

1966

P6 · 3076

Y/1-67

Ю.Т. Чубурков, Р. Цалетка, М.Р. Шалаевский, И. Звара

ОПЫТЫ ПО ХИМИИ ЭЛЕМЕНТА 102. 1. АДСОРБЦИЯ ХЛОРИДА 102-ГО ЭЛЕМЕНТА ИЗ ГАЗОВОЙ ФАЗЫ

P6 - 3076

Ю.Т. Чубурков, Р. Цалетка, М.Р. Шалаевский, И. Звара

4 201/, 4

ОПЫТЫ ПО ХИМИИ ЭЛЕМЕНТА 102. 1. АДСОРБЦИЯ ХЛОРИДА 102-ГО ЭЛЕМЕНТА ИЗ ГАЗОВОЙ ФАЗЫ

Направлено в "Раднохныно"

Первые сведения о химическом поведении 102-го элемента, по.-видимому, были получены в работе^{/1/х/}, посвященной изучению химических свойств 104-го элемента. В спонтанно делящихся продуктах облучения плутония-242 ионами неона-22, наряду со²⁶⁰ 104, присутствует изотоп 102-го элемента с массой 256^{/2/}, Т_и = 6+2 сех^{/3/}. (Это в основном а -активное ядро в ~ 1/150 случаев испытывает спонтанное деление^{/4/}). В продуктах облучения мишени скорость счета осколков деления нуклидов²⁶⁰ 104 и ²⁶⁶ 102 примерно одинакова (одно событие за несколько часов работы)^{/2/}. В опытах по химии курчатовия молекулы хлорида²⁶⁰ 104 подавались потоком газа к детекторам осколков деления через 4-метровую трубку и адсорбционный фильтр, на которых сорбировались, как было показано, хлориды элементов Ш группы - кюрия и калифорния.

Осколки деления ядер ²⁵⁶ 102 не были зарегистрированы на этих детекторах. Предполагалось, что хлорид 102-го элемента также сорбируется, так как, по существующим предсказаниям, этот элемент должен быть "актинидом" ^{/6/}.

Принципиально отсутствие треков на детекторе можно было объяснить большой летучестью хлорида 102-го элемента (период полураспада в сек., а время счета на детекторе 0,7 сек). Не исключив этой возможности, нельзя было делать окончательного вывода о химическом характере нового элемента.

Следовательно, еще не было однозначного ответа на вопрос, является ли 102-ой элемент аналогом элементов ПI группы или значительно отличается от них.

x/Paбота с сообщением об открытии и изучении химических свойств нобелия оказалась ошибочной./14,3,9,15,16,17/

Поэтому мы провели специальные опыты со ²⁵⁶102, чтобы экспериментально проверить представления о свойствах 102-го элемента и структуре VII периода Периодической системы элементов Д.И. Менделеева. Цель настоящей работы заключалась в сравнении поведения 102-го элемента с поведением элементов Ть, Сі и Fm в процессах хлорирования и адсорбции.

Экспериментальная часть

Опыты проводились на аппаратуре для экспрессного непрерывного разделения продуктов ядерных реакций, установленной в камере циклотрона многозарядных ионов ОИЯИ (У-300)⁷⁷. Она схематически показана на рис. 1.

Мишень (1), облучаемая потоком ускоренных тяжелых ионов (2), берется настолько тонкой, чтобы продукты ядерных реакций вылетали из нее за счет отдачи. Атомы отдачи тормозятся в потоке азота, непрерывно продуваемого за мишенью (объем 3), и затем хлорируются с помощью паров NbCl₅ + ZrCl₄ или одного NbCl₈

Хлориды в большей или в меньшей степени транспортируются газовым потоком и в результате распределяются между последующими частями аппаратуры. Конкретные условия экспериментов – температура, парциальные давления паров хлоридов, материал стенок газового тракта – даны в табл. 1.

В настояшей работе использованы а -активные изотопы: ¹⁴⁹ Tb, T₁₆ = 4,1 часа (10% а -распад); ²⁴⁶ Cf , T₁₆ ≈ 37 часов; ²⁵⁰ Fm , T₁₆ ≈ 30 мин; ²⁵² Fm , T₁₆ ≈ 23 часа, и ²⁵⁸₁₀₂ , T₁₆ ≈ 6 сек. Эти изотопы получались облучением сложной мишени, состоящей из окисей ²⁸⁸ U и ¹⁴⁴ Sm (обогащение 95%) в весовом отношении 9:1. Облучение проводилось ионами кислорода - 16 и неона - 22 (энергии указаны в табл. 1). Калифорний , фермий и 102-ой элемент получались в результате следующих реакций и процессов

 $\begin{array}{c} {}^{288} \ {\rm U}\left({\begin{array}{*{20}c} {}^{16} {\rm 0}\,,\,4\,{\rm n}\, } \right) {\begin{array}{*{20}c} {}^{250} \ {\rm Fm}\, } {} {} {} {} {} {} {} {\rm MHH}, {} {} {} {} {\rm 446} \ {\rm Cf} \\ {} {} {} {} {} {} {} {\rm S} {} {} {\rm Cf} \\ {} {} {} {} {} {} {\rm S} {} {\rm Cf} \\ {} {} {} {} {} {} {\rm S} {} {\rm Cf} \\ {} {} {} {} {\rm S} {} {\rm S} {\rm Ch}, {} {} {\rm S} {} {\rm S} {\rm Ch}, {} {} {\rm S} {\rm S} {\rm Ch} \\ {} {} {} {\rm S} {\rm Ch} {\rm S} {\rm S} {\rm Ch} \\ {} {} {\rm S} {\rm Ch} {\rm S} {\rm S} {\rm Ch} {\rm S} {\rm S}$

¹⁴⁸ Gd и ¹⁴⁹ Tb образуются в результате реакций передачи нуклонов при облучении ¹⁴⁴ Sm .

Из данных об эффективных сечениях указанных реакций следует. что при 262 Fm. Haxo-²² Ne. равной 110 Мэв, примерно 40% общего количества энергии дящегося в продуктах длительного облучения, образовалось в результате распада ²⁸⁶ 102 . Аналогично существенная часть ²⁴⁶ Сf, найденного после облучения нонами ¹⁶0, является продуктом распада ²⁵⁰ Fm. Производилось определение количества ¹⁴⁹ Ть, ²⁴⁶ Сf и ²⁵² Fm на четырехметровой трубке (4), инертном фильтре (5) и на химическом фильтре (6) или в ловушке (7), где конденсировался хлорирующий агент. С этой пелью после окончания облучения аппаратура разбиралась на части и продукты ядерных реакций смывались с каждой части отдельно. В растворы, которые использовались для смывов, добавлялись в качестве носителей La(1 мг), Ce(10 мг)н 155 Eu, который служил для определения химического выхода. Затем осаждались фториды LaF, и CeF, , проводилось окисление КВrO , и отделение церия осаждением йодата. Для дальнейшей очистки использовалась экстракционная хроматографическая колонка с ди- (2-этил-гексил)-фосфорной кислотой на фторопласте (0,25 мл/г); размер колонки 80 х 3 мм. Вымывание лантана проводилось при комнатной температуре 0.5 N HNO, калифорний, фермий, тербий а также европий элюнровались вместе 3N HNO, и раствор упаривался на платиновой подложке.

Идентификация изучаемых изотопов осуществлялась по энергии а частиц и периодам полураспада.

Альфа-радиоактивные препараты измерялись на спектрометрических установках с полупроводниковыми детекторами площадью 2,5 см² и 100-канальным амплитудным анализатором.Эффективность детекторов ~ 20%, стабильность аппаратуры давала возможность проводить многосуточные измерения. Фон в области энергий ≥ 6 Мэв был равен нулю. Альфа-активность препаратов измерялась в диалазоне энергий от 2,5 до 9 Мэв, чтобы одновременно регистрировать а -частипы всех изучаемых элементов и возможных примесей. Измерения проводились почти непрерывно в течение нескольких суток.

На рис. 2 показаны участки спектра в области энергий а -частиц ¹⁴⁹ Ть ,²⁴⁶ Сf и ²⁶² Fm за 35 часов измерений. За время всех измерений не было зарегистрировано а -частиц с энергией выше энергии а -частиц ²⁶² Fm.

Результаты и обсуждение

Распределение данного изотопа вдоль газового тракта, которое устанавливается в продолжительном опыте, является результатом ряда процессов. Оно зависит от кинетики реакции хлорирования атома, массопередачи из потока газа на поверхность стенок, адсорбции и десорбции молекул хлоридов, образования и осаждения аэрозольных частиц, химического взаимодействия молекул с поверхностью стенок и т.п.

Основную роль в изучаемых нами системах играет, по-видимому, адсорбционная задержка молекул на поверхности тракта ^{/7,10/}. Она замедляет скорость переноса молекул адсорбирующегося соединения по тракту по отношению к скороств потока инертного газа. Это явление, как известно, используется в газовой хроматографии.

Время прохождения потока от мишени до химического фильтра или ловушки конденсата составляет = 0,2 сек. При условиях, указанных в табл. 1, изотопы элементов, образующих сравнительно летучие хлориды (Sn,Nb, Zr, Hi, Ku), проходят это расстояние за время \leq 0,4 сек., т.е. без существенной задержки, и накапливаются только на химически активном фильтре(8) или в ловушке (7) (рис. 1). В химических фильтрах использовалась хемосорбция на хлориде натрия⁷⁷. В то же время изотопы элементов, образующих менее летучие хлориды (Na, Sc, лантаниды, Cm, Cf), после опытов продолжительностью до 70 часов на 98-99% сорбировались на трубке и фильтре⁷¹.

Исследование распределения хлоридов последней группы между трубкой и фильтром показало, что и они несколько дифференцируются.

Данные, приведенные в табл. 2, иллюстрируют сказанное выше,

Процессы конденсации и адсорбции обусловлены одними и теми же силами. Поэтому в первом приближении теплоты адсорбции молекул различных соединений находятся в соотношении, близком к соотношению их теплот испарения или же температур кипения. Этим объясняется наблюдаемое соответствие между адсорбционным поведением и летучестью хлористых соединений.

Результаты, полученные при изучении элемента 102, приведены в табл.1. Для каждого изотопа количество атомов, найденное на трубке, принято за 100; число атомов на фильтрах выражено в долях от этого количества. Указаны

стандартные отклонения, определяемые полным числом зарегистрированных актов распада изотопа. В случаях, когда приводимая величина основана на регистрации очень малого или нулевого числа распадов, указаны наиболее вероятные величины и их соответствующие доверительные границы из пуассоновского распределения ^{/11,12/}. Как уже отмечалось выше, поведение атомов ²⁵⁶102 определялось по дочернему изотопу ²⁶² Fm. В случае отличия свойств хлорида 102-го элемента от свойств хлоридов Ш группы ²⁶² Fm должен распределиться между частями аппаратуры таким образом, чтобы имело место

неравенство отношений:

количество атомов ²⁴⁶Cf (¹⁴⁹ Tb) на хим. фильтре, количество атомов ²⁴⁶Cf (¹⁴⁹ Tb), полученных в опыте. <u>количество атомов ²⁶² Fm</u> на хим. фильтре количество атомов ²⁶² Fm, полученных в опыте.

Из данных, приведенных в табл. 1, видно, что доли атомов на инертном и химическом фильтрах, полученные для ²⁶² Fm, не превышают соответствующих долей для ²⁴⁶ Cf и ¹⁴⁹ Tb. Если бы хлорид 102-го элемента был заме:но летуч, распределение ²⁶² Fm должно было бы смещаться в сторону движения газа. Так как на фильтре и последующих за ним частях аппаратуры количество ²⁴⁶ Cf, ¹⁴⁹ Tb не превышает нескольких процентов, то принципиально достижимая чувствительность обнаружения такого смещения является достаточно высокой. Следует подчеркнуть, что поведение ²⁴⁶ Cf определяется в значительной мере химическим поведением его материнского изотопа ²⁶⁰ Fm (см. выше).

Полученные результаты и изложенные выше представления показывают, что элемент 102 образует сильно сорбирующийся и, следовательно, мало летучий хлорид. Подобие свойств хлоридов 102-го элемента и хлоридов фермия, калифорния и лантанидов, получило прямое подтверждение. Оно, несомненно, указывает на сходство химического характера 102-го элемента, более легких тониевых и лантанидных элементов.

Выводы

1. Впервые изучались химические свойства 102-го элемента.

 Хлорид 102-го элемента по летучести (адсорбируемости из газовой фазы на поверхности твердых тел) близок к хлоридам Ть, Сб и Fm.

3. Высокая степень очистки 104-го элемента от спонтанно делящегося ²⁶⁶102 в экспериментах по химической идентификации ²⁶⁰104 /1/ дена резким различием в летучести хлоридов этих элементов.

Авторы приносят глубокую благодарность члену-корреспонденту АН СССР Г.Н. Флерову за постановку проблемы и постоянный интерес к работе, а также Б.В. Шилову, Б.Ф. Бутенко, Г.В. Букланову и В.З. Белову за помошь в экспериментах.

Литература

1. И. Звара, Ю.Т. Чубурков, Р. Шалетка, Т.С. Зварова, М.Р. Шалаевский, Б.В. Шилов. Атомная энергия, <u>21</u>, 83 (1966); Доклад на Международной конференции по физике тяжелых ионов. Дубна, 1966.

 Г.Н. Флеров, Ю.Ц. Оганесян, Ю.В. Лобанов, В.И. Кузнецов, В.А. Друин, В.П. Перелыгин, К.А. Гаврилов, С.П. Третьякова, В.М. Плотко. Атомная энергия, <u>17</u>, 3 10 (1964).

- Г.Н. Акальев, А.Г. Демин, В.А. Друин, Ю.В. Лобанов, Б.В. Фефилов, Г.Н.Флеров, Л.П. Челноков. Препринт ОИЯИ, Р-2938, Дубна, 1966.
- 4. В.А. Друин, Н.К. Скобелев, Б.В. Фефилов, Г.Н. Флеров. Препринт ОИЯИ, Р-1580, Дубиа, 1964.
- 5. Г. Сиборг, Дж.Кац.Актиниды. ИЛ, М., 1955.
- 6. М.И. Райссинский. Ядерная химия и ее приложения. ИЛ, М, 1961.
- 7. И. Звара, Т.С. Зварова, Р. Цалетка, Ю.Т. Чубурков, М.Р. Шалаевский. Преприят ОИЯИ, Р-2548, Дубна, 1966.
- 8. Е.Д. Донец. Диссертация, ОИЯИ, Дубна, 1966.
- 9. Е.Д. Донец, В.А. Шеголев, В.А. Ермаков. Атомная энергия, <u>16</u>, 1953(1964).
- 10. И. Звара, Т.С. Зварова, М. Крживанек, Ю.Т. Чубурков. Радиохимия, <u>8</u>, 77 (1966).
- 11. V.N. Regener . Phys. Rev., 84, 161 (1951).
- 12, R.E. Bell . Amer. J. Phys., <u>33</u>, 219 (1965) .
- 13, P. Fields, A. Friedman, J. Milsted, H. Atterling, W. Forsling,

Z. Holm, B. Astrom. Phys. Rev., 107, 1460 (1957).

14. A. Ghiorso, T. Sikkeland, J. Walton, G.T. Seaborg .

Phys. Rev. Lett., 1, N 1, 17 (1958).

 Г.Н. Флеров и др. Доклад на Международной конференции по физике тяжелых ионов, Дубна, 1966.

- В.Л. Михеев, В.И. Илющенко, М.Б. Миллер, С.М. Поликанов, Г.Н. Флеров, Ю.П. Харитонов. Препринт ОИЯИ, Р-2839, Дубна, 1966.
- Б.А. Загер, М.Б. Миллер, В.Л. Михеев, С.М. Поликанов, А.М. Сухов, Г.Н. Флеров, Л.П. Челноков. Препринт ОИЯИ, P-2470, Дубиа, 1966.

Рукопись поступила в издательский отдел 19 декабря 1966 г.

Ta	б	л	И	ц	a	1	
----	---	---	---	---	---	---	--

I	-	1				T		Распределение изотопов вдоль пробника		
	№ № эксп.	Энер ионол	гия 3, Эв	Носитель	Части аппара -	(°C)	Матери- ал	140	²⁴⁸ Cf	²⁶² Fm
		¹⁰ 0	22 Ne		туры			™ Tb ★★*	$\begin{bmatrix} 260 \\ Fm + 248 \\ Cf \end{bmatrix}$	$\begin{bmatrix} 286 \\ 102 + 282 \\ Fm \end{bmatrix}$
10				IIO 0,2мм. рт.ст	трубка	250- 300	тефлон	100 <u>+</u> 7	100 <u>+</u> 18	100 <u>+</u> 10
	I	90	IIO		инертн. фильтр	250	стекло	8,7 +2,I -I,7	5,4 ⁺⁷ ,4 -3,9	I,2+22 _I,0
					химич. фильтр	300	NaCl	I,I +0,5 _0,4	I,4 ^{+2,3} XX -I,4	0,7 ^{+I,4} -0,6
		2 90	IIO Nb		трубка	300- 350	стекло	100+6	100 <u>+</u> 11	100 <u>+</u> 15
	2 9			IO NECI 8 0,2mm. pr.cr	инертн. фильтр	300	стекло	7,5 ^{+2,2} _I,I	16 ⁺¹⁰ ,7	5,5 ^{+8,2} -3,9
					химич. фильтр	300	NaC1	65 ⁺² ,2 -1,7	2,5 ⁺⁴ ,8 -2,1	2,0 ^{+3,3} ^{xx}
	3 98	0.8	110	$\begin{array}{c} \text{NbCl}_{8} \\ 0, 2 \text{MM} \\ \text{pt.ct.} \\ \text{zrcl}_{4} \\ 0, 05 \text{MM} \end{array}$	т <mark>рубка</mark>	300-	стекло	100+0,5	100 <u>+</u> 12	100+22
		50			инертн. фильтр	300	стекло	I,3 <u>+</u> 0,05	0,5 ^{+0,9} xx _0,5	I,4+2,3 XX -I,4
				рт.ст	ловушка	30	конденс. NbCl ₈ + ZrCl	I,3 <u>+</u> 0,I	0,8 ^{+I} ,3 ^{XX} -0,8	2,4+4,0 XX -2,4

х/Количество изотопов, осевших на трубке, в каждом эксперименте принято за 100.

хх/Не было зерегистрировано ни одного импульса.

xxx/ Распределение 148 Gd отдельно не приводится.

Хлорид	Ткип (°С)	Т опыта (°С)	Примечание				
SnCl4	113	200	Не задерживается на трубке и инерт-				
HfCl 4	317 BOST.	250-350	ном фильтре.				
ZrCl 4	331 BOST.	250-350	-,,-				
JnCl 8	498 BOST.	250	Задерживается на внертном фильтре.				
		350	Не задерживается на инертном фильтре				
ScCl 8	1077	250	Задерживается на трубке и инертном фильтре. > 20% проходит через инертный филь				
		350					
LnCl 8	1700	250-350	> 90% задерживается на трубке.				
AmCl ₈	1752	250-350	Кюрий: > 90% задерживается на трубке.				

Таблица 2

Рис. 2