

1967.

P6 - 3128

3.11 1967

К. Вильский, К.Я. Громов, Ж.Т. Желев, В.В. Кузнецов, Г. Музиоль, О.Б. Нильсен, О. Скилбрайт

> ИССЛЕДОВАНИЕ ИЗЛУЧЕНИЯ ¹⁵⁰ Ть, ¹⁴⁹ Ть, ¹⁴⁹ Gd и ¹⁴⁹ Ea

P6 - 3128

К. Вильский*, К.Я. Громов, Ж.Т. Желев, В.В. Кузнецов, Г. Музиоль, О.Б. Нильсен*, О. Скилбрайт*

ИССЛЕДОВАНИЕ ИЗЛУЧЕНИЯ ¹⁵⁰ Ть, ¹⁴⁹ Ть, ¹⁴⁹ Gd и ¹⁴⁹ Еа

Направлено в "Изв. АН СССР"

объеденемный внотнтут засрных веснокозаний БИБЛИОТЕНА

^{*} Институт им. Нильса Бора.

Исследование ядер, находящихся в переходной области от сферических к деформированным ядрам ($\Lambda \approx 140-150$), представляет большой интерес с точки зрения современной теории ядра. В настоящей работе изучалось излучение ядер ¹⁸⁰ Tb ($T_{1/2} = 3,1$ часа), ¹⁴⁹ Tb ($T_{1/2} = 4,1$ часа), ¹⁴⁹ Gd ($T_{1/2} = 9,3$ дня) и ¹⁴⁹ Eu ($T_{1/2} = 106$ дней).

Изотопы тербия¹⁴⁹ Ть и ¹⁶⁰ Ть исследовались ранее авторами работ /1-11/. Рассмусен и др. /1,2/ при облучении гадолиния протонами с E_p =32-200 Мэв и европия а -частицами с E_a =60 Мэв наблюдали в тербиевой фракции активность, спадающую с периодом полураспада Т_k ≈ 4 часа, и приписали ее ¹⁴⁹ Ть.

Позднее Тот и Расмуссен¹³¹ обнаружнии гамма-лучи с энергией 165 и 352 кэв, возникающие при распаде¹⁴⁹ Ть Авторами работ^{14,57} был впервые обнаружен изотоп тербия¹⁸⁰ Ть($T_{ij} = 3, 1\pm0, 1$ часа). В работе¹⁴¹ изучались γ спектры¹⁴⁹ Ть и ¹⁵⁰ Ть, и в обоих случаях наблюдались аннигиляционные пики, а в спектре¹⁵⁰ Ть – γ -лучи с энергией 640 кэв. В работе¹⁵¹ исследовались спектры позитронов этих изотопов тербия. Поэже исследование позитронов проводилось также авторами работ^{16,71}.

В работе^{/10/} показано, что спектр конверсионных электронов "короткоживущих" изотопов тербия (Т_½ = 3-4 часа) в исследованной фракции тербия, полученной при облучении тантала протонами 660 Мэв, очень сложен и простирается выше 2000 кэв.

Первые варианты схемы распада ¹⁴⁹ Ть → ¹⁴⁹ Сd были предложены Шпинелем и др.^{/8},11[/]. Были введены два уровня ¹⁴⁹ Сd с энергией 165,5 и 352 кэв. Исследование излучения ¹⁴⁹ Gd и ¹⁴⁹ Eu проводилось ранее различными методами в работах^{/12-34/}.

Иедавно появились две работы^{/35,36/}, в которых исследовались гамма-¹⁴⁹ Gd , а в работе^{/35/} и гамма-лучи¹⁴⁹ Eu с помощью Ge (Li) -полупроводниковых детекторов.

В настоящей работе изучался спектр гамма-лучей ¹⁴⁹ Tb, ¹⁴⁹ Gd и ¹⁴⁹ Fu, а также ¹⁸⁰ Tb с помощью Ge(Li) полупроводникового детектора с размерами 0,7 см² х 0,35 см и 1024 - канального амплитудного анализатора; проводилось также исследование спектра конверсионных электронов ¹⁴⁹ Tb в области энергий до 250 кэв на шестизазорном тороидальном β-спектрометре^{/37/} (эти работы выполнялись в Институте им. Нильса Бора).

Изучались спектры конверсионных электронов и позитронов "короткоживущих" изотопов ¹⁴⁹ Ть и ¹⁶⁰ Ть с помощью β -спектрометра с трехкратной фокусировкой пучка, описанного в ^{/24/}, а также спектры двойных и тройных совпадений гамма-лучей ¹⁴⁹ Ть и ¹⁶⁰ Ть и спектры у - у -совпадений при распаде ¹⁴⁹ GJ на установке, описанной в ^{/38/} (эти работы выполнялись в Объединенном институте ядерных исследований в Дубне).

Предварительные результаты исследований распада ¹⁴⁹ Gd и¹⁴⁹ Fu были доложены на летнем совещании по ядерной спектроскопии нейтронодефицитных изотопов, изомерии ядер и теории ядра в Дубне (июль 1965 г.) и опубликова-/32/

2. Экспериментальная часть и результаты

2.1. Приготовление источников

Изотопы тербия и гадолиния получались в результате расщепления ядер тантала под действием протонов с энергией 660 Мэв на синхроциклотроне Объединенного института ядерных исследований в Дубне. Мишени тантала облучались в течение 2-3 часов на внутреннем пучке синхроциклотрона. Из облученных мишеней выделялась группа редкоземельных элементов. Фракции тербия и гадолиния выделялись из смеси редкоземельных элементов хроматографическим методом^{/39/}.

Для исследования спектра конверсионных электронов и позитронов "короткоживущих" изотопов тербия с помощью β-спектрометра с трехкратной

фокусировкой и спектров $y - y - u \beta^+ - y$ - совпадений при распаде ¹⁴⁹ Ть и μ^{160} Ть использовалась тербиевая фракция. Измерения начинались через четыре часа после конца облучения.

Для исследования спектров у – у –совпадений при распаде ¹⁴⁹ Gd использовалась гадолиниевая фракция, очишенная хроматографическим методом от дочерних изотопов европия, спустя 15 дней после конца облучения.

В этом источнике ¹⁴⁷ Gd (Т₁₅ = 35 часов) практически не наблюдался. Изучение гамма-спектров ¹⁴⁹ Ть и ¹⁶⁰ Ть с помощью Ge(Li) полупроводникового летектора проводилось на источниках, полученных при разделении тербиевой фракции на масс-сепараторе ^{/40/} в институте им. Нильса Бора.

Разделение изотопов тербия на масс-сепараторе проводилось через 15 часов после хроматографического разделения редкоземельных элементов в Дубне и через 20 часов после конца облучения танталовой мишени.

После распада ¹⁴⁹ Ть тот же источник был использован для исследования гамма-спектров ¹⁴⁹ Gd и ¹⁴⁹ Eu , накопившихся при распаде ¹⁴⁹ Tb (¹⁴⁹ Tb 4, ¹⁴⁹ Tb 4, ¹⁴⁹ Cd 9, 3 дн., ¹⁴⁹ Eu 106 дн., ¹⁴⁹ Sm). Измерение гамма-спектров ¹⁴ Cd ¹⁴ Eu выполнено через 48 дней после разделения тербиевых изотопов на масс-сепараторе. 2.2. И сследование излучения ¹⁴⁹ Tb и ¹⁵⁰ Tb

Спектр конверсионных электронов ¹⁴⁹ Ть и ¹⁵⁰ Ть исследовалоя с помощью β -спектрометра с трехкратной фокусировкой. В спектре конверсионных электронов тербиевой фракции наблюдались также конверсионные электроны, принадлежащие долгоживущим изотопам ¹⁶¹ Ть (Т₁₂ = 17 час), ¹⁵² Ть (Т₁₂ = 17,5 час), ¹⁵⁵ Ть (Т₁₂ = 5,6 дн.) и др. На рис. 16 представлен один из участков спектра конверсионных электронов. Показаны две серии измерений: незачерненными кружками – первая серия, зачерненными – вторая серия, полученная через 8 часов после начала измерения первой серии.

Исследование спектров гамма-лучей разделенных изотопов ¹⁴⁹ Tb и ¹⁵⁰ Tb с помошью Ge(Li) полупроводникового детектора позволило более однозначно идентифицировать линии конверсионных электронов.

На рис. 2а,б и 2в, г показаны спектры гамма-лучей ¹⁵⁰Тьи ¹⁴⁹Ть соответственно. Гамма-пики, принадлежащие ¹⁵⁰Ть и ¹⁴⁹Ть, на рисунках заштрихованы.

Как видно из слектров, использованные источники ¹⁵⁰ Ть и ¹⁴⁹ Ть содержали значительные примеси ¹⁵¹ Ть и ¹⁴⁹ Gd. Это связано главным образом с тем, что к моменту разделения на масс-сепараторе "короткоживущие" изотопы тер-

бия (¹⁶⁰ Ть и ¹⁴⁹ Ть) сильно распались и в тербиевой фракции содержалось большое количество соседнего изотопа ¹⁶¹ Ть и дочернего ¹⁴⁹ Gd. Одновременно с исследованием гамма-спектра измерялся спектр конверсионных электронов в области энергий электронов до 250 кэв с помощью тороидального шестизазорного ¹⁴⁹ Ть -спектрометра ^{/37/}. Участок этого спектра изображен на рис. 1а, где также показаны две серик измерений, причем вторая серия получена спустя ~ 10 часов после начала измерения первой.

В табл. 1 приведены энергии и относительные интенсивности линий конверсионных электронов переходов 164,5 и 187,3 кэв ¹⁴⁹ Ть и приведены экспериментальные и теоретические отношения К/L. Теоретические значения отношений К/L рассчитаны по данным таблиц Слива и Банд^{/41/}.

Одно временное исследование гамма-спектра и спектра конверсионных электронов ¹⁴⁹ Ть позволило нам определить экспериментальные значения коэффициентов внутренней конверсии для переходов 184,5 и 187,3 кэв при распаде ¹⁴⁹ Ть нормированием относительного значения коэффициента внутренней конверсии перехода 149,9 кэв типа М1 ($a_{\rm k} = 0,490$), относящегося к распаду дочернего ¹⁴⁹ Gd C другой стороны, в работе //11/ определена мультипольность перехода 187,3 кэв типа Е2 по отношению $L_{\rm x} : L_{\rm H}$ L_H.

В табл. 2 сведены результаты обработки гамма-спектров и спектров конверсионных электронов ¹⁴⁹ Ть и ¹⁵⁰ Ть, здесь же приведены значения экспериментальных и теоретических коэффициентов внутренней конверсии и сделаны заключения о мультипольностях отдельных переходов. При вычислении экспериментальных значений a_k принято также, что у -переход 187,3 кэв в ¹⁴⁹ Сd - типа Е2 и у -переход 639 кэв в ¹⁶⁰ Сd - типа Е2. Теоретические

значения рассчитаны по таблицам Слива и Банд /41/.

В спектре позитронов тербиевой фракции, исследованном с помощью β спектрометра с трежкратной фокусировкой, помимо позитронов ¹⁸² Ть (Т χ = 17,5 час), наблюдались позитроны "короткоживущих" изотопов тербия, интенсивность которых убызала с периодом полураспада Т χ = 3-4 часа.

На рис. З приведен график Кюри и спектры позитронов "короткоживущих" изотопов тербия. Как видно из рисунка, наблюдаются три интенсивные компоненты позитронов с граничными энергиями (3700+40) кэв, (3040+60) кэв и (1780+100) кэв. Интенсивность позитронов на всех участках спектра убывала со средним периодом полураспада ≈ 3,5 часа. Поэтому мы не могли сказать.

какая часть спектра относится к ¹⁵⁰ Ть, а какая к ¹⁴⁹ Ть. Однако привлечение дополнительных аргументов (см. ниже) позволяет сделать заключение, что позитроны с граничной энергией 3100 М эв принадлежат ¹⁵⁰ Ть и позитроны с граничной энергией 1780 кэв - ¹⁴⁹ Ть.

Отношение интенсивности компоненты с граничной энергией 3700 кэв к интенсивности линии K639¹⁵⁰ Tb равно 30. Интенсивности позитронов с граличными энергиями 3700, 3040 и 1780 кэв наблюдаются в спектре в соотношении 1:0,32:0,53 соответственно. Эта оценка сделана для момента начала измерений позитронного спектра и будет в дальнейшем полезна для оценки количеств позитронов ¹⁴⁹ Tb и ¹⁵⁰ Tb в наших экспериментах.

На рис. 4 и 5 показаны спектры $\gamma - \gamma$ -совпалений в тербиевой фракции: спектр совпадений с γ -лучами с энергией около 640 кэв и спектр $\beta^+ - \gamma$ - совпадений. Чтобы исключить вклад изотопов тербия с $T_{V_2} > 3-4$ часа (в основном ¹⁸² Tb и ¹⁵¹ Tb), производились измерения спектров совпадений на том же источнике через 30 часов после окончания первых измерений. Затем спектры, полученные в результате второй серии измерений вычитались из спектров первой серии. Период полураспада долгоживущих изотопов тербия принимался при этом равным 17,5 часа.

На рис. 4а показан график спада интенсивности позитронов, т.е. совпадений двух аннигиляционных гамма-квантов в процессе измерения спектров $\beta^+ - \gamma$ -совпадений. Видно, что позитронов ¹⁴⁹ Ть и ¹⁸⁰ Ть в момент начала измерений было в несколько раз больше, чем позитронов более долгоживущих изотопов тербия (в основном ¹⁶² Ть).

Анализ спектров $\beta^+ - \gamma$ -совпадений показал, что только ~ 30% всех позитронов (¹⁴⁹ Tb + ¹⁵⁰ Tb) совпадает с гамма-лучами, 70% идет в основное состояние ¹⁴⁹ Gd и ¹⁵⁰ Gd. В спектре $\beta^+ - \gamma$ -совпадений (рис. 4) наблюдаются совпадения с гамма-лучами с энергией ~640, ~560, ~400, ~8 ³, ~870 кэв, а также относительно слабые совпадения с гамма-лучами с энергией больше 1 Мэв. 2.3. И с с л е д о в а н и е и з л у ч е н и я ¹⁴⁹ Gd и ¹⁴⁹ Eu.

Исследование гамма-спектров ¹⁴⁹ Gd и ¹⁴⁹ Fu производилось с помощью (Ge(Li) полупроводникового детектора.

Гамма-спектр ¹⁴⁹ Gd + ¹⁴⁹ Eu показан на рис. 6.

В табл. З приведены данные об энергиях и относительных интенсивностях гамма-лучей ¹⁴⁹ Gd и ¹⁴⁹ Eu в сравнении с данными недавно появившихся в пе-

7.

чати работ $^{/36,57'}$, в таблице даны также экспериментальные и теоретические значения коэффициентов внутренней конверсии и выводы о мультипольностях гаммапереходов, сопровождающих распад 149 Сd и 149 Eu. При расчете коэффициентов внутренней конверсии мы приняли в соответствии с результатами работ $^{/14,28/}$, что гамма-переход 498 кэв при распаде 149 Сd -типа E3 ($a_k = 2,9.10^{-2}$) а гамма-переход 277,2 кэв при распаде 149 Eu- типа M1($a_k = 9.10^{-2}$).

Как уже отмечалось выше, проводилось исследование спектров $\gamma - \gamma$ совпадений при распаде¹⁴⁹ Gd с гамма-квантами 150, 270, 300, 515, 540, 650 и 750 ков. На рис. 7 показаны спектры $\gamma - \gamma$ - совпадений с участками гамма-спектра, которые обозначены на рисунке штриховкой. Совпадения с участками спектра "б" и "и" являлись фоновыми для основных совпадения.

3. Обсуждение результатов

3.1. Позитронный распад¹⁴⁹Тьи ¹⁵⁰ Ть

К сожалению, мы не смогли измерить спектры позитронов разделенных изотопов ¹⁴⁹ Ть и ¹⁵⁰ Ть. Поэтому непосредственно по результатам измерения позитронных спектров ¹⁴⁹ Тb+ ¹⁵⁰ Тb нельзя судить о том. какие позитроны приналлежат ¹⁴⁹ Ть и ¹⁶⁰ Ть. Однако, привлекая дополнительные сведения, можно сделать об этом некоторые заключения. Имеюшиеся данные об энергиях a -pacпада ¹⁴⁹ Tb($Q_{a} = 4098\pm50$ кэв)^{/42/}, α -распада ¹⁴⁹ Gd($Q_{a} = 3123\pm5$ кэв)^{/43/} и β -распада ¹⁴⁶ Eu (Е_В = 2760<u>+4</u>0 кэв)^{/44/} позволяют вычислить разность масс ¹⁴⁹ Ть----¹⁴⁹ Gd. Она равна (3735+50) кэв. Это означает, что при распаде ¹⁴⁹ Ть не могут возникать позитропы с энергией, большей (2715+50) кэв. Таким образом, позитроны с граничной энергией 3040+.60, (3700+40) кэв возникают при распаде ¹⁵⁰ Ть. Если бы позитроны с граничной энергией 1780 кэв принадлежали ¹⁵⁰ Ть, то мы должны были бы наблюдать уровень ¹⁵⁰ Gd (и связанные с ним гамма-переходы) с энергией не меньше 2000 кэв. При этом заселение этого уровня путем электронного захвата должно было бы быть, учитывая увеличение отношения K/B, даже большим, чем заселение основного состояния 180 Gd. Это противоречит результатам изучения (β + - у -совпадений, Следовательно, по крайней мере основная часть интенсивности позитронов с граничной энергией 1780 кэв принадлежит распаду 149 Ть.

3.2. Схема распада ¹⁴⁹ Ть —— ¹⁴⁹ Gd

На рис. 8 приведена предлагаемая нами схема распада ¹⁴⁹ Ть — ¹⁴⁹ Сd. Естественно считать, что самый интенсивный переход с энергией 164,5 кэв определяет положение уровня с той же энергией. Наблюдение совпадений с

у -лучами 165 кэв в спектре совпадений с у-квантами с энергией около 640 кэв (рис. 5) показывает, что переход 650 кэв идет в каскаде с переходом 165 кэв. Такой же вывод следует из анализа спектра совпадений с у -лучами 165 кэв, в котором наблюдались совпадения с у -лучами 190; 400, 500; 650 и 850 кэв. Таким образом, на основе результатов изучения у - у -совпадений следует ввести уровни с энергиями 352,817 и 1206 кэв. Можно предположить также существование уровней с энергиями 1028, 1436 и 1593 кэв.

Как указано выше, источник использованный для изучения гамма-спектра ¹⁴⁹ Ть. содержал ¹⁴⁹ Gd, накопившийся при распаде¹⁴⁹ Ть. Это обстоятельство позволило нам определить число у -квантов на один распад ¹⁴⁹ Ть для некоторых гамма-переходов, поскольку известно, что у -лучи с энергией 299 кэв возникают в 27% случаев на распад ¹⁴⁹ Gd. Так, оказалось, что у -лучи с энергией 165 кэв возникают в 26% случаев распада ¹⁴⁹ Ть (учитывалось, что

¹⁴⁹ Ть в 10% случаев распадается путем испускания а -частиц в ¹⁴⁸ Ев)

С другой стороны, в исследуемом источнике содержался ¹⁴⁵Eu , накопившийся при распаде ¹⁴⁹Tb с момента разделения на масс-сепараторе до измерения гамма-спектра. Это время равно 5 часам. Известно, что гамма-лучи с энергией 893 кэв возникают в 68% ^{/44/} случаев распада ¹⁴⁵Eu. Это позволило нам опенить долю а -распада ¹⁴⁹Tb. Она оказалось равной (13±4)% на один распад¹⁴⁹Tb. Используя эти сведения, мы смогли оценить распад ¹⁴⁹Tb путем электронного захвата на отдельные уровни ¹⁴⁹Gd (рис. 8) и соответствующие значения lgfr. При этом разность масс была принята равной (3735±50) кэв из данных цикла $a - и \beta$ -распада (см. выше).

По данным об интенсивности аннигиляционного пика в гамма-спектре ¹⁴⁹ Ть мы подсчитали интенсивность позитронов в % на раслад. Коэффициент перехода от интенсивности аннигиляционного пика к интенсивности позитронов был получен из анализа гамма-спектра ¹⁵⁰ Ть, для которого оценено отношение $\frac{I\beta+}{I_{K,639}}$. ¹⁴⁹ Ть распадается путем испускания позитронов в ~ 5% случаев.

Экспериментальное значение граничной энергии позитронов 1780 кэв и значение разности масс 3735 кэв указывают на то, что позитронный распад

происходит на уровень с энергией ~1 Мэв. При рассмотрении данных об интенсивностях распада¹⁴⁹ Ть на уровни ¹⁴⁹ Са можно ожидать, что наблюдаемые позитроны связаны с наиболее сильно заселяемыми уровнями с энергиями 817 и 1208 кэв.

Граничные энергии позитронов при этом должны быть 1900 и 1510 кэв, соответственно. Вероятно, компонента позитронов с граничной энергией 1780 кэв (рис. 3) состоит на самом деле из двух компонент с указанными энергиями и приблизительно равными интенсивностями. Разделить эти компоненты при изучении позитронного спектра в тербиевой фракции мы не смогли. Существование β^+ -распада на уровни 817 и 1206 кэв подтверждается также наблюдением в опытах по тройным $\gamma - \gamma$ -совпадениям (совпадениям между позитронами и γ -лучами с энергией 800, 870 и 1200 кэв) (рис. 4). Указанные энергии γ -лучей практически совпадают с энергиями γ -переходов, идущих с уровней 816 и 1206 кэв. Наблюдаемые в том же опыте совпадения с гамма-лучами с энергией 640 кэв отчасти обязаны совпадениям позитронов при распаде ¹⁴⁹Ть и γ -лучей с энергией 652 кэв. Но при распаде

у -лучи с энергией 652 кэв только в два раза интенсивнее у -лучей 817кэв. То же соотношение должно сохраниться и в спектре β^+ - у -совпадений. Таким образом, большая часть интенсивности рассмотренных совпадений относится к распаду ¹⁵⁰Ть, т.е. наблюдаются совпадения позитронов с у -лучами 639 кэв при распаде ¹⁵⁰Ть.

Пока трудно высказаться определенно о квантовых характеристиках уровней ¹⁴⁹Gd Согласно схеме Майер, основное состояние ¹⁴⁹Gd может иметь квантовые характеристики либо f 7/2, либо b 9/2. На основании данных о распаде ¹⁴⁹Gd₈₅ и по аналогии с ядром ¹⁴⁷₆₂Sm₈₅ можно заключить, что более вероятными являются квантовые характеристики f 7/2. Мультипольности у -переходов с уровней 164,5 и 352 кэв (табл. 2) не противоречат приписанию этим уровням квантовых характеристик 5/2 и 3/2, соответственно. Такие характеристики имеют первый и второй возбужденные уровни в ¹⁴⁷Gd₈₅ и ¹⁴⁷gSm₈₅. Для уровней с энергиями 817 и 1206 кэв можно указать как наиболее вероятные характеристики 3/2 и 5/2 соответственно. Основное состояние ¹⁴⁹Tb, вероятно, имеет квантовые характеристики 5/2⁺.

Ожидаемая аналогия между ядрами ¹⁴⁹₆₄ Gd₈₅ и ¹⁴⁷₆₂ Sm₈₅ проивляется, по-видимому, также и в других свойствах возбужденных состояний. Мы рас-

Считали на основе экспериментальных данных настоящей работы и работ ^{/45,46/} отношения приведенных вероятностей переходов типа E2 с уровней ¹⁴⁹Cd и ¹⁴⁷Sm. Как видно из табл. 4, E2-переходы типа 3/2 → 5/2 ускорены относительно E2-переходов типа 3/2 → 7/2 примерно в 10-50 раз в обоих ядрах. В случае ¹⁴⁷Sm ^{/45/} рассчитаны также приведенные вероятности В(E2) для переходов 76, 198 и 122 кэв, идущих с уровней 198 кэв (3/2) и 122 кэв (5/2). Из таблицы видно, что переходы типа E2 с энергией 76,122 и 198 кэв в ¹⁴⁷Sm ускорены в 52,172 и 74 раза соответственно. Из сравнения значений отношений приведенных вероятностей переходов типа E2 к приведенным вероятностям. рассчитанным по Мошковскому (см.^{/41/}) (T^(y)₂) определялось с учетом статистического множителя S), и сравнения с ¹⁴⁷Sm следует сделать заключение, что нижние уровни с энергиями 165, 352 и 817 кэв ядра ¹⁴⁹ Cd имеют, по-видимому, коллективную природу.

3.3. Схема распада¹⁵⁰ Ть

На рис. 9 представлена предлагаемая нами схема уровней ¹⁸⁰ Gd в сравнении со схемой уровней ¹⁴⁸ Sm ^{/47,48/}. Как видно из гамма-спектра и табл. 2, гамма-переход 639 кэв интенсивнее всех остальных переходов, возникающих при распаде ¹⁸⁰ Tb, вместе взятых. Ясно, что этот переход идет с уровня с энергией 639 кэв в ¹⁸⁰ Gd.Экспериментальных данных, позволяющих установить квантовые характеристики этого уровня, нет, однако мы считаем, что так же как в других четно-четных ядрах, это должен быть уровень типа 2⁺, и следовательно, гамма-переход 639 кэв - типа E2.

Мы считаем, что следующие по интенсивности гамма-переходы 499 и 570 кэв идут на уровень 639 кэв, определяя уровни с энергиями 1138 и 1209 кэв. Эти переходы – типа Е1 и Е2+М1 соответственно; в четно-четных ядрах не наблюдаются переходы такой мультипольности, идущие в основное состояние. Предположение о существовании уровней 1138 и 1209 кэв не противоречит опытам по $\gamma - \gamma$ – совпадениям с гамма-лучами 640 кэв. Мультипольность перехода 499 кэв типа Е1 (табл. 2) определяет наиболее вероятные квантовые характеристики уровня 1138 кэв 3⁻. Уровню 1209 кэв следует прилисать квантовые характеристики 2⁺, 3⁺, 4⁺, однако при сопоставлении с ядрами ¹⁴⁸ Sm₈₆ и

¹³² Gd₈₈ предпочтительнее этому уровню приписать квантовые характеристики 4⁺.

Уровни с энергиями 1516, 1640, 1790 и 2085 кэв предположительно вводятся на основании совпадения сумм энергий переходов, а также резуль-

татов изучения совпадений с гамма-лучами 640 кэв (рис. 5). Как показано выше, позитроны с граничной энергией (3700±40) кэв и (3040±60) кэв возникают при распаде ¹⁸⁰ Ть. Из опытов по $\beta^+ - \gamma$ -совпадениям следует, что позитроны с E_{β^+} = 3700 кэв идут в основное состояние ¹⁶⁰ Сd. В тех же опытах по $\beta^+ - \gamma$ -совпадениям мы наблюдаем совпадения позитронов с гамма-лучами 640 кэв. Это значит, что позитроны с граничной энергией 3040 кэв идут на уровень 639 кэв (2⁺)¹⁸⁰ Сd Эти сведения о позитронном распаде ¹⁸⁰ Ть позволяют оценить значения lgfr для распада ¹⁸⁰ Ть на основное состояние (0⁺) и первое возбужденное состояние (2⁺)¹⁵⁰ Cd. Они равны 7,4±0,3 и 7,8±0,3, соответственно. Таким образом, это переходы первого порядка запрещения ($\Delta I = 0,1, да$), а основное состояние ¹⁶⁰ Ть, очевидно, имеет квантовые характеристики 1⁻. Из полученного нами отношения интенсивностей

 $\frac{I_{\beta} + _{3700}}{I_{K \, 639}} = 30, используя коэффйциент внутренней конверсии на К -оболочке$ для перехода 639 кэв (E2), равный 0,064, получаем, что интенсивность позитронов при распаде ¹⁵⁰ Ть составляет около 25% интенсивности гамма-перехода с энергией 639 кэв. Эти данные позволяют сделать заключение о том, чтопри распаде ¹⁵⁰ Ть на уровень 639 кэв ¹⁵⁰ Сd экспериментальное отношение интенсивностей электронного захвата и позитронного распада отличается от теоретического для разрешенного перехода. Действительно, как нетрудно видетьиз табл. 2, при распаде ¹⁵⁰ Ть заселение уровня с энергией 639 кэв ¹⁵⁰ Сd пу $тем электронного захвата и <math>\beta^+$ -распада составляет около 50%. Следовательно, отношение интенсивностей электронного захвата и позитронного распада (K/β^+) на уровень 639 кэв, определенно, больше 8 ($\frac{50\%}{6\%}$ = 8,3). Теоретическое значение того же отношения при Е β +=3100 кэв равно 0,7.

Разногласие между экспериментальным и теоретическим отношениями K/β^+ для бета-перехода первого запрешения наблюдалось также при распаде ¹⁶¹ Er в работе ^{/48/}, выполненной в спектроскопической лаборатории в Дубне. Интересно получить более точные данные о распаде ¹⁵⁰ Tb, чтобы уточнить экспериментальные данные об этой аномалии отношения K/β^+ и проанализировать этот вопрос теоретически.

Айхлером^{/50/} проведен анализ энергетического поведения первых 2⁺ и 3⁻ уровней в четно-четных ядрах (Z = 28-66, N = 28-90). Если проанализировать также зависимость энергетического положения первых 4⁺ уровней для четно-четных ядер гадолиния, то оказывается, что наблюдается плавная

зависимость снижения 4⁺ уровней по энергии, как и для первых 2⁺ уровней ^{/50/}, по мере удаления от заполненной нейтронной оболочки (N = 82) к области деформированных ядер с N > 90.

3.4. Схема распада ¹⁴⁹ Gd — → ¹⁴⁹ Eu

На основании анализа спектра гамма-лучей, спектров $\gamma - \gamma$ - совпадений, баланса интенсивностей и анализа литературных данных предлагается сжема распада ¹⁴⁹ Gd — ¹⁴⁹Eu (рис. 8). Основному состоянию ¹⁴⁹ Eu прилисываются квантовые характеристики d 5/2 на основе модели оболочек и сравнения с соседними ядрами ¹⁴⁷Eu и ¹⁸¹Eu.

Интенсивный переход 149,9 кэв определяет первый возбужденный уровень ¹⁴⁹ Eu (g 7/2). Второй возбужденный уровень 497 кэв введен также ранее авторами других работ и подтверждается совпадениями с гамма-лучами 150 кэв. Мультипольности перехода 497 кэв типа ЕЗ и перехода 346 кэв типа М2 (см. табл. 3) позволяют надежно приписать квантовые характеристики h 11/2 уровню 497 кэв ¹⁴⁹ Eu. Время жизни этого уровня определено в работе /23/ и равно (2,48±0,05).10⁻⁶ сек.

В спектре совпадений с гамма-квантами 150 кэв наблюдались совпадения с гамма-лучами 280 кэв (≈ 2,5%), 340 кэв (≈ 9,3%), 500 кэв (1,2%), 650 кэв (≈1%), 790 кэв (4%) и 940 кэв (≈1%).

На основании этих данных и гамма-слектра ¹⁴⁹Gd можно сказать, что подтверждаются введенные ранее уровни с энергией 497,687,795,940 кэв, кроме того, можно ввести уровни с энергиями 1081 и 1098 кэв.

В совпадениях с гамма-квантами 270 кэв обнаружены совпадения с гамма-лучами 150 кэв (12%), 500 кэв (15%) и 650 кэв (4%).

Это позволяет также доказать существование уровней с энергией 534 и 667 кэв. В совпадениях с гамма-квантами 300 кэв наблюдались те же совпадения, что и с гамма-квантами 270 кэв, но в значительно меньшем количестве. Это указывает на то, что гамма-кванты 209 кэв должны заселять изомерный уровень 497 кэв (h II /2), что также указывает на существование уровня 795 кэв.

Наблюдение у – у -совпадений с гамма-квантами 515 кэв показывает, что существуют уровни с энергией 667 и 940 кэв, т.к. наблюдаются совпадения гамма-лучей 150 и 270 кэв с гамма-квантами 515 кэв практически в 100% случаев.

Совпадения с гамма-квантами в области 540 кэв не противоречат введению уровней с энергией 534 и 795 кэв.

Наблюдаемые совладения гамма-лучей с энергией 150 кэв (40%) и 270 кэв (28%) с гамма-ликом 650 кэв также указывают на существование уровней 667 и 940 кэв.

Совпадения с гамма-квантами в области 750 кэв позволяют ввести уровень с энергией 994 кэв. На рис.8 на основании наших результатов и данных ранних работ других авторов предлагается схема возбужденных уровней ¹⁴⁹ Eu. Недавно появились работы ^{/36,57/}, в которых даны дополнительные сведения о схеме распада ¹⁴⁹ Gd — ¹⁴⁹ Eu. Наши результаты в основном хорошо согласуются с данными этих работ (см. таблицу №3).Дополнительно нами введены уровни с энергией 994 и 1081 кэв.

На схеме возбужденных уровней ¹⁴⁹ Еп приведены значения lgfr и заселенности уровней путем электронного захвата, рассчитанные на основании баланса интенсивностей. При расчете значений lgfr принималось, что разность масс ¹⁴⁹ Gd - - ¹⁴⁹ En равна 1220 кэв^{/51/}. Анализ результатов позволяет приписать уровням с энергией 534, 667, 750, 795 и 940 кэв вероятные квантовые характеристики 7/2⁺,9/2⁺,7/2⁻,9/2⁻ и 7/2⁻ соответственно, что также не противоречит результатам недавно опубликованной работы ^{/36/}. Как уже говорилось в работах ^{/15,52/}, сравнение нижних уровней ¹⁴⁷ En₈₄, ¹⁴⁹ En ¹⁵¹ En₈₆ (основных состояний d 5/2, первых возбужденных уровней g 7/2 и вторых уровней ь 11/2) указывает на то, что все эти уровни вполне определенно описываются по схеме Майер. При этом обращается внимание на то, что по мере удаления от заполненной нейтронной оболочки (N = 82), приближаясь к области деформированных ядер, энергии уровней снижаются и энергетическая разность между ними становится меньше, и уже для ядра ¹⁶⁵ En₉₀ наблюдается другой характер нижних уровней, описываемых уже схемой Нильсона.

Как отмечалось в работе^{/52/}, для М1-переходов 7/2⁺ — 5/2⁺ в ядрах ¹⁴⁷ Eu, ¹⁴⁹ Eu и ¹⁵¹ Eu, запрещенных по орбитальному квантовому числу l, факторы задержки относительно оценок по Мошковскому (с учетом статистического множителя S) значительно меньше для этих ядер, чем для ядер ¹³⁷ La, ¹³⁹ La, ¹⁴¹ Pr и ¹⁴⁸ Pr. С другой стороны, наблюдается увеличение приведенных вероятностей для Е2-переходов вида g7/2 — d5/2 от ¹⁴⁷ Eu к ¹⁵³ Eu (см. табл. 4). Это указывает на то, что по мере добавления пар нейтронов в изотопах европия происходит постепенная "коллективизация" уровней.

При исследовании гамма-спектра ¹⁴⁹ Сd наблюдались гамма-пики, обязанные распаду ¹⁴⁹ Eu, получаемого как дочерний продукт распада ¹⁴⁹ Gd. Исследование излучения ¹⁴⁹ Eu в генетической связи с ¹⁴⁹ Gd позволило нам определить абсолютное число гамма-квантов на один распад ¹⁴⁹ Eu, т.е., зная число гамма-квантов 299 кэв, равное ~ 27% на один распад¹⁴⁹ Gd , мы определили число гамма-квантов 327 кэв на один распад ¹⁴⁹ Eu, равное 3,7%. Как было сказано выше, измерение гамма-спектра ¹⁴⁹ Gd +¹⁴⁹ Eu производилось 46 дней спустя после химического разделения тербиевой фракции в Дубне. Это нозволило нам проследить количественно накопление ¹⁴⁹ Gd и ¹⁴⁹ Eu при распаде¹⁴⁹ Tb.

Из экспериментальных данных об относительных интенсивностях L-и М-линий конверсионных электронов в работе ^{/46/} была определена доля перехода 22,5 кэв на один распад ¹⁴⁹ Eu. Интенсивность перехода 22,5 кэв оценена равной 47% на один распад ¹⁴⁹ Eu.

На схеме распада ¹⁴⁹ Ецини¹⁴⁹ Sm (рис. 8) приведены значения lg fr и доли электронного захвата на возбужденные уровни¹⁴⁹ Sm. При расчете значений lg fr принималось, что разность масс ¹⁴⁹ Eu — ¹⁴⁹ Sm равна 786 кэв^{/53/}.

Схема возбужденных уровней ¹⁴⁹ Sm предложена ранее авторами многих работ. Следует отметить тот факт, что при распаде ¹⁴⁹ Pm возбуждаются совершенно другие уровни ¹⁴⁹ Sm В работах ^{/30,54/} (по кулоновскому возбуждению уровней ¹⁴⁹ Sm) также не наблюдалось характерных уровней, возникающих при распаде ¹⁴⁹ Eu. Авторы работы ^{/30/} обнаружили уровень с энергией 650 ± 20 кэв. Эти факты, по всей вероятности, можно объяснить двумя причинами: во-впервых, разной деформацией ядер ¹⁴⁹ Eu и ¹⁴⁹ Pm , во-вторых, разники спиновыми состояниями ¹⁴⁹ Eu (5/2⁺) и ¹⁴⁹ Pm (7/2⁺) ^{/55,56/}. Тогда можно объяснить, что при распаде ¹⁴⁹ Pm будут возбуждаться уровни с более высокими спинами, чем при распаде ¹⁴⁹ Eu. Возможные значения квантовых характеристик, которые можно приписать уровням ¹⁴⁹ Sm , возбуждаемым при электронном захвате в ¹⁴⁹ Eu, приведены на схеме распада ¹⁴⁹ Eu — ¹⁴⁹ Sm .

Однако авторами работы^{/31/} при исследовании угловых корреляций для каскадных гамма-переходов возбуждаемым уровням ¹⁴⁹ Sm. возникающим при распаде ¹⁴⁹ Ea, приписаны следующие квантовые характеристики: уровню 22,5 кэв – 7/2⁻, 277,2 кэв – 9/2⁻, 350,2 кэв – 9/2⁻, 528,6 кэв –

(11/2, 7/2) и 558,3 кэв - 7/2. Интересно отметить, что нижние уровни ¹⁴⁹₆₂ Gd₈₈ более "коллективизированы", чем уровни ¹⁴⁹₆₂ Sm₈₇, хотя число нейтронов у ядра ¹⁴⁹ Gd меньше, чем у ¹⁴⁹ Sm.

В заключение один из авторов (В.В.Кузнецов) приносит искреннюю благодарность профессору Оге Бору за гостеприимство и предоставленную возможность проведения экспериментов в Институте им. Нильса Бора. Авторы выражают также благодарность коллективу радио-химической группы Лаборатории ядерных проблем ОИЯИ за работы по приготовлению источников тербия и гадолиния, Д.А. Енчеву, Ма Хо Ик, Хань Шу-жуню и А.В. Кудрявцевой за участие в измерениях и обработке результатов на отдельных этанах работы.

Литература

- 1. J.O. Rasmussen, S.G. Thomson, A. Chiorso. Phys. Rev., 89, 33 (1953).
- 2. Rollier, J.O. Jr. Rasmussen. Rend. Acad. nahl. Lindcei, 14, 526 (1953).
- 3. R.S. Toth, J.O. Rasmussen, J. Inorg. Nucl. Chem, 10, 198 (1958).
- 4. R.S. Toth, S: Bjørnholm, M. Jørgensen, O.B. Nielsen, O. Skilbreid. Phys. Rev., 116, 118 (1959).
- 5. Ж.Т. Желев, А.В. Кудрявцева, Б.С. Джелепов. Материалы X совещания по ядерной спектроскопии, М., 1960.
- Б.С. Джелепов, Ж.Т. Желев, А.В. Кудрявцева, О.В. Ларионов, М.К. Никитин, Р. Степич. Препринт ОИЯИ, Р-587, Дубна, 1960.
- 7. Н.А.Бонч-Осмоловская, Б.С. Джелепов, О.Е. Крафт, Чжоу Юе-ва. Изв. АН СССР, сер.физ., <u>25</u>, 826 (1961).
- А.Т. Стригачев, Л.С. Новикова, А.А. Сорокин, В.А. Халкин, Н.В. Цветкова и В.С. Шпинель. Изв. АН СССР, сер.физ., <u>25</u>, 813 (1961).
- К.Я. Громов, И. Махунка, М. Махунка, Т. Фенеш. Изв. АН СССР, сер.физ., 29, 194 (1965).
- К.Я. Громов, Б.С. Джелепов, Д.А. Енчев, Ж.Т. Желев, Чао Тао-нань. Программа и тезисы докладов XII ежегодного совещания по ядерной спектроскопии в Ленинграде, стр. 37, М-Л., 1962.
- А.С. Данагулян, А.Т. Стригачев, В.С. Шпинель. Программа и тезисы докладов XIII ежегодного совещания по ядерной спектроскопии в Киеве, стр. 49, М-Л, 1963.
- 12. R. Hoff, J. Rasmussen, S. Thomson, Phys. Rev., 89, 1068 (1951).
- 13. V. Shirley, W. Smith, J. Rasmussien, Nucl. Phys., 4, 395 (1957).
- Н.М. Антоньева, А.А. Башилов, Б.С. Джелепов, Б.К. Преображенский. Изв. АН СССР, сер.физ., <u>22</u>, 895 (1958).

- В.К. Адамчук, А.А. Башилов, Б.К. Преображенский. Изв. АН СССР, сер.физ., 22, 919 (1958).
- Н.М. Антоньева, А.А. Башилов, Б.С. Джелепов, Б.К. Преображенский. Изв. АН СССР, сер.физ., <u>22</u>, 906 (1958).
- 17. Б.С. Джелепов, В.А. Сергиенко. Изв. АН СССР, сер.физ., 23, 211 (1959).
- Б.С. Джелепов, Б.К. Преображенский, В.А. Сергиенко. Изв, АН СССР, сер. физ., <u>23</u>, 219 (1959).
- Б.С. Джелепов, А.И. Феоктистов. Материалы III совещания по нейтронодефицитным изотопам. Препринт ОИЯИ, 712,Дубна,1960 (т.1).
- А.А. Сорокин, К.П. Митрофанов. Материалы III совещания по нейтронодефидитным изотопам. Преприят ОИЯИ, 712, Дубна, 1960 (т.П.).
- 21. Э.Е. Берлович, В.Н. Клементьев, Л.В. Краснов, М.К. Никитин, И. Юрсик. Доклады АН СССР, <u>133</u>, 789 (1960); Nucl. Phys., <u>23</u>, 481 (1961).
- Э.Е. Берлович, О.В. Ларионов. Э.Н. Туниманова, Д.М. Хай. Изв. АН СССР, сер.физ., <u>25</u>, 90 (1961).
- Э.Е. Берлович, В.Н. Клементьев, Л.В. Краснов, М.К. Никитин. Изв. АН СССР, сер.физ., <u>25</u>, 212 (1961).
- Ван Фу-цзюнь, И. Визи, К. Громов, Б. Джелепов, Ж. Желев, А. Кудрявцева, Ю. Язвицкий. Изв. АН СССР, сер. физ., <u>26</u>, 114 (1962).
- 25. R. Mack, J. Neuer, M. Pool. Phys. Rev., <u>91</u>, 497 (1953).
- Н.Антоньева, А. Башилов, Б. Джелепов, В. Ильин, Б. Преображенский. Изв. АН СССР, сер. физ., 23, 204 (1959).
- 27. H.J. Prask, J.J. Reidy, E.G. Funk, J.M. Mihelich. Nucl. Phys., <u>36</u>, 441 (1962).
- 28. B. Harmatz, T. Handley and J. Mihelich. Phys. Rev., 123, 1758 (1961).
- 29. O.K. Harling. Phys. Rev., 124, 1907 (1961).
- 30. O. Nathan, V. Popov. Nucl. Phys., 21, 631 (1960).
- 31. O.K. Harling, C.A. Ventrice, J.J. Pinjian. Phys. Rev., 132, 807 (1963).
- 32. К. Вильский, В.В. Кузнепов, О.Б. Нильсен, О. Скилбрайт. Материалы VIII совещания по ядерной спектроскопии нейтронодефицитных изотопов, изомерии ядер и теории ядра. Препринт ОИЯИ, 2412, 45 (1965).
- М.П. Авотина, Е.П. Григорьев, А.В. Золотавин, Н.А. Лебедев, В.О. Сергеев, В.Е. Тер-Нерсесянц. Препринт ОИЯИ, Дубна, 2273, 1965.
- 34. R.A. Kenefick and R.K. Sheline. Phys. Rev., <u>139</u>, N= 6B, B 1479 (1965).
- 35. I.R. Williams, K.S. Toth and T.H. Haudley. Nucl. Phys. 84, 609 (1966).
- 36. J. M. Jaklevic, E.G. Funk and J.W. Mihelich. Nucl. Phys., 84, 618 (1966).
- 37. O.B.Nielsen, O. Kofoed-Hansen, Mat. Fys. Medd. Dan. Vid. Selsk., 29, N=6 (1955).
- К.Я. Громов, Д.А. Енчев, Ж.Т. Желев, И. Звольский, В.Г. Калинников, В.В. Кузнецов, Ма Хо Ик, Г. Музиоль, Хань Шу-жунь. Ядерная физика, <u>1</u>, 562 (1965).

- 39. Б.К. Преображенский, А.В. Калямин, О.М. Лилова. ЖЭТФ, <u>2</u>, 1164 (1957).
- 40. K.O. Nielsen, O. Skilbreid. Nucl. Instr., 2, 15 (1958).
- 41. Гамма-лучи, под редакц. Л.А. Слив, М-Л, 318 (1961).
- 42. V.G. Chumin, K.Ya. Gromov, B. Makhmudov, Zh. T. Zhelev. Препрянт ОИЯИ, Е-2721, Дубна, 1966.
- 43. Н.А. Головков, К.Я. Громов, Н.А. Лебедев, Б. Махмудов, А.С. Руднев, В.Г. Чумин. Материалы 1Х совещания по ядерной спектроскопии нейтронодефицитных изотопов, изомерии ядер и теории ядра. Препринт ОИЯИ, 6-3036, Дубна, 1966.
- 44. Ж. Желев, Г. Музиоль. Препринт ОИЯИ, Р-2314, Дубна, 1965.
- 45. J.F. McNulty, E.G. Funk, Jr. and J.W. Mihelich. Nucl. Phys. 55, 657 (1964).
- 46. Ж.Т. Желев. Диссертация, Дубна, 1964.

47. C.V.K. Baba, G.T. Ewan, J.F. Suarez. Phys. Nucl., 43, 264 (1963) .

- 48. C.V.K. Baba, G.T. Ewan and J.F. Suarez Nucl. Phys., 43, 285 (1963).
- К.Я. Громов, Ж.Т. Желев, В. Звольска, В.Г. Калинников. Ядерная физика, <u>2</u>, 783 (1965).
- 50. E. Eichtler. Rev. Modern Phys., 36, 809 (1964).
- 51. Г.Ф. Драницына. Препринт ОИЯИ, 959, Дубна, 1962, стр. 88.
- 52, Э.Е. Берлович. Изв. АН СССР, 29, № 12, 2176 (1965).
- 53. W.D. Myers and W.J. Swiatecki. Nuclear Masses and deformations University of California Lawrence Radiation Laboratory Berkeley, California May, 27 (1965).
- 54. N.P. Heydenberg, G.M. Temmer. Phys. Rev., 100, 150 (1955).
- 55, A.Cabezas, I. Lindgren, R. Marrus and M. Rubinstein. Bull. Am. Phys. Soc., 5, 504 (1960).
- 56. Б.С. Джелепов, Л.К. Пекер, В.О. Сергеев. Схемы распада радиоактивных ядер. М-Л, 1963.

Рукопись поступила в издательский отдел 20 января 1967 г.

	Мультвпольвость		E2 + (45 ±7) % MI	E2 + M4
		MI	649	6,9
ктронов ы	K/L Teop.	E2	2,36	2,92
снонных але ,3 кав ¹⁴¹ Тр		텂	6,8	I.7
блица 1 илиний конвер дов 164,5 и 187	K/L arcn.		4,4 ±0,3	3,08±0,44
Т а интенсивност К/L перехол		M	66 ± 7	8 + 3
)твосятельные велятаны	-	4	227 ± II	28 ± 3
	-	я.	1000	67 16
	repex.	Ince	54.5	37,5

H

Таблица 2

Энергии и относительные интенсивности конверсионных электронов и гамма-лучей ¹⁴⁹ Ть и ¹⁵⁰Ть, значения экопериментальных и теоретических коэффициентов внутренней конверсии и выводы о мультипольностях переходов при распаде ¹¹⁴⁹ Ть и ¹⁵⁰ Ть

		Нап	и данные		Данные ра	/11 боты	a . #	XX	a k	теор. х	10 ³	М ультипольность
№№ 11/11	E	перех. (кэв)	ïγ	I _k	Е перех (кэв)	1 _k	эксл х IO	З ^{* эксл.} xI0 ³	ET	E2	MI	
I		2	3	. 4	5	6	7	8	9	IO	II	I2
							149. _{Tb}					· · · · · · · · · · · · · · · · · · ·
I.		73	17 <u>+</u> 6									
2.		85	422									
3.		I02	78 <u>+</u> I3									
4.	I,4	9,9 ^a)	I460 <u>+</u> I50	32I0 <u>+</u> I60				490 6)	77	360	490	MI O)
5.	I 6	4,5	1000	1200	I65,5	I200	304 <u>+</u> 70	267 <u>+</u> 54	64	285	440	MI + E2
6.	18	7,3	I32 <u>+</u> 33	109 <u>+</u> 11	I87,3	70	210 в)	I84+46	48	210	300	E2
7.	23	0	52 <u>+</u> 6									
8.	35	2	882 <u>+</u> I40	100±20	35I,8	100	28,8 <u>+</u> 5,	0	9,5	30	52	E2
9.	38	9	502 <u>+</u> 70	80 <u>+</u> 16	387,9	80	40,5 <u>+</u> I0,	,0	7,2	22	40	MI
I0.	46	5	252 <u>+</u> 35	I6 <u>+</u> 4	463,8	15	I6,I <u>+</u> 4,0)	4,7	13,7	26	E2, E2+MI
II.	51	I r)	278 <u>+</u> 42							•		
12.	54	8	T6+6									

I	2	3	. 4	5	6	7	8	9	10	II	12
13.	560	32 <u>+</u> 8									
I4.	652	582 <u>+</u> 87		65I,6	15	~ 6,5		2,3	6,2	II,3	E2
15.	773	65 <u>+</u> I6								•	
16.	817	292 <u>+</u> 44	2,3 <u>+</u> 1,2			2,0 <u>+</u> I,3		I ,45	3,5	6,5	ЕІ вли Е2
17.	853	4II <u>+</u> 60	3,4 <u>+</u> I,7			2,I <u>+</u> I,4		I,30	3,2	5,7	ЕТ или Е2
I8.	864	202 <u>+</u> 30									
19.	895 , 1)	19 <u>+</u> 4									
20.	1083	35 <u>+</u> I5	~0,7								
21.	I206	86 <u>+</u> 27	2,0 <u>+</u> 0,7								
22.	159 3	-	слаб,								
					180 Tb						
I.	499	2I4 <u>+</u> 43	230 <u>+</u> 46	495,4	167	6,9 <u>+</u> 2,4		4,0	II,0	22	EI,EI+M2
2.	5II ^{r)}	415 <u>+</u> 62									
3.	570	46 <u>+</u> I0	I20 <u>+</u> 60		~115	I6,7 <u>+</u> 9,0		3,0	ð ,5	15	E2,MI
4.	639	1000	1000	637,I	1000	6,4 e)			6,4		E2
5.	878		26 <u>+</u> 8								

Продолжение таблицы 2

21

۰,

			_		
lino	7073	VOUNC	TOD	TT LATT L.T	

								the second s			
I	2	3	4	5	6	7	8	9	IO	11	12
6.	1002		9 <u>+</u> 3								
7.	II52	3	0 <u>+</u> 6	•							
8.	I447	I	4 <u>+</u> 5								
9.	1516		~7								
10.	I640		слаб.								
II.	17 90		слаб.								

<u>ПРИМЕЧАНИЕ</u>: а)Наблюдаемые конверсионные электроны и гамма-лучи относятся к ¹⁴⁹ Gd, наколившемуся при распаде ¹⁴⁹ Tb.

- б) Мультипольность перехода 149,9 кэв при распаде 149 Gd
- тнла M1, согласво работе/33/
- в) Мультвпольность перехода 187,3 кэв при распаде ¹⁴⁹ Ть типа Е2, согласно работо/11/.
- г) Гамма-лучи, обязанные аннигиляции позитронов при распаде ¹⁴⁹ Ть и ¹⁶⁰ Ть, соответственно,
- д) Гамма-лучи относятся к ¹⁴⁵ Ев накопившемуся при распаде ¹⁴⁹ Ть.
- е) Мультипольность перехода 639 кэв при распаде ¹⁸⁰ Ть типа Е2.

х/Знечения коэффициентов внутренней конверсии определялись нормнрованием относительно КВК для перехода 187,3 кэв - типа Е2 (а = 0,210).

xx/Значения коэффициентов внутренней конверсии определялись нормированием относительно КВК для перехода 149,9 кэв - типа М1 (а, = 0,400).

Таблица З

Энергии и относительные интенсивности гамма-лучей ¹⁴⁹ Gd и ¹⁴⁹ Ea,экспериментальные коэффициенты внутренней конверсии и мультипольности переходов при распаде ¹⁴⁹ Gd и ¹⁴⁹ Eu

Netie	Наши	результаты	Pe	зультаты раб. /З	6/	Результаты	раб. /57/	a, x 10 ⁸ эксп.	Мультипольность
пп	(кэв)	Гy	Е _у (кэв)	Ŷ	Е _у (кэв)	ľγ	I k		
I	2	3	4	5	6	7	8	9	IO
					149 Gd				
I	-	-	-	-	II9,5	-	0,43 <u>+0</u> ,09)	26 F . 9F	
2	120,0	8 <u>+</u> 2	-	-	119,8	-	0,9 = 0,2	200 <u>+</u> 00	EI + M2
3	126,0	6 <u>+</u> 2	-	-	125,96	-	I,15 <u>+0</u> ,20	304 <u>+</u> 107	EI +(≤0,5%)M2
4	-	-	-	-	130,8	-	0,40 <u>+</u> 0,12	-	
5	-	-	-	-	132,I	+	I,50 <u>+</u> 0,08	-	
6		-	-	-	138,2	-	0,8 ± 0,2	-	
7	142,0	18 <u>+</u> 7	-	-	143,0	-	0,7I+0,08	63 <u>+</u> 30	EI
ö	ī49,9	2I 20 <u>+</u> 3I8	150,0	1855 <u>+</u> 188	I49,8	1990 <u>+</u> 199	550 <u>+</u> 26	4I5 <u>+</u> 83	MI,(MI + E2)
9		~	-	-	178,5	· _	~ 0,3	-	
01	191,0	8 <u>+</u> 2	-	~	-	-	-	-	
II	197,U	6 <u>+</u> 3	-	-		-	-	-	
12	215,0	5 <u>+</u> I	216,0	I5 <u>+</u> 8	216,7	-	-	-	
13	244,0	II <u>+</u> 3	-	-	-		-	-	

.

Продолжение табл. 3

I	2	3	4	5	6	7	8	8	IO
14	-	-	-	·	252,4		0,30 <u>+</u> 0,05	-	
15	262,0	45 <u>+</u> I2	262,0	66 <u>+</u> 7	260,8		0,24 <u>+</u> 0,03 ^{¥)}	8,5 ± 3,2	EI
I6	272,0	119 <u>+</u> 18	272,0	I52 <u>+</u> I9	272,6	102 <u>+</u> II	7,4 <u>+</u> 0,7	99 <u>+</u> 25	EI + (≤28%)M2 MI.,(MI + E2)
17	299,0	1000	298,5	1000	298,8	1000	43 <u>+</u> 4	69 <u>+</u> 17	EI + (≤25%) M2 MI, (MI + E2)
18	340,0	I6 <u>+</u> 8	-	-		-	-	-	
19	346,0	800 <u>+</u> I20	347,0	942 <u>+</u> 94	346,9	960 <u>+</u> 54	100	200 <u>+</u> 30	₩2
20	46I,O	28 <u>+</u> 8	46I <u>+</u> I	22 <u>+</u> 3	460,I	34 <u>+</u> 9	0,38 <u>+</u> 0,07	2I,6 <u>+</u> 9,0	EI + (≤35%)M2 MI, MI + E2
21	-	-	480 <u>+</u> I	3,8 <u>+</u> I,0	-	-	-	-	
22	498,0	55 <u>+</u> I6	497,0	68 <u>+</u> 7	496,6	69 <u>+</u> 7	I,0 <u>+</u> 0,I	29,0***	E3
23	517,0	79 <u>+</u> 18	517,0	101 <u>÷</u> 10	516,8	II4 <u>+</u> II	0,8 ± 0,I	I6,2 <u>+</u> 5,I	EI + (≤32%) M2 MI, MI + E2
24	535,0	95 <u>+</u> I5	534,0	II8 <u>+</u> I2	534,5	II4 <u>+</u> II	I,I <u>+</u> 0,I	18,5 <u>+</u> 4,5	EI + (€40%) M2 MI,MI+(≤40%) E2
25	646,0	44 <u>+</u> II	646,5	66 <u>+</u> 7	645,2	80 <u>+</u> 20	0,I0 <u>+</u> 0,03	3,6 <u>+</u> 2,0	EI,EI +(≤II%)M2
26	667,0	27 <u>+</u> 6	666,5	57 <u>+</u> 6	666,5	-	~ 0,I	~ 5,9	E2, EI + M2
27	750,0	265 <u>+</u> 39	749,5	348 <u>+</u> 38	749,I	272 <u>+</u> 72	0,33 <u>+</u> 0,07	2,0 <u>+</u> 0,5	EI,EI +(≤ 5%)MZ
28	790,0	224 <u>+</u> 33	790,5	328 🛓 38	789,0	-	0,45 <u>+</u> 0,09	3,2 <u>+</u> I,I	EI + (≼I8) M2 E2 + (<i>≤</i> 22%)MI

Продолжение табл. 3

I	2	3	4	5	6	7	8	9	IO
29	-	-	8I3 <u>+</u> I	6,6 <u>+</u> I,0	-	-	-	-	
30	:65,0	~ 2	865 <u>+</u> I	2,8 <u>+</u> 0,5	-	-	-	-	
31	880,0	5 <u>+ </u> 2	1 <u>+</u> 878	6,6 <u>+</u> I,U	875,6	33 <u>+</u> I6	0,02 <u>+</u> ∪,0I	-	
32	933,0	26 <u>+</u> 6	934 <u>+</u> I	26 <u>+</u> 3	-	-	-		
35	940,0	64 <u>+</u> ≟I0	y39 , 0	II4 <u>+</u> Ĩ9	9 3 8,8	83 <u>+</u> 9	0,I7 <u>+</u> 0,03	4,3 <u>+</u> I,3	EI + M2, E3 MT
34	943,0	25 <u>+</u> 6	949,0	45 <u>+</u> 5	947,7	40 <u>+</u> 6	0,0I8 <u>+</u> 0,005	I,I5 <u>+</u> 0,42	EI,EI +(≤ 6%)M2
35	-	-	995 <u>+</u> I	I4 <u>+</u> 2					
3 6	-	-	I0I3 <u>+</u> I	I2 <u>+</u> I					
37	-	-	1081 <u>+</u> I	7,5 <u>+</u> I,0	1081,3	40 ± 20			
					¹⁴⁹ Eu				
				/35/	/46,	/			
I	255	59 <u>+</u> 15	255	33,0 <u>+</u> 0,6	255,0	-	25 <u>+</u> 6	105 <u>+</u> 52	MI,(MI + E2)
2	27 7	275 <u>+</u> 42	277	275	278,0	-	001	90 ^{£**}	MI
5	327	298 <u>+</u> 45	328	325 <u>+</u> 28	329,0	-	80 <u>+</u> 8	7I <u>+</u> I8	MI
4	-	-	350	25 <u>+</u> 8 -	350,0	-	4,1 <u>+</u> 1,0		
5	506	36 <u>+</u> 9	506	39 <u>+</u> 4	507.0	-	2,3 <u>+</u> 0,5	I5,9 <u>+</u> 7,2	2.6 I

1	2	3	4	5	6	7	8	9	I0
6	528	38 <u>+</u> 9	529	36 <u>+</u> 4	529,0	_	I,7 <u>+</u> 0,4	II,2 <u>+</u> 5,6	E2 + MI
7	536	6 <u>+</u> 3			536,0	-	0,2	~ 8,30	E2, E2 + MI
					558,3	-	0,24		

x/Значение интенсивности лишки К 262, по-видимому, занижено.

^{XX/}Значения КВК определялись пормированием относительно коэффициента внутренней конверсии перехода 498 кэв - типа E3 (а _k = 0,029).

xxx/ Значения КВК определялись нормированием относительно коэффициента внутренней конверсии перехода 277 кэв - типа М1 ($a_k = 0,090$).

Таблица 4

Экспериментальные и рассчитанные по Мошковскому (см. 41) отношения приведенных вероятностей переходов с уровней ядер $^{147}\,{\rm Eu}\,,^{149}\,{\rm Eu}\,,^{151}{\rm Eu}\,,^{156}\,{\rm Eu}\,,^{147}\,{\rm Sm}\,,^{149}\,{\rm Gd}$

Ядро	Энергия уровня (кэв)	Энергия пережода (кэв)	Тип лереход	a _. I _i	1,	Отн при роя эксл.	ошение веден,ве- тност, по Мошк.	Фактор ускорения F уск. относ.
I	2	3	4	5	6	7	8	9
149 63 ^{Eu} 86	I49 , 9	I49,9	98,2%MI	7/2+	5 /2 ⁺			0,0083
0, 00			I,8% E2	7/2 †	5/2 †			37
I47 63 ^{Eu'} 84	229	229	99% MI	7/2 +	5/2 †			0,0073
05 04			1% E2	7/2+	5/2 †			6,4
151 63 ^{Eu :} 88	21,6	21,6	MI	7/2+	5/2 †			0,062
153 63 ^{Eu.90}	83	83	60% MI	7/2 †	5/2 †			0,0037
0, 10			40% E2	7/2 †	5/2 †			2900
I49 63 [™] 86	497	346	M2	II/2 ⁻	7/2 †			0,015
149 63 ^E 86	497	497	E3	II/2	5/2 †			I,8
149 63 ^{Eu} 86	940	272	MI	7/2 †	9/2 †	77,0	I,25	6 I, 5
		940	M	7/2 †	5/2 †	Ι,Ο	I ,0	I ,0
149 ₆₄ 85	352	187	E2	3/2-	5/2 ⁻	3,4	0,16	2I , 4
04 05		352	E2	3/2-	7/2	I ,0	I,0	Ι,0
149 64 ^{.64} 85	8 I 7	465	E2	3/2-	3/2-	I4 , 4	0,39	37
		652	E2	3/2	5/2-	6,2	0,7I	3 6
		817	E2	3/2	7/2	Ι,0	Ι,Ο	1,0
147 62 ^{5m} 85	12I	121	90% alI	5/2	7/2-			0,0047
			I0;5 E2	5/2-	7/2-			172

I	2	3	4	5	6	7	8	9
147 62 Sm '85	198	76	20 % E2	3/2	5/2	1,21	0,172	52 (7,0)
		198	E2	3/2	7/2	I,0	Ι,0	7,4 (I,0)
147 _{sm} 62 ⁸⁵ 85	800	680	25%E2	3/2	5/2	\$9,9	0,177	≤ 56
		800	E2	3/2	7/2	I,0	I,0	Ι,0

Рис. 1. Спектры конверсионных электронов: а) участок спектра ¹⁴⁹ Ть, полученного с помощью масс-сепаратора и измеренного на тороидальном шестизазорном β -спектрометре; б) участок спектра тербиевой фракции, содержащей в себе короткоживущие изотопы ¹⁴⁹ Ть и ¹⁶⁰ Ть .Этот спектр измерен на β -спектрометре с трехкратной фокуснровкой пучка электронов.

Рис. 3. График Кюри и спектры позитронов 149 Тb + 180 Тb.

Рис. 4. Слектр тройных совладений гамма-лучей в тербиевой фракции: - - - спектр, измеренный 1 час спустя после хроматографического разделения редкоземельных элементов. - - спектр, измеренный спустя 30 часов; - - спектр β⁺- у -совладений ¹⁴⁹ Tb₁¹⁵⁰ Tb₁a) кривые спада интенсивности позитронов в тербиевой фракции.

Рис. 5. Спектр совпадений с гамма-лучами 640 кэв в тербиевой фракции: О -спектр, измеренный спустя 1 час после хроматографического разделения редкоземельных элементов (~ 4 часа после конца облучения тантала); С-спектр, полученный как разность спектров, измеренных спустя 1 час и 30 час после хроматографического разделения.

Рис. 6. Спектр гамма-лучей ¹⁴⁹ Gd + ¹⁴⁹ Fa: а) спектр, измеренный в области энергий до 350 кэв; б) и в) спектр, измеренный в области энергий 160 - 1000 кэв. Спектры измерены с помощью плоскопараллельного Ge(Li) полупроводникового детектора с размерами 0,7 _{см}² x 0,35 см.

Рис. 7. Спектры совпадений с у -лучами 150 кэв (обл. "а"), 270 кэв (обл. "в"), 515 кэв (обл. "д"), 650 кэв (обл. "ж") и 750 кэв (обл. "з").

Ряс. 8. Схемы возбужденных уровней ¹⁴⁹ Gd, ¹⁴⁹ Eu и ¹⁴⁹ Sm.

Рис. 9. Сравнение схем уровней ¹⁵⁰ Gd и ¹⁴⁸ Sm.