эти состояния в ядрах Dy имеют преимущественно коллективную природу, так как их волновые функции являются суперпозицией волновых функций большого числа двухквазичастичных конфигураций^{/33/}.

Для приведенной вероятности β^- -перехода на уровень с энергией 965,8 кэв получено значение log ft = 8,85 ± 0,10. Экспериментальные значения log ft для β^- -переходов первого порядка запрешения на наинизшие коллективные состояния с K^π = 2⁺ находятся в пределах 6,3 + 11,6, причём половина из них превышает 8,5^{/33/}. Наше значение log ft хорошо согласуетсч с этими данными.

3.3.Уровни с отрицательной чётностью

В предыдущих работах по изучению распада ¹⁶⁰ Ть установлено сушествование пяти уровней с отрицательной чётностью в ядре ¹⁶⁰ Dy. В работах Юана и др. ^{/0/}, Бэма и Роджерса ^{/12/} и Михаэлиса ^{/15/} были экспериментально определены возможные квантовые характеристики и обсуждалась природа этих состояний. Однако однозначная интерпретация сделана не была.

Уровни с энергией 1264,4 и 1358,3 кэв впервые введены в схему распада ¹⁶⁰ Ть в работе Натана ^{/3/} на основе у - у -совпадений. Каждый из этих уровней разряжается тремя переходами мультипольности Е1 на состояния 2^{*} и 3⁺ у -вибрационной полосы и на первый возбужденный уровень основ-

ной полосы. Между обоими состояниями происходит слабый переход типа M1 + E2 с энергией 93,9 кэв. Переходы с рассматриваемых уровней на другие состояния основной ротационной полосы в наших измерениях не наблюдались. Верхние пределы интенсивностей этих переходов оценены в табл. 2. Из мультипольностей указанных переходов следует отрицательная чётность и возможные значения спинов I = 2 или 3 для рассматриваемых уровней. Результаты работ по изучению угловых у - у -корреляций однозначно определяют спин состояния 1264,4 кэв, равный 2, в то время как для уровня 1358,3 вопрос о значении спина не был решен однозначно.

В табл. 7 представлены отношения приведенных вероятностей E1 - переходов с рассматриваемых уровней на состояния у -вибрационной полосы. Наилучшее согласие экспериментальных значений с правилами интенсивностей Алага получается при квантовых характеристиках I ^m K = 2⁻² для уровня 1264.4 кэв и 3⁻² для уровня 1358,8 кэв.

Из квантовых характеристик уровня 1264,4 кэв следует, что он имеет либо коллективную природу и представляет октупольное колебательное состояние, либо он является двухквазичастичным. В обзоре Соловьева⁽³³⁾ приводится значение энергии октупольного состояния с К^{*n*} = 2⁻ для ¹⁶⁰ Dy, равное 1180 кэв, что довольно хорошо согласуется с экспериментальным значением. Однако в этой же работе автор указывает на то обстоятельство, что нижние возбужденные состояния типа К^{*n*} = 2⁻ в чётно-чётных деформированных ядрах коллективизированы значительно слабее, чем состояния с К^{*n*} = 0⁻, и в большинстве случаев довольно близки к двухквазичастичным.

Галлахер и Соловьев вычислили на основе сверхтекучей модели расположение нижних двухквазичастичных уровней в ядре ¹⁶⁰ Dy :

 $\sum_{n=1}^{n} \begin{bmatrix} 411^{\frac{1}{2}} & -523^{\frac{1}{2}} \end{bmatrix} \quad K^{\frac{n}{2}} = 2^{\frac{n}{2}}, \qquad E = 1400 \text{ k} \Rightarrow B;$ $\sum_{n=1}^{n} \begin{bmatrix} 521^{\frac{1}{2}} & -642^{\frac{1}{2}} \end{bmatrix} \quad K^{\frac{n}{2}} = 1^{\frac{n}{2}}, \qquad E = 1500 \text{ k} \Rightarrow B.$

В указанной работе авторы приписывают состояниям 1264,4 и 1358,3 кэв либо первую, либо вторую конфигурацию. Если принять для обоих уровней K = 2 (табл. 7), то вторая конфигурация исключается и остается только двухквазичастичное состояние 4114 – 523 м, которое следует, по-видимому, приписать уровню с энергией 1264,4 кэв. В работе Соловьева ^{/33/} рассчитан вклад различных двухквазичастичных конфигураций в первое октупольное состояние типа Kⁿ = 2⁻ для ядра ¹⁶⁰ Dy :

pp[4114 - 523 f]	- 95,06%,
nn [633† - 521†]	- 2,31%,
nn [6424 - 530t]	- 0,98%,
другие	- 0,58%.

Следовательно, состояние 4114 – 5231 является доминирующим, вклад всех других конфигураций не превышает 5%. Поэтому на основе определения, приведенного в работе ^{/35/}, состояние 1264,4 кэв с $K^{\pi} = 2^{-}$ в ядре ¹⁶⁰ Dy следует считать двухквазичастичным. Энергия уровня несколько ниже, чем энергия 1400 кэв, рассчитанная ^{/34/} для состояния $\rho_{\rm P}[411! - 523!]$. Однако это расхождение несущественно и его можно объяснить вкладом октуполь-октупольного взаимодействия, учёт которого приводит к некоторому уменьшению энергии двухквазичастичных состояний ^{/33/}.

Основное состоянне ¹⁶⁰ Ть, как уже упоминалось, имеет квантовые характеристики 1 ^{*n*} = 3⁻, поэтому β -переход на уровень 2⁻ с энергией 1264,4 кэв в ядре ¹⁶⁰ Лу должен быть разрешенным с соответствующим значением log ft = 4,5 + 5,0. Из баланса интенсивностей нами получено значение log ft = 8,0±0,05, которое указывает на существование некоторого пополнительного запрета. Если предположить, что уровню 1264,4 соответствует конфигурация pp[411+ - 523+], то замедление β -перехода на это состояние можно объяснить Λ -запретом, связанным с изменением схемы связи нуклонов при цереходе.

В работе Еонитца и др. ^{/38/} указывается на то обстоятельство, что для гамма-переходов, происходящих с изменением схемы связи нуклонов (Л -запрешенные переходы) в нечётно-нечётных ядрах, имеют место два разных правила отбора до квантовому числу К в зависимости от взаимной ориентации проекций слина на ось симметрии ядра в исходном и конечном состояниях. В случае изменения направления К-переход является К-разрешенным при условии

 $|K_1| + |K_1| \leq L.$

К этой категории лереходов следует отнести рассматриваемый бета-распад ¹⁶⁰ Ть на двухквазичастичный уровень тила рр[4114 - 5234 ! в ядре ¹⁶⁰ Dy .

В данном случае мы имеем | K₁ | + | K₁ | = 5, что при значении L = 1 приводит к четырехкратному запрету по квантовому числу К.

Целосообразно сравнить наши данные с результатами работы Функе и др. /36/, в которой исследовался распад ¹⁶² Ть + ¹⁶² Dy :

	¹⁶⁰ Tb p 411t + n521t I [#] K=3 ⁻ 3	¹⁶² Tb p4111 - n5231 I ^π K=1 ⁻¹
¹⁶⁰ Dy pp[411t-523t] I ^π K=2 ⁻ 2	log ft = 8,0	
¹⁶² Dy pp[411† - 523†] I ^л K=2 ⁻ 2		log ft =4,9

Значение log ft = 4,9 указывает на то, что β⁻ -распад на двухквазичастичный уровень pp [411† - 523†] в ядре ¹⁶² Dy является разрешенным незатрудненным (а υ). Следовательно, наличие упомянутых выше запретов приводит к замедлению β -распада на двухквазичастичное состояние в ядре ¹⁶⁰ Dy приблизительно на 3 порядка.

Уровень с энергией 1264,4 кэв возбуждается также при распаде изомерно-

го состояния ¹⁶⁰ Но с К^{*π*} = 2⁻, которому в работе ^{/20/} приписана конфигурация р 4114 — в 5234⁻. Если состояние 1264,4 кэв является двухквазичастичным типа рр[4114 – 5234⁻], то рассматриваемый β -переход должен быть типа в F, что хорошо объясняет экспериментальное эначение log ft \geq 7,8 ^{/21/}

На основе всех приведенных фактов мы считаем возможным рассматривать уровень с энергией 1264,4 кэв в ядре ¹⁶⁰ Dy как двухквазичастичное состояние типа pp [411] - 523].

Уровень с энергией 1358,3 кэв должен иметь, как уже упоминалось выше, квантовые характеристики ["К = 3⁻² в полном согласии с данными Бэма и Роджерса^{/12/}. На основе этого авторы работы^{/12/} делают предположение, что уровень 1358,3 кэв представляет ротапионное состояние полосы с К[#]= 2⁻, построенной на уровне 1264,4 кэв. Отношение приведенных вероятностей β⁻-переходов с основного состояния ¹⁶⁰Ть на уровни 2⁻ и 3⁻ предполагаемой ротационной полосы равно:

$$\frac{ft(3 \rightarrow 2^{-})}{ft(3 \rightarrow 3^{-})} = 0,40 \pm 0,10 ,$$

что хорошо согласуется с теоретическим значением 0,35, вычисленным по правилам интенсивностей Алага. Это обстоятельство вместе с фактами, приведенными в работе^{/12/}, позволяет нам интерпретировать уровни 1264,4 и 1358,3 кэв как состояния ротационной полосы с К^{*π*} = 2⁻.

Уровни с энергиями 1286,5 и 1398,7 кэв были введены в работе Юана и др.^{/9/} на основе е - у -совпадений при распаде ¹⁶⁰ Ть. Установлено, что оба состояния разряжаются двумя переходами мультипольности Е1 на уровни 2⁺ и 4⁺ основной ротационной полосы. Это позволяет однозначно определить их квантовые характеристики I^π = 3⁻. Отношения приведенных вероятностей Е1 - переходов с рассматриваемых уровней показывают, что состоянию с энергией 1286,5 кэв следует прилисать значение K = 1, в то время как для уровня 1398,7 кэв остаются две возможности: K = 0 или 1. Это позволяет нам предположить, что рассматриваемые уровни имеют октупольный колебательный характер.

Для состояния с энергией 1286,5 кэв это предположение подкрепляется также экспериментальными фактами. Шелтон^{/25/}исследовал спектр протонов,

неупруго рассеянных на ядрах¹⁸⁰ Dy, и установил, что сечение возбуждения уровня с энергией 1287 кэв приблизительно равно сечению возбуждения у -вибрационного состояния 965,8 кэв. Это позволило сделать заключение о коллективной природе состояния 3⁻ с энергией 1286,5 кэв.

Уровень с энергией 1386,0 кэв ввелен в работе Бэма и Роджерса /12/ на основе двух переходов с энергиями 230,66 и 337,09 кэв, идущих на состояния 3⁺ и 4⁺ у -вибрационной полосы. Нами обнаружен новый переход с энергией 1102,5 ± 0,5 кэв, который хорошо размещается между рассматриваемым уровнем и состоянием 4⁺ основной ротационной полосы. Указанные переходы в спектре конверсионных электронов не наблюдались, что позволяет приписать им мультипольность E1. Следовательно, квантовые характеристики уровня 1386,0 кэв должны быть: 1^π = 3⁻ или 4⁻. Отсутствие перехода на У -вибрапионное состояние с 1^π = 2⁺ позволяет отдать предпочтение значению спина I = 4. Этот аргумент, однако, не является строгим, и поэтому вопрос о квантовых характеристиках и природе уровня с энергией 1386,0 кэв остается пока

Михаэлис /15/ наблюдал совпадения между у -лучами 160 Tb с энери 197 кэв, что позволило ему направить новый переход гией ≈ 1250 1250 кэв на состояние 283,8 кэв и таким образом ввести новый уровень с энергией ≈ 1550 кэв. В спектре у -лучей ¹⁶⁰ Ть (рис. 4) мы обнаружили пик, соответствующий энергии 1250,8 + 0,5 кэв: на основе этого мы уточнили энергию исходного уровня, которая равна 1534,6 + 0,5 кэв. Нами обнаружен переход 486.5 ± 0.5 кэв, энергия которого совпадает с разностью энергий уровней 1534,6 и 1048,9 кэв. В работе Войновой и др. /10/ по исследованию спектра электронов отдачи у -лучей ¹⁶⁰Ть дается оценка интенсивности (J < 0,07% на распад) для перехода с энергией 1448 кэв. Переход с такой энергией может происходить между состояниями 1534,6 и 283,8 кэв. Однако в наших измерениях этот переход не был обнаружен; оценка его интенсивности дает предел J ≤ 0,01% на распад (табл. 2). Имеющиеся в настоящее время данные об уровне с энергией 1534,8 кэв не позволяют делать выводы о его квантовых характеристиках и природе.

3.4.Некоторые уровни, обнаруженные при распаде ¹⁶⁰ Но

В работе Авотиной и др. установлено существование в ядре ¹⁶⁰ Dy двухквазичастичного уровня типа вв[521♣ + 523♣], Г[#]К = 4⁺4 с энергией 1694,0 кэв. Этот уровень может возбуждаться и при распаде 160 Ть (О_{R-}= 1830 кэв), и переход на него должен быть первого порядка запрешения. затрудненный (lh), так как не соблюдаются правила отбора по асимптотическим квантовым числам. Для грубой оценки интенсивности в - -распада 180 Ть (р 411∳ + в 521↑) на этот уровень мы использовали значение log ft > $> 8,0^{/37/}$, полученное для β -перехода между основным состоянием ¹⁶¹ Ть р 3⁺[411] и возбужденным состоянием ¹⁶¹Dy в <u>5</u>[523]. Отсюда мы получили, что уровень с энергией 1694,0 кэв не должен заселяться при распаде ¹⁶⁰ Tb с интенсивностью, большей чем 0,4% на распад. Поиски наиболее интенсивного перехода с этого состояния с энергией 728 кэв привели к оценке верхнего предела его интенсивности ≈ 0,15%. Из этого можно заключить, что рассматриваемый уровень не возбуждается при распаде Ть с интенсивностью, превышающей ≈ 0,2% на распад (log ft ≥ 8,3).

В работе Бонч-Осмоловской и др.^{/21/} при распаде ¹⁶⁰ н₀ установлено существование β -вибрационной полосы, состоящей из уровней 1263 кэв (0⁺0) и 1350 кэв (2⁺0). Распад основного состояния ¹⁶⁰ Ть на эти уровни является К-запрешенным. Несмотря на это, возбуждение уровня с і ^π = 2⁺ нельзя заранее исключить. Однако переход с энергией 1350 кэв нами не обнаружен; в табл. 2 указан верхний предел его интенсивности, равный 0,01%, что соответствует значению log ft ≥ 11,5.

В результате большого количества работ, посвященных исследованию распада ¹⁶⁰ Ть → ¹⁶⁰ Dy, и настоящей работы можно считать установленным:

1.Существование ротационной полосы основного состояния.

2.Существование γ -вибрационного состояния с К $\pi = 2^+$ и построенной на нем полосы.

3.Существование двухквазичастичного уровня с К^{*m*} = 2⁻ типа pp[411f - 523f] и соответствующего вращательного состояния.

4. Существование октупольного колебательного состояния с характеристиками 1^{*n*} к = 3⁻1.

5.Существование трех уровней отрицательной чётности, природа которых в настоящее время еще не установлена.

- 23. B. Elbek, M.C. Olesen, O. Skilbreid, Nucl. Phys., 19, 523 (1960).
- 24. Y. Yoshizawa, B. Elbek, B. Herskind, M.C. Olesen. Nucl. Phys., 73, 273 (1965).
- 25. W.N. She Iton. Phys. Lett., 20, 651 (1966).
- 26. H. Morinaga, P.C. Gugelot. Nucl. Phys., 46, 210 (1963).
- 27. K. Kotajima, D. Vinciguerra. Phys. Lett., 8, 68 (1964).
- 28. C.E. Johnson, J.F. Schooley, D.A. Skirley. Phys. Rev., 120, 2108 (1960).
- A. Y. Cabezas, J. Lindgren, R. Harms. Phys. Rev., 122, 1796 (1961).
- 30. C. J. Gallagher, S.A. Moszkowski. Phys. Rev., 111, 1282 (1958).
- 31. A. Faessler, W. Greiner, R.K. Sheline. Nucl. Phys., 70, 33 (1965).
- 32. P.G. Hansen, H.L. Nielsen, K. Wilsky. Nucl. Phys., 89, 571 (1966).
- 33. В.Г.Соловьев. Препринт ОИЯИ, Р-1973, Дубна, 1965.
- 34. C.J. Gallagher, V.G. Soloviev. Mat. fys. Skr. Dan. Vid. Selsk. 2, N 2 (1962).
- 35. Н.И.Пятов, В.Г.Соловьев. Изв. АН СССР, сер.физ., <u>28</u>, 1617 (1964).
- 36. L. Funke, H. Graber, K.H. Kaun, H. Sodan, G. Geske, J. Frana. Nucl. Phys., 84, 424 (1966).
- 37. L. Funke, H. Greaber, K.H. Kaun, H. Sodan. Dissertation. Preprint ZfK PhA 23, 1966 .
- 38. M. Bonitz, A. Andreef, P. Kastner. Preprint 7.1K PhA, 26, 1967.

Рукопись поступила в издательский отдел З мая 1967 года.

NEME	Энергия	От	носительные и	интенсивности гамма-переходов				
пп	перехода (кэв)	Бэм в Род- жерс ^{/12/ а)}	Даглас/11/	Юан и др. /9/	Михаэлис/15/	Яклевич и лр. /19/	Наши данные	
1	2	3	4	5	6	7	δ	
i.	36,8	37, I+I, 9	-	45,5 <u>+</u> 11,4	30+3	46,2 <u>+</u> 5,0	45,± ±5,0	
2!	93,9	~ 0,15	0,19	-	-	-	-	
3.	197,0	17,3+0,9	-	125 14	12+1	16,1+1,6	17,3+1,8	
4.	215,6	13,1+0,7	-	JEJ IL	11 <u>+</u> 1	13,4+1,3	13,8 <u>+</u> 1,5	
5.	230,7	0,35+0,05	0,23	-	-	-	~ 0,25	
6.	298,5	93,5+5,0	-	3 91+22	65-13	77,4+7,7	84,8+9,0	
7.	309,5	2,75+0,14	2,91) -	-	2,6+0,3	2,9+0,4	
8.	337,I	1,20+0,05	0,97	-	-	-	1,05+0,12	
9.	392,4	4,41+0,22	4,2	4,8+1,2	2,940,9	3,6+0,4	4,2+0,5	
.01	436,50)	-	-	-	-	-	0,4+0,1	
11.	682,2	-	2,26	2,4+0,6	1,7+0,7	1,64+0,2	2.,4+0,5	
12.	765,3	-	6,14	7,5+2,0	2,5+0,5	5,9+0,7	6,3+0,3	
13.	879,2	-	-	TOQ	100	100	100	

.

Таблица 1

Относятельные интенсивности у -лучей 160 Тв

Ĺ	2	3	4	5	6	7	8
I4.	962,1	-	-	33	26+5	26,2+5,0	30,1+6,0
15.	965,8	-	-	109 75	83+8	88,2+17,0	81,1+16,0
16.	1002,7	-	-	3,0+0,7	2,5+0,8	3,9+0,4	3,1+0,4
17.	1069,C ^{B)}	-	-	-	-	-	~0,25
18.	1102,50)	-	-	-	-	-	1,62+0,18
19.	1115,0	-	-	5,2+1,3	6,2 <u>+</u> 1,5	-	5,3+0,6
20.	1177,7	-	-	51,5+13	48 <u>+</u> 5	49,8 <u>+</u> 5,0	49,6+5,0
21.	1199,8	-	-	7,6+1,9	7+1	7,5+0,8	7,3+0,8
22.	1250,80)	-	-	-	0,5+0,3	-	0,48+0,06
23.	1271,5	-	-	24,2+6,0	20+4	23,3+2,3	25,3+2,5
24.	1311,8	-	-	8,5+2,1	7,3+1,4	-	9,5+1,0

Продолжение таблицы 1

a) - интенсивности у -переходов нормированы так, чтобы 1_{у 197} = 17,3.

б) - энергии, определенные нами с точностью ± 0,5 кэв.

в) - энергия, определенная в работе /20/ при изучении распада 160 Но

Ta	блиц	a 2
----	------	-----

Пределы интенсивностей некоторых переходов в

1eo Dy

Энергия персхода	$F_i \rightarrow F_i$	J(%)
728 [¥] 872 [¥] 980,6 1074,5 1264,4 1350 [¥]	$1694,0^{*} \longrightarrow 965,8$ $1155,6 \longrightarrow 283,8$ $1264,4 \longrightarrow 283,8$ $1258,3 \longrightarrow 283,8$ $1264,4 \longrightarrow 0$ $1264,4 \longrightarrow 0$ $1350^{*} \longrightarrow 0$	0,15 0,18 0,04 0,03 0,05 0,01
1448 1607 ^ж	$1534,6 \longrightarrow 86,8$ $1694,0^* \longrightarrow 86,8$	0,01 0,01 0,01

х/ Энергая переходов и уровней, обнаруженных при распаде ¹⁶⁰ Но

Таблица З

Выводы о мультипольностях переходов, сопровождающих

распад ¹⁶⁰ Тв →¹⁶⁰ Гу по измерениям угловых у-у -корреляций

Энергия перехода	Исследуемый каскад (кав)	Исследуемый Уровни, между кото- рыми происходят пе- реходы (кэв)		Мультипольность пережода	Работа
(кэв)	(838)	3	4	5	0
۶.	6		000	11+1.5% ()	1171
215,5	(y2I5) (y260)	1264,4→1048,8→86,8	2-3-2	рили р+1.5% 0	/15/
			2-3-2	»+(1 9+ 4.2)%°	/19/
			2-3-2		1.71
200 6	(v 298) (v 879)	1264,4 -> 965,8-86,8	2-2-2	n+€0,5% Q	111
290,0	(12)07 (10)		2-2-2	n	/ 14/
			2-2-2	n + 60,2% 0	/15/
			2-2-2	n + 40,25% o	/19/
	(1264.4 - 965.8 - 0	2-2-0	n+40, 1% 0	/13/
	(7298) (7900)	1204,4 505,5	2-2-0	0+(4,5+4,2)%n	/11/
879,2	(y298) (y879)	1264,4 - 965,8 - 80,0	2-2-2	°'/p >3600	1.3
			2=2=2	0 + (4+3.5)%	11
			2-2-2	o+ (3,5+2,5)% n	1-
			2-2-2	2 + 41,5% 1)	/1

Ĺ	2	3	4	F	
962,I	(y215) (y 962)	1254,4 → 1048,9 → 86,8	2-3-2	0 +€ 0.9% p	6
	(y 962) (y 87)	$1048,9 \rightarrow 36,8 \rightarrow 0$	2-3-2 3-2-0	0 + (14, 5+13, 5) p 0 + (0, 6+ 3, 3) p	/15/
1177,7	(y1178) (y87)	1264,4 → 86,8 → 0	2-2-0 2-2-0	0 + 30% n n + (2,5+1,5)% 0	/13/ /13/ /14/
1271,5	(yI272) y87)	1358,3 → 86,8 → 0	2-2-0 3-2-0 3-2-0	$n + \leq 0,9\%$ 0 n + 39% 0 n + (17+7)% 0	/19/
			2-2-0	"+≤⊥,2% o	/14/

Продолжение таблицы 3

.

Таблица	4	
---------	---	--

N.5:	Энергия	Наблю-	Коэффици	Коэффициенты конверсни а x 10 ³					Принятые	
	перехода (кэв)	даемая	Эксперимент	Tec	ретически	е значения		кающие из КВК	мультиполь- ности	
		and the second s	Значения	EI	E2	MI	112			
I	2	3	4	5	6	7	8	9	10	
I.	86,8	r	1740±280	381	1550	3080	27300	E2+(0+10)%MI	E2	
		L ₁	135± 35	36	I40	435	7100			
		L ₁₁	1050±120	9,4	995	35,5	775			
		Lu	1050 <u>+</u> 120	12,5	II20	5,8	I450			
2.	93,9	Y	~ 1750	305	1300	2450	20500	МІ+Е2 или ЕІ+М2	MI+E2	
3.	197.0	k	I66±18	41,8	168	305	1600	E2+(0+12)%MI	E2	
		ĩ,	17,9+2,6	4,7	17,5	39,8	270			
		L	27,4+3,3	0,65	26,0	3,I	31			
		Լու	20,8±2,8	0,80	21,2	0,50	28,0			
4.	215,5	R	33, I+3,7	33,2	I28	238	II70	EI+≤0,3%M2	EI+ 60,3%M2	
			4,02±1,03	3,85	13,6	30,5	193			
5.	298,6	K	15,0±1,7	15	48	97,5	392	EI+≤0,5%12	EI+≤0,5%M2	
		,L,	I,54±0,22	I,65	5,42	I2,9	57,5			
		1,11	0,31±0,05	0,175	4,40	0,95	7,0			

.

Продолжение таблицы 4

I	2	3	4	5	6	7	8	9	IO
6.	309,5	ĸ	13,5±2,4	13,7	43,8	90	348	EI+ < 0,7 %:12	EI+≤0,7%M2
7.	392,4	ľ	8,53 <u>+</u> I,49	7,65	23,6	47,6	162	EI+ 42 5112	EI+ € 25112
8.	682,2	¥	6,03 <u>+</u> 2,II	2,26	5,77	II , 7	30,9	E2+(0+ 40)%'II или EI+(13 <u>+</u> 7)%II2	E2
9.	765,3	ĸ	6,46±0,97	I,79	4,52	8,80	22,9	E2+(23 +6 8)ЯШ или EI+(22,5 <u>+</u> 4,5)ЯШ2	E2+(2 3+68) %III
10.	879,2	F I ₁	3,36±0,37 0,52±0,06	1,38 0,17	3,37 0,435	6,2I 0,825	I6,0 2,22	E2+(0+10)%Ш или E1+(15 <u>+</u> 3)%Ы2	E2+ ≤ I,5%MI
II.	962 , 1	F I. ₁	3,14±0,60 0,433±0,086	I,16 0,141	2,79 0,34	4,97 0,665	12,5 1,75	E2+(0+44)SMI или EI+(18±5)SM2	E2+(0,6+3,3)%III
12.	965,8	F I	2,89 <u>+</u> 0,60 0,434 <u>+</u> 0,095	I,15 0,138	2,76 0,365	4,92 0,66	12,4 1,72	E2+(0 + 30)ЯШ или EI+(15 <u>+</u> 5)ЯШ2	E2
13.	1002,7	E	0,84±0,19	I,07	2,54	4,52	II , 2	EI	EI
I4.	1715,0	F	0,98 <u>+</u> 0,I3	0,87	2,02	3,42	8,5	EI+ 4 3%112	EI+ 4 3%112
15.	1177,7	n L	0,788±0,087 0,118±0,028	0,785	I,8I 0,247	3,0	7,35	EI+≤I,5%112	EI+ ≤ I,5%M2
16.	1199,8	F	0,80 <u>+</u> 0,12	0,763	I,75	2,67	6,97	EI+ \$ 2,5%M2	EI+≤2,55112
17.	1271,5		0,631±0,075 ~ 0,103	0,68I 0,085	I,56 0,208	2,49 0,355	5,97 0,86	EI+≤0,5%112	EI+≤ 0,5%112
16.	131.,0	ľ	0,651±0,078	0,645	I,47	2,30	5,50	EI+≰ 255112	BI+ ≤ 25112

N Ci

№№ пп	Энергия перехода	J _{K+L+M} α) (%)	Ť ⁽ (د)	Ј перехода (%)
i	36,8	66,0+3,2	13,8 <u>+</u> 1,4	79,8 <u>+</u> 3,5
2	93,9	0,10+0,02	0,15+0,03 ^b)	0,25+0,03
3	197,0	1,32+0,04	5,3 <u>+</u> 0,5	6, 62 <u>+</u> 0, 5
4	215.5	0,16+0,01	4,23+0,45	4,39+0,45
5	230.7	<0,003 ^{B)}	0,08+0,02	0,06+0,02
6	298.6	0,46+0,03	26,0+2,6	26,46+2,60
7	309.4	0,012+0,0015	0,89+0,10	0,90+0,10
8	337.I	< 0,0035 ^{B)}	0,32+0,04	0,32+0,04
9	392.4	0.011+0.0015	1,29+0,14	1,30+0,14
ïŌ	486.5	< 0.003 ^{B)}	0,12+0,03	0,12+0,03
TT.	682.2	0.005+0.0015	0,83+0,16	0,84+0,16
:2	765.3	0.0125+0.001	1,93+0,25	1,94+0,25
13	872	_	< 0,18	< 0,18
10	879.2	0,128+0.06	30,7+3,1	30,83+3,10
15	V62 T	0.0351+0.002	9,24+1,80	9,28+1,80
15	965 8	0.0885+0.005	24,9+5,0	25,0+5,0
10	.002 7	0,0008+0,00015	0,95+0,12	0,95+0,12
11	:060	-	< 0.08	< 0,08
10	1003 2	<0.0005 B)	0.50+0.06	0,50+0,06
19	1102,3	0,0016+0,0001	1.63+0.18	1,63+0,18
20	1117,0	0,014+0,001	15,2+1,5	15,2+1,5
22	1199,8	0,002+0,0002	2,24+0,25	2,24+ 925
23	1250,8	< 0,0002 в)	0,15+0,025	0,15+0,025
24	1271,5	0,006+0,0006	7,77+0,75	2,42+0,29
25	1311,8	0,002+0,0002	2,3270,23	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Таблица 5

Абсолютные витенсивности переходов при распаде 160 Тв

 а) - интенсивности конверсионных электронов из работы /9/.
б) - интенсивность у -лучей из работы /.
в) - предел интенсивности конверсионных электронов, вычисленный при предположения мультипольности Е1.

Уровень	При	ходит	Ух	Pastocth (%)			
	F	J(%)	E	J (%)	Pashoers (%)		
Í.	2	3	4	5	6		
0	86,8	79,8					
	965,8	25,0			-		
	HTOPO:	104,8+6,1	0	0	104,8+6,1		
85,8	197,0	6,62	86,8	79,8			
	879,2	30,83					
	962,1	9,28					
	1069,D	0,08					
	1177,7	15,21					
	1199,8	2,24					
	1271,5	7,78					
	1311,8	2,92					
	Итого:	74,92 <u>+</u> 4,1		79,8+3,5	4,9+5,4		
283,8	602,2	0,84	197,0	6,62			
	765,3	1,94					
	872	0,18					
	1002,7	0,95					
	1102,3	0,50					
	1115,0	I,63					
	1250,8	0,15					
	Итого:	6,19+0,39		6,62+0,5	0,43+0,54		
			1				

Таблица 6 Баланс интенсивностей переходов, сопроволдающих

раслад 100 ТЬ

Продолжение таблицы 6

i	2	3	4	5	6
965,8	298,6	26,46	682,2	0,34	
	392,4	1,30	879,2	30,83	
			965,8	25,0	
-	Итого:	27,76+2,7		56,67+5,9	28,9+5,5
1048,8	215,5	4,39	765,3	ī,94	
	309,5	0,90	962,1	9,28	2
	337,1 486,5	0,32 0,12			
	NTOPO:	5,73+0,47		11,22+2,1	5,49 <u>+</u> 2,11
1155,6	230,7	~ 0,082	(872) 1069	< 0,13 ~ 0,08	
	Итого:	~ 0,08		∾ 0,26	<0,18
1264,4	93,9	0,25	215,5 298,6 1177.7	4,39 26,46 15,21	
	Итого:	0,25+0,03		46,06+3,2	45,8+3,2
128 5 ,5		0	1002,7 II99,8	0,95 2,24	
	Итого:	0		3,19+0,29	3,19+0,29
1358,3		0	93,9 309,5 392,4 1271,5	0,25 0,90 1,30 7,78	
	Итого:	0		10,23+0,81	10,2+0,8
1385,9		0	230,7 337,1 1102.3	0,08 0,32 0,50	
	Итого:	0	1.	0,90+0,07	0,90+0,07
1398,5		0	1115,0 1311,8	1,63 2,92	
	Итого:	0		4,55+0,34	4,55+0,34

Продолжение таблицы 6

1	2	3	4	5	5
1534,6		0	486,5 1250,8	0,12 0,15	
	Итого:			0,27+0,04	0,27+0,04

		Экспери	Теория				
$\frac{B(E2, J_iK_i \rightarrow J_1^{(0)}K_1)}{B(E2, J_iK_i \rightarrow J_1^{(0)}K_1)}$	/9/ Юан и др.	Михаэлис/15/	Данные по распаду ¹⁶⁰ Но /21/	Наши данные	Без поправки	С поправкой Z ₂ = 0.05	
(<u>E2,22 → 00</u>)	0,53	0,52	0,58±0,06	0,51±0,05	0,70	0,52	
$S(E2,22 \rightarrow 20)$ $S(E2,22 \rightarrow 40)$	0.095	0,05	0,059±0,010	0,082 <u>+</u> 0,012	0,05	0,086	
$B(E2,22 \rightarrow 20)$ $B(E2,32 \rightarrow 40)$ $B(E2,32 \rightarrow 20)$	0,81	0,35	0,65±0,I0	0,66±0,15	0,40	0,75	
$B(E2, 42 \rightarrow 20)$ $B(E2, 42 \rightarrow 20)$ $B(E2, 42 \rightarrow 40)$	-	-	0,21±0,04	0,15	0,34	0,16	

Таблица 7 Отношения приведенных вероятностей Е2-переходов в ¹⁶⁰ Су между полосами $k^{\pi} = 2^{+}$ $k^{\pi} = 0^{+}$

Исходный уровень (энергия)	Конечный уровень І т К	Эксперимент			Теория					
		/9/	Михаэлис /15/	Наши данныө	I i = 2		I _i = 3			
		Юан и др.			$K_{i} = 1$	K ₁ = 2	k ⁱ = 0	¥ i= 1	K ₁ = 2	K _i = 3
1264,4	2+2 3+2	2,4 <u>+</u> 0,2	2 ,3<u>+</u>0,6	2,3±0,3	0,5	2,0	-	0,11	0,7I	0,86
1286,5	2+0	I ,70<u>+</u>0,3 5	1,9 <u>+</u> 0,8	1,37±0,22	-	-	0,75	I , 33	-	-
	4+0	+								
1358,3	2+2	0,80 <u>+</u> 0,15	-	0,72±0,II	0,5	2,0	-	0 , II	0,71	0,86
	3+2									
1398,7	2+0	0,96±0,10	0,80±0,33	I,I0±0,33	-	-	0,75	I,33	_	-
	4+0									

Таблица 8 Отношения приведенных вероятностей Е2-переходов с уровней отрицательной чётности в ядре 100 ру

Рис. 1.Гамма-спектр ¹⁶⁰ Ть в области энергий E , < 320 кэв, измеренный на Ge (Li) -детекторе с чувствительным объемом = 5 см³.

В верхней части показан участок спектра в области $E_{\gamma} \approx 680$ кэв, измеренный с помощью Ge(Li) –детектора с чувствительным объемом ≈ 13 см.

Рис. 4. Гамма-спектр ¹⁶⁰ Ть в области энергий Е _у ≥ 1020 кэв, измеренный 3 с помощью ^{Ge}(Li) -детектора с чувствительным объемом ≈ 13 см.

Рис. 5. Схема распада, ¹⁶⁰ Ть . * -интенсивности *β* -переходов, определенные в работе .

.

Рис. 7. Уровни гамма-вибрационной полосы 160 Dy.