

ОБЪЕДИНЕННЫЙ ИНСТИТУТ Ядерных Исследований

Дубна

101-00

P6-2000-101

К.Я.Громов, С.А.Кудря¹, Ш.Р.Маликов, Т.М.Муминов², Ж.К.Саматов, Ж.Сэрээтэр, В.И.Фоминых, В.Г.Чумин

ИССЛЕДОВАНИЕ СТРУКТУРЫ ВОЗБУЖДЕННЫХ СОСТОЯНИЙ ²¹³ Ро И ²⁰⁹ РЬ ПРИ РАСПАДЕ ²¹³ Ві И ²⁰⁹ ТІ

Направлено в журнал «Известия РАН, серия физическая»

¹С.-Петербургский государственный университет, Россия ²Ташкентский государственный университет, Узбекистан

I. Введение

При α - и β -распаде ²¹³Ві ($T_{1/2} = 45,6$ мин) образуются ядра $^{209}_{81}$ Tl₁₂₈ и $^{213}_{84}$ Po₁₂₉, а при β -распаде ²⁰⁹Tl ($T_{1/2} = 2,16$ мин) – ядро $^{209}_{82}$ Pb₁₂₇. Эти ядра близки к дважды магическому $^{208}_{82}$ Pb₁₂₆, и поэтому ожидается, что структура их возбужденных состояний должна хорошо описываться моделью ядерных оболочек. Экспериментальных данных о свойствах уровней, возбуждаемых в этих распадах, сравнительно мало.

Ядро ²¹³Ро нельзя получить в ядерных реакциях с легкими заряженными частицами, и единственная возможность исследования структуры его возбужденных состояний – изучение распада ²¹³Bi. Спектр улучей при распаде ²¹³Ві изучали Вылов и др. [1], Диккенс и Мак-Коннел [2] и Хелмер и др. [3]. При распаде ²¹³Ві было установлено возбуждение уровней ²¹³Ро с энергиями 292, 440 и 1100 кэВ с пятью *у*-переходами с них. Ардиссон и др. [4,5] разработали радиохимические методы приготовления чистых источников ²¹³Ві и ²⁰⁹ТІ и получили существенно более полные данные о γ -спектре ²¹³Ві, обнаружив 18 новых γ -переходов с интенсивностью до тысячных долей процента на распад. Схема распада ²¹³Ві дополнена шестью возбужденными состояниями ²¹³Ро. Ваврыщук и др. [6] измерили периоды полураспада уровней ²¹³Ро: 292,8 $\kappa_{2}B - (78 \pm 14)$ пс и 440,5 $\kappa_{2}B - (93 \pm 3)$ пс и основного состояния – $(3, 75 \pm 0, 04)$ мкс. Чумин и др. [7], изучая α -спектр ²¹³Ві в равновесии с дочерним ²¹³ Ро, уточнили отношение интенсивностей ветвей β -распада и α -распада ²¹³Ві, как (97,80 \pm 0,03)% и (2,20 \pm 0,03)% соответственно.

Возбуждение в ²⁰⁹Tl уровня с энергией 323,8 кэВ было установлено Джелеповым и др. [8]. В α -спектре ²¹³Bi были обнаружены две α группы E_{α} =5869 кэВ и E_{α} =5549 кэВ, соответствующие α -переходам в основное состояние и на уровень 323,8 кэВ ²⁰⁹Tl. Гамма-переход с этого уровня в основное состояние наблюдался в [1,2,9]. Уровень 323,8 кэВ ²⁰⁹Tl возбуждается также в реакции ²¹⁰Pb(t, α) ²⁰⁹Tl [10]. Куасси и др. [9] отнесли к распаду ²¹³Bi \rightarrow ²⁰⁹Tl γ -лучи с энергиями 868,0 и 544,9 кэВ, наблюденные ими в γ -спектре ²¹³Bi, и предположили, что в ²⁰⁹Tl существует уровень 868 кэВ с разрядкой его в основное состояние и на уровень 323,8 кэВ. Однако в [7] было показано, что интенсивность α -частиц, заселяющих этот уровень, более чем в 100 раз меньше интенсивности γ -лучей 868 кэВ. Таким образом, нет оснований для введения уровня 868 кэВ в ²⁰⁹Tl, а γ -лучи 868 кэВ возникают при β -распаде ²¹³Bi.

В исследованиях простых ядерных реакций получена обширная экс-

периментальная информация о структуре возбужденных состояний ялра ²⁰⁹Pb. Компиляция и оценка этих сведений выполнена Мартином [11]. Экспериментальные данные о свойствах уровней ²⁰⁹ Pb, возбуждаемых при распаде 209 Tl, более ограничены. Спектры γ -лучей при распаде ²⁰⁹Tl изучались в [1-5]. Как и при исследовании распада ²¹³Bi, наиболее подробные сведения о распаде ²⁰⁹Tl ->²⁰⁹Pb получены Ардиссоном и др. [4,5]. Установлено, что 99% распадов ²⁰⁹Т1 происходит на уровень $J^{\pi}=1/2^{-}$, 2149 кэВ ²⁰⁹Pb с разрядкой его каскадом γ -переходов 117, 465 и 1567 кэВ через уровни $J^{\pi} = 1/2^+$, 2032 кэВ и $J^{\pi} = 5/2^+$, 1567 кэВ в $J^{\pi} = 9/2^+$, основное состояние. Спины и четности уровней 2149, 2032, 1567 кэВ и основного состояния установлены в исследованиях ядерных реакций (см. [11]) и интерпретируются как состояния оболочечной модели $n_{1/2}^{-1}$, $n_{1/2}^{-1}$, $n_{3d_{5/2}}$ и $n_{2g_{9/2}}^{-2}$ соответственно. Основному состоянию ²⁰⁹Tl по аналогии с рядом более легких ядер таллия с нечетным А приписывается $J^{\pi} = 1/2^+$ (р $3s_{1/2}$ -состояние). Разрешенный по правилам отбора по спину и четности β -распад ²⁰⁹ Tl должен бы происходить на уровень $J^{\pi} = 1/2^+$, 2032 кэВ. Между тем 99% распадов происходит на уровень $J^{\pi} = 1/2^{-}$, 2149 кэВ. Этот факт модель оболочек объясняет запретом β -перехода р $3s_{1/2} \rightarrow n4s_{1/2}$ по радиальному квантовому числу. Это единственный известный случай такого запрета β -перехода. Датар и др. [12], изучая задержанные β - γ -совпадения при распаде ²⁰⁹Tl, определили верхний предел интенсивности β-распада на уровень 2032 кэВ ²⁰⁹Pb как 0,1% распадов ²⁰⁹Tl и, соответственно, нижний предел значения $\log ft > 8,35$, подтвердив этим предсказание модели о запрете β -перехода р $3s_{1/2} \rightarrow n4s_{1/2}$.

Распады ²¹³Ві и ²⁰⁹Tl сопровождаются испусканием трех-пяти γ лучей относительно большой интенсивности [1-3] и ряда γ -лучей с интенсивностью 0,01% на распад и менее [4,5]. Настоящее исследование выполнено с целью подтверждения и уточнения данных о малоинтенсивных γ -переходах, исследования спектров γ - γ -совпадений, установления мультипольностей γ -переходов.

2

II. Методика экспериментов

1. Спектрометрическая аппаратура

В измерениях *у*-спектров использованы HPGe-детектор объемом 200 см³ с энергетическим разрешением (FWHM) 3.5 кэВ для ү-лүчей 1,33 МэВ ⁶⁰Со, Ge(Li)-детектор объемом 60 см³ с разрешением 1,9 кэВ для γ -лучей 1,33 МэВ ⁶⁰Со, НРGе-детектор объемом 2 см³ с разрешением 1,0 кэВ для ү-лучей 122 кэВ ⁵⁷Со и планарный HPGe-детектор 250 мм² × 3 мм с разрешением 0,5 к
эВ для γ -лучей 53 кэВ 133 Ва. Для накопления и анализа экспериментальной информации применялась аналоговая электроника производства фирм ORTEC, CANBERRA, ЛЯП ОИЯИ [13], блоки цифровой электроники в стандарте КАМАК [14], персональные ЭВМ. Накопление информации о спектрах совпадений обеспечивалось записью каждого события (E1,E2,t)-совпадений (in list mode) и одиночных спектров E1 и E2, что давало широкие возможности при анализе результатов после окончания экспериментов посредством многократных сортировок с установкой энергетических и временных окон [15]. Ввиду больших объемов получаемой экспериментальной информации для ее хранения и анализа использовалась локальная сеть ОИЯИ и сеть Internet.

Измерения спектров конверсионных электронов выполнялись на β спектрометре с Si(Li)-детектором (разрешение 2,1 кэВ на линии K1063 ²⁰⁷Bi) и магнитными фильтрами типа мини-апельсин [16]. Применение магнитных фильтров существенно (до 15 и более раз) увеличивало эффективность регистрации электронов на выбранных участках спектра и снижало загрузку детектора за счет уменьшения эффективности регистрации электронов малых энергий. Новые данные об интенсивности слабых линий конверсионных электронов получены, в основном, в исследованиях совпадений конверсионных электронов с КХ-лучами. В спектрах (КХ, e⁻)-совпадений практически полностью подавлялся фон от β^- -спектров. Совпадения с КХ-лучами определяют Z ядра, в котором происходит γ -переход, испытывающий конверсию.

2. Источники излучения

Для исследования радиоактивных излучений при распаде ²¹³Ві и ²⁰⁹Tl мы использовали ²¹³Bi, образующийся при распаде ²²⁵Ac ($T_{1/2}=10$ сут). ²²⁵Ac выделялся из препарата ²²⁹Th ($T_{1/2}=7,3\cdot10^3$ лет) по методике "Изотопный генератор ²²⁵Ac ", описанной в [17]. ²²⁹Th выделен

из ²³³U и очищен от примесей примерно за 10 лет до начала наших исследований. Активность выделяемых источников ²²⁵Ас была 20÷30 мкКи. Посторонние примеси в источниках ²²⁵Ас не наблюдались. Для получения спектров, свободных от излучения изотопов, предшествующих ²¹³Ві в цепочке распадов ²²⁵Ас (²²⁵Ас, ²²¹Fr и ²¹⁷Аt), использовано явление отдачи при α -распаде. Для этого ²²⁵Ac, выделенный из ²²⁹Th, испарялся в вакууме на алюминиевую фольгу. Затем эта фольга помещалась против "монеты"-коллектора монетного автомата [15]. При этом на "монету"-коллектор собирались ядра отдачи, дочерние по отношению к ²²⁵Ac: ²²¹Fr (T_{1/2}=4,9 мин), ²¹⁷At (T_{1/2}=32 мкс) и ²¹³Bi (T_{1/2}= 46 мин). Малая толщина вакуумно-испаренного источника ²²⁵Ас, малое расстояние между источником ²²⁵Ас и "монетой"-коллектором, достаточно высокий вакуум позволяли достичь эффективности собирания ядер отдачи около 20%. Каждые 90 мин (2T_{1/2} ²¹³Bi) "монета"коллектор сбрасывалась в измерительную позицию к детекторам излучения и на ее место подавалась новая "монета"-коллектор. Измерительная позиция находилась на расстоянии 1 м от источника ²²⁵ Ac. Детекторы излучений защищались от излучения источника ²²⁵Ас десятью сантиметрами свинцового поглотителя. В измерительной позиции проводились две 45-минутные экспозиции измерений спектров. Спектры второй экспозиции были практически чистыми спектрами ²¹³Bi. Содержание в них излучений ²²⁵Ac, ²²¹Fr и ²¹⁷At контролировалось по самым сильным линиям спектров этих изотопов и было ничтожным. Цикл измерений повторялся многократно.

Гамма-спектры от источника ²²⁵ Ac измерялись с целью определения интенсивностей γ -лучей ²¹³Bi и ²⁰⁹Tl в процентах на один распад в равновесной цепочке ²²⁵Ac по отношению к известной интенсивности γ -лучей 218,2 кэВ ²²¹Fr – 11,2% [18]. Измерения γ -спектра цепочки распадов ²²⁵Ac были полезны также для получения дополнительной информации о γ -спектре ²¹³Bi и ²⁰⁹Tl в области $E_{\gamma} > 0, 7 \div 0, 8$ МэВ. Другие изотопы цепочки ²²⁵Ac испытывают α -распад (²²⁵Ac, ²²¹Fr и ²¹⁷At) или β -распад в основное состояние (²⁰⁹Pb) и не имеют γ -лучей с энергией более $0,7\div 0,8$ МэВ.

Спектры γ - γ -совпадений и спектры ЭВК исследованы с использованием источника ²²⁵Ас в равновесии с дочерними изотопами.

III. Экспериментальные результаты

1. Спектры ү-лучей ²¹³Ві и ²⁰⁹ТІ

В табл. 1 и 2 полученные нами сведения о γ -лучах при распаде ²¹³Ві и ²⁰⁹Tl сравниваются с результатами Ардиссона и др. [5]. Все γ -лучи из табл. 1 и 2 мы наблюдали при распаде ²¹³Bi (45,6 мин) и находящегося с ним в равновесии дочернего ²⁰⁹Tl (2,2 мин), (рис. 1). Приписание γ -

Рис. 1. Гамма-спектр от источника ²¹³Ві (в равновесии с ²⁰⁹Tl), измеренный на спектрометре с HPGe-детектором 75 см³. Цифры над пиками – энергии γ-лучей ²¹³Ві и ²⁰⁹Tl. Другие пики принадлежат фону.

лучей распаду ²¹³Ві или ²⁰⁹ТІ выполнено на основе следующих фактов:

- γ -переходы с энергией больше ~ 1,4 МэВ возникают в распаде ²⁰⁹Tl, так как энергия β^- -распада ²¹³Bi равна 1430 кэB. Энергия β^- -распада ²⁰⁹Tl равна 3970 кэB [19];
- известно, что γ-переходы 440,5 и 292,8 кэВ возникают в распаде ²¹³Ві на уровни ²¹³Ро (см. например [5]);
- γ -лучи 323,8 и 779,0 кэВ возникают при α -распаде ²¹³Ві и ²¹³Ро. Мы наблюдали совпадения этих γ -лучей с соответствующими линиями тонкой структуры α -спектров ²¹³Ві и ²¹³Ро;

- приписание других γ-переходов распадам ²¹³Bi или ²⁰⁹Tl основано на результатах исследований γ-γ-совпадений и обсуждается ниже.

Настоящая	работа	Ардиссон	и др.[5]	Размещение переходов
$E_{\gamma}(\Delta E_{\gamma}),$	$I_{\gamma}(\Delta I_{\gamma}),$	$E_{\gamma}(\Delta E_{\gamma}),$	$I_{\gamma}(\Delta I_{\gamma}),$	в схеме распада
кэВ	%	кэВ	%	$\mathbf{E}_i \rightarrow \mathbf{E}_f$
147,7(1)	0,022(8)	147,66(5)	0,0148(12)	$440, 5 \rightarrow 292, 8^{-213}$ Po
292,81(1)	0,40(1)	292,76(5)	0,416(23)	$292, 8 \rightarrow 0^{213} Po$
323,80(4)	0,157(8)	323,69(5)	0,148(12)	α -распад ²¹³ Bi \rightarrow ²⁰⁹ Tl
-	_	402,8(3)	0,00010(3)	
440,44(1)	25,4(3)	440,43(5)	26,1(3)	$440, 5 \to 0^{213} Po$
575,2(5)	0,0025(10)	574,8(3)	0,00063(17)	(867,9→292,8) ²¹³ Po
601,0(2))	0,0042(8)	600,7(3)	0,00070(22)	_
604,94(21)	0,0023(6)	604,9(3)	0,00050(18)	-
646,0(1)	0,0024(10)	646,03(9)	0,00231(22)	-
659,74(2)	0,044(3)	659,77(5)	0,0361(20)	$1100, 2 \rightarrow 440, 5^{-213}$ Po
710,82(3)	0,0119(10)	710,81(21)	0,0102(11)	$1003, 6 \rightarrow 292, 8^{-213}$ Po
779,00(8)	0,0046(6)	778,87(5)	0,0043(4)	α -распад ²¹³ Ро \rightarrow ²⁰⁹ Рb
807,37(1)	0,283(18)	807,38(5)	0,241(15)	$1100, 2 \rightarrow 292, 8^{-213}$ Po
826,59(5)	0,0077(13)	826,47(6)	0,0057(5)	$1119, 4 \rightarrow 292, 8^{-213}$ Po
867,93(3)	0,0123(11)	867,98(3)	0,0111(11)	$867, 9 \rightarrow 0^{213} Po$
880,9(1)	0,0042(4)	880,2(3)	0,0029(10)	_
-	-	884,6(3)	0,00029(10)	
-	-	886,66(14)	0,00102(19)	
	-	897,0(3)	0,00031(9)	-
$1003,\!59(3)$	0,053(3)	$1003,\!55(5)$	0,050(5)	$1003, 6 \rightarrow 0$ ²¹³ Po
1045, 10(40)	0,034(19)	1045,70(9)	0,018(3)	$1045, 1 \rightarrow 0^{213} Po$
1100, 18(2)	0,251(17)	1100, 12(5)	0,259(16)	$1100, 2 \rightarrow 0^{213}$ Po
1119,50(4)	0,051(3)	1119,29(5)	0,050(3)	$1119, 4 \rightarrow 0^{-213}$ Po
-	+	1328, 2(3)	0,00039(14)	

Таблица 1. *ү*-лучи при распаде ²¹³Ві

Интенсивности γ -лучей в процентах на распад в равновесной цепочке ²²⁵Ac (²¹³Bi) вычислены в результате анализа γ -спектра ²²⁵Ac и дочерних изотопов по отношению к интенсивности γ -лучей 218,2 кэВ при α -распаде ²²¹Fr. Интенсивность γ -лучей 218,2 кэВ, равная 11,2 % на распад, определена из интенсивности α -распада ²²¹Fr на уровень 218,2 кэВ ²¹⁷At: I $_{\alpha 218} = 15,1(2)$ % [20] и полного коэффициента конверсии γ -перехода 218,2 кэВ. Мультипольность γ -лучей 218,2 кэВ – Е2 установлена Джелеповым и др. [21]. Для удобства сравнения интенсивностей γ -лучей с данными Ардиссона и др. [5] в табл. 2 даются также интенсивности γ -лучей в процентах на один распад ²⁰⁹Tl.

	Настоящая	работа	Ардиссон	и др.[5]	Размещение переходов
$E_{\gamma}(\Delta E_{\gamma}),$	$I_{\gamma}(\Delta I_{\gamma}),$	$I_{\gamma} (\Delta I_{\gamma}),$	$\mathbf{E}_{\gamma}(\Delta \mathbf{E}_{\gamma}),$	$I_{\gamma}(\Delta I_{\gamma}),$	в схеме распада
кэВ	% ²¹³ Bi	% 209 Tl	кэВ	% ²⁰⁹ T1	$E_i \rightarrow E_f$, ²⁰⁹ Pb
117,18(10)	1,55(8)	78(4)	117,24(5)	73(1)	$2149, 3 \rightarrow 2032, 1$
			284,04(23)	0,14(7)	
			311,5(3)	0,028(14)	
			375,5(2)	0,070(15)	
465,21(4)	1,93(10)	97(5)	465,10(5)	95(5)	$2032,1\rightarrow1566,9$
469,9	0,0024(5)	0,12(3)	469,7(3)	0,03(2)	
582,4(2)	0,0056(8)	0,28(4)			2149, 3 ightarrow 1566, 9
748,5(3)	0,0014(6)	0,07(3)	748,0(3)	0,09(3)	$2315,4\rightarrow 1566,9$
*755,6(3)	0,022(4)	0,11(2)	— .		2905 ightarrow 2149, 3
*860,5(3)	0,0051(6)	0,26(4)	—		
*873,5(4)	0,0117(16)	0,59(8)			2905 ightarrow 2032, 1
*890,0(4)	0,0023(6)	0,12(3)	(<u> </u>		
*902,8(4)	0,0019(5)	0,10(2)			
920,8(1)	0,0125(11)	0,63(5)	920,34(9)	0,70(7)	$3070 \rightarrow 2149, 3$
1239,7(2)	0,0084(13)	0,42(7)	1239,76(15)	0,31(12)	2806 ightarrow 1566, 9
1329,3(3)	0,0020(5)	0,10(3)	1329,3(3)	0,026(5)	
1566,9(3)	1,99(9)	100(5)	1566,95(5)	100(5)	
1661,1(5)	0,0020(5)	0,10(2)	_	— .	
1673,2(4)	0,0095(9)	0,48(4)	—	<u> </u>	
1781,7(5)	0,0008(4)	0,04(2)		<u> </u>	
2032,1(5)	< 0,00002	< 0,001			
2149,0(10)	0,0003(1)	0,015(5)			$2149, 3 \rightarrow 0$
2315,9(3)	0,0006(2)	0,03(1)	<u> </u>		$2315, 4 \rightarrow 0$

Таблица 2. γ -лучи при распаде ${}^{209}_{81}$ Tl $\rightarrow {}^{209}_{82}$ Pb

* – Отмеченные γ -переходы могут принадлежать распаду ²¹³Bi, а не ²⁰⁹Tl.

Сведения о γ -лучах ²¹³Ві (табл. 1) с интенсивностью более 0,01%, полученные нами, совпадают с результатами [5]. Ряд γ -лучей с $I_{\gamma} < 0,01\%$: $\gamma 402$; $\gamma 884,6$; $\gamma 886,7$; $\gamma 897,0$ и $\gamma 1328$ — мы не наблюдали. Гаммалучи 575,2; 601,0 и 604,9 кэВ оказались в наших спектрах в 4 - 5 раз более интенсивными. Уверенная идентификация γ -лучей с интенсивностью менее 0,01% с распадом ²¹³Ві затруднительна, и поэтому мы считаем, что приписание перечисленных γ -переходов распаду ²¹³Ві требует подтверждения.

Сведения о γ -лучах ²⁰⁹Tl 117,2; 465,2; 748,5; 920,8; 1239,7 и 1566,9 кэВ в пределах погрешностей совпадают с данными [5]. Нам не удалось наблюдать γ -лучи: 284,0; 311,5 и 375,5 кэВ, обнаруженные в [5]. Вероятно, это обусловлено тем, что в [5] был исследован γ -спектр²⁰⁹Tl, отделенного от ²¹³Bi. В спектрах (²¹³Bi +²⁰⁹Tl) эти γ -пики расположены на спаде комптоновского распределения от интенсивных γ -лучей 440,5 кэВ ²¹³Bi, и это затрудняло их наблюдение. Большое различие в интенсивности γ -лучей 469,9 кэВ обусловлено, вероятно, трудностью определения их интенсивности при наличии соседнего в тысячу раз более интенсивного γ -пика 465,2 кэВ.

Интенсивные, совпадающие между собой γ -лучи 117,2; 465,2 и 1566,9 кэВ приводят к появлению в γ -спектрах пиков суммирования импульсов: 582,4; 1684,1 и 2032,1 кэВ. Анализ спектров, измеренных при различных расстояниях источник-детектор, и учет того, что γ -лучи 1684,1 кэВ по предлагаемой схеме распада существовать не могут, позволили установить, что при распаде ²⁰⁹Tl испускаются γ -лучи 582,4 кэВ с интенсивностью 0,28% на распад ²⁰⁹Tl. Установлен верхний предел интенсивности γ -лучей 2032 кэВ – $1 \cdot 10^{-3}$ % на распад ²⁰⁹Tl. В измерениях с HPGe-детектором 200 см³ обнаружены γ -лучи с энергиями 2149 и 2315 кэВ (рис. 2). Вклад суммирования импульсов в эти γ -пики пренебрежимо мал.

Рис. 2. Спектр γ-лучей ²⁰⁹Tl в области E_γ >1500 кэВ, измеренный с HPGедетектором 200 см³. Цифры над пиками – энергии γ-лучей, возникающие при распаде ²⁰⁹Tl. Другие пики принадлежат фону.

В области $E_{\gamma} > 750$ кэВ обнаружено восемь новых малоинтенсивных у-переходов. Приписание γ -лучей с энергиями от 755,6 до 902,8 кэВ распаду ²⁰⁹Tl предпочтительно, но не исключается их принадлежность распаду ²¹³Bi. Гамма-лучи 1661, 1673,2 и 1781,7 кэВ относим к распаду ²⁰⁹Tl, т.к. их энергия больше энергии бета-распада ²¹³Bi (Q_{β} -=1430 кэВ).

2. Исследование γ-γ-совпадений. Схемы уровней ²¹³Ро и ²⁰⁹Рb при распадах ²¹³Bi и ²⁰⁹Tl

Анализ результатов исследований γ - γ -совпадений выполнялся количественно [22]. Для каждой пары совпадающих гамма-лучей определялась величина

$$\frac{S_{\gamma_{ik}-I} \cdot S_{\gamma_{kl}-II}}{S_{\gamma_{kl}-II}^{\gamma_{ik}-I}} = N \cdot a_k, \qquad (1)$$

где:

- $S_{\gamma_{ik}-I}$ и $S_{\gamma_{kl}-II}$ площади пиков γ_{ik} и γ_{kl} в одиночных спектрах, измеренных на первом и втором спектрометрах,
- $S_{\gamma_{kl}-II}^{\gamma_{ik}-I}$ площадь пика в спектре совпадений при регистрации γ_{ik} на первом спектрометре и γ_{kl} на втором спектрометре (площадь пика совпадений γ_{kl} в спектре второго спектрометра при установке окна γ_{ik} на первом спектрометре),

N – число распадов исследуемого ядра за время эксперимента,

a_k – заселенность уровня *k*: сумма интенсивностей ядерных переходов, приходящих на уровень *k* или уходящих с него.

Вычисляя это отношение, получаем величины $N \cdot a_k$, пропорциональные заселенности уровня k. Значения $N \cdot a_k$ используем при анализе баланса интенсивностей в схеме распада. В случаях относительно малоинтенсивных совпадений погрешность определения $N \cdot a_k$ возрастает. В этих случаях значения $N \cdot a_k$ использованы для контроля надежности наблюдаемых совпадений, для отбора случаев истинных совпадений от случаев, связанных с побочными эффектами.

В табл. 3 представлена информация о наблюденных нами парах совпадающих γ -переходов. Число пар в два раза меньше, чем в работе [5]. Так, в противоречии с [5], мы не обнаружили совпадений γ -лучей 1239,7 кэВ с γ -лучами 117,2 и 465,2 кэВ (рис. За и б) и наблюдаем совпадения γ 1239,7 только с γ 1566,9 (рис. Зв). Интенсивности γ -лучей 920,8 и 1239,7 кэВ (0,6% и 0,4%) таковы, что при наблюдении совпадений с γ 920,8 кэВ должны были бы наблюдаться, если они существуют, и совпадения с γ 1239,7 кэВ.

		Е _у (кэВ)	Энергия совпадающих	
		в окне	<i>ү</i> -лучей (кэВ)	
	$^{213}\text{Bi} \rightarrow ^{213}\text{Po}$	292,8	147,7; 710,8; 807,4; 826,6	
		440,5	659,7	
		659,7	440,5	
		710,8	292,8	·
		807,4	292,8	
		826,6	292,8	
	$^{209}\text{Tl} \rightarrow ^{209}\text{Pb}$	117,2	465,2; 920,8; 1566,9	
	i	465,2	117,2; 920,8; 1566,9	
		582,4	1566,9	
1		748,5	1566,9	
		1566,9	117,2; 465,2, 582,4;	
	<u> </u>		748,5; 920,8; 1239,8	4. ¹

Таблица 3. *ү-ү*-совпадения при распаде ²¹³Ві и ²⁰⁹ТІ

Сведения о совпадениях и интенсивностях γ -лучей при распаде ²¹³Bi и ²⁰⁹Tl позволяют построить схемы уровней ²¹³Po и ²⁰⁹Tl, возбуждаемых в этих распадах.

При распаде ²¹³Ві γ -переходы 440,5 и 292,8 кэВ, как самые интенсивные, определяют нижние возбужденные состояния ²¹³Ро. Совпадения γ -лучей 710,8; 807,4 и 826,6 кэВ с γ -лучами 292,8 кэВ и γ -лучей 659,7 кэВ с γ -лучами 440,5 кэВ, а также отсутствие совпадений с γ 1003,6; γ 1100,2 и γ 1119,5 кэВ определяют уровни 1003,6; 1100,2 и 1119,4 кэВ. Ненаблюдение совпадений с γ 867,9 кэВ и γ 1045,1 кэВ позволяет считать, что они происходят в основное состояние и определяют уровни с этими энергиями (рис. 4).

При распаде ²⁰⁹Tl положение нижних возбуждаемых уровней устанавливается каскадом интенсивных γ -переходов 1566,9; 465,2 и 117,2 кэВ. Их полные интенсивности - более 99% распадов ²⁰⁹Tl. Последовательность испускания этих γ -переходов – положения уровней 1566,9; 2032,1 и 2149,3 кэВ установлены в исследованиях ядерных реакций. Уровни 2315,4; 2806,6 и 3070,1 кэВ вводятся на основании наблюдения совпадений γ 748,5 кэВ с γ 1566,9 кэВ, γ 920,8 кэВ с γ 117,2 кэВ, γ 465,2

10

Рис. 3. Спектры *ү*-*ү*-совпадений при распаде ²⁰⁹Tl:

- a) спектр γ-лучей (HPGe 200 см³), совпадающих с "окном", установленным в спектре детектора HPGe-2 см³ на γ-117;
- б) то же в "окне" ү-465;
- в) спектр γ-лучей (HPGe 2 см³), совпадающих с "окном", установленным в спектре детектора HPGe-200 см³ на γ-1567.

Цифры над пиками – энергии ү-лучей ²⁰⁹Tl. Другие – случайные совпадения

кэВ и γ 1566,9 кэВ и γ 1239,7 кэВ с γ 1566,9 кэВ соответственно. Предполагаем, что в распаде ²⁰⁹Tl возбуждается наблюдаемый в (t,p)- и (p-d)- реакциях уровень 2905 кэВ, с разрядкой его на уровни 2032,1 кэВ (γ -переход 873,5 кэВ) и 2149,3 кэВ (γ -переход 755,6 кэВ) (рис. 5).

Вычисления заселенностей уровней 1566,9 и 2032,1 кэВ в ²⁰⁹Pb по формуле (1) показывают, что в пределах экспериментальной погрешности (~1%) они одинаковы. Принимая заселенность уровня 1566,9 кэВ в ²⁰⁹Pb равной интенсивности γ -лучей 1566,9 кэВ – 1,99% (табл. 2), вычислили (по формуле (1)) заселенности уровней 292,8 и 440,5 кэВ в ²¹³Po: $a_{293} = 0,47(2)\%$ и $a_{440} = 28(2)\%$ на один распад ²¹³Bi.

3. Мультипольности γ-переходов при распаде ²¹³Bi и ²⁰⁹Tl

Коэффициенты внутренней конверсии γ -переходов на К-оболочке атома – α_k и, соответственно, мультипольности γ -переходов определялись двумя методами: 1) из относительных интенсивностей КХ-лучей и γ -лучей в спектрах совпадений и 2) из относительных интенсивностей К-конверсионных линий в спектрах совпадений с КХ-лучами.

В первом случае рассматривались спектры совпадений с γ -лучами, совпадающими по схеме распада только с одним γ -переходом (или с несколькими, если вкладом других γ -переходов в конверсию (в интенсивность КХ-лучей) можно пренебречь). Из отношения интенсивностей $(K_{\alpha_2} + K_{\alpha_1}) - X$ -лучей и γ -лучей с учетом выхода флюоресценции $(K_{\alpha_2} + K_{\alpha_1}) - X$ -лучей получали α_k перехода.

Во втором случае на β -спектрометре с Si(Li)-детектором и магнитными фильтрами типа мини-апельсин измерялись относительные интенсивности К-конверсионных линий в спектрах совпадений с КХлучами. Коэффициенты внутренней конверсии α_k получали при сравнении интенсивностей этих линий с интенсивностями γ -лучей. В табл. 4 полученные значения α_k сравниваются с расчетными [23] для разных мультипольностей. Впервые измерены коэффициенты внутренней конверсии на К-оболочке и определены мультипольности γ -переходов: 147,7 кэВ – E2; 292,8 кэВ – M1+E2; 323,8 кэВ – M1+E2; 117,2 кэВ – E1; 465 кэВ – E2 и 1566,9 кэВ – E2. Подтверждается определенная в [21] мультипольность перехода 440,5 кэВ – M1(+E2).

Eγ	α_k		α_k	σL
(кэВ)	Χ - γ	Х-е-	расчет	
147,7	0,33(14)		E2 0,313; M1 3,03	E2, $\delta^2 > 15$
292,8	0,20(5)	0,24(7)	E2 0,071; M1 0,444	$M1+E2,\delta^2 = 1,4^{+1,2}_{-0.6}$
323,8	0,131(15)	-	E2 0,053; M1 0,26	M1+E2, (E3)
			E3 0,144	
440,5	0,13(2)	-	E2 0,029; M1 0,147	$\mathrm{M1}(\delta^2 < 0, 15)$
117,2	0,25(2)	-	E1 0,238; M1 4,87	E1(M2 < 0, 1%)
			M2 28,9	
465,2	-	0,027(4)	E2 0,024; M1 0,107	E2
1566,9	-	0,0024(9)	E2-0,0023, M1<0,0047	E2

Таблица 4. Коэффициенты конверсии и мультипольности у-переходов

4. Обсуждение результатов

Распад ²¹³Ві. Согласно анализу экспериментальных данных, выполненному в [24,25], спин и четность основного состояния ²¹³Ві равны $9/2^-$ (состояние (ph_{9/2} ng_{9/2})). Чумин и др. [7] изучали α -спектр ²¹³Ві и измерили интенсивности α -линий с энергиями $E_{\alpha 0} = 5869$ кэВ и $E_{\alpha 323.8} = 5549$ кэВ при α -распаде ²¹³Ві и $E_{\alpha 0} = 8376$ кэВ при α -распаде дочернего ²¹³Ро (T_{1/2}=3,7мкс [6]): 2,05(3)%, 0,153(3)% и 97,80(3)% на распад ²¹³Ві соответственно. Таким образом, интенсивность α -распада ²¹³Ві определяется как 2,20(3)% и β -распада – 97,80(3)%. При α -распаде ²¹³Ві возбуждается уровень с энергией 323,8 кэВ ²⁰⁹ТІ. Мы наблюдаем совпадения γ -лучей 323,8 кэВ с α -частицами $E_{\alpha 323.8} = 5549$ кэВ. В [7] установлено, что интенсивность α -линий, заселяющих при распаде $^{213}{
m Bi}$ уровни $^{209}{
m Tl}$ с энергией больше ~ 350 кэm B, меньше $1\cdot 10^{-4}$ % на распад ²¹³Ві. Спин и четность основного состояния ²⁰⁹ТІ, по аналогии с другими ядрами таллия с нечетными А от 195 до 207, предполагаются равными $J^{\pi} = 1/2^+$ (состояние $4s_{1/2}^{-1}$ оболочечной модели). Все известные ядра таллия с нечетными А имеют первые возбужденные состояния с энергией от 204 до 385 кэВ с $J^{\pi} = 3/2^+$ и с γ -переходами в основное состояние типа M1+E2. Предполагалось, что и уровень 323,8 кэВ в ²⁰⁹T] имеет $J^{\pi} = 3/2^+$. Измерение коэффициента конверсии и определение мультипольности перехода 323,8 кэВ подтверждают это предположение.

Предлагаемая нами схема распада 213 Ві изображена на рис. 4. Приведенные на схеме интенсивности β -распада на уровни 213 Ро и соответствующие значения $\log ft$ рассчитаны на основе баланса интенсивностей γ -переходов с учетом коэффициентов внутренней конверсии (табл.4). Существенные изменения в значениях I_β- и logft по сравнению с работой [5] имеются для двух уровней: 292,8 и 1045,1 кэВ. Интенсивность β-распада на уровень 292,8 кэВ уменьшена более чем в два раза и значение logft увеличено от 8,2 до 8,6 в связи с определением мультипольности γ -перехода 292,8 кэВ: M1+E2, $\delta^2 = 1,4$. В [5] предполагалось, что переход 292,8 кэВ типа M1. Для уровня 1045,1 кэВ в [5] допущена ошибка в расчетах. Мы не получили экспериментальных данных, подтверждающих уровень 1328,2 кэВ, введенный в [5].

Близкие к единице значения факторов задержки α-распада для переходов между основными состояниями ²¹³Ро →²⁰⁹Рb (HF=1,7) и 217 Rn \rightarrow^{213} Po (HF=1,4) позволяют приписать основному состоянию ²¹³Ро конфигурацию ($p1h_{9/2}^2 n2g_{9/2}^3$) с $J^{\pi} = 9/2^-$. Мультипольности γ переходов 147,7 кэВ (Е2), 292,8 кэВ (М1+Е2) и 440,5 кэВ (М1) с первых двух возбужденных состояний 292,8 кэВ и 440.5 кэВ определяют положительную четность этих состояний. Среди близких к основному состоянию ²¹³Ро уровней положительной четности с J^{π} = 7/2, 9/2, 11/2 по модели оболочек ожидаются состояния той же конфигурации, что и основное состояние, а также состояние типа $(p1h_{9/2}^2, n2g_{9/2}^2, 1h_{11/2})$, связанное с переходом одного нейтрона в одночастичное состояние 1i_{11/2}. Большое различие вероятностей β -распада на уровни 440,5 кэВ (log ft= 6,13) и 292,8 кэВ (logft = 8,6) указывает на то, что уровень 440,5 кэВ следует связать с $J^{\pi} = 7/2^+$ возбуждением конфигурации основного состояния. Уровню 292,8 кэВ приписываем конфигурацию (p1h²_{9/2}, $n2g_{9/2}^2$ 1i_{11/2}) с $J^{\pi} = 11/2^+$. В табл. 5 с использованием измеренных нами ранее [6] периодов полураспада уровней 292,8 кэВ и 440,5 кэВ и сведений о мультипольности переходов, полученных в настоящей работе, рассчитаны приведенные вероятности у-переходов. Малые значения приведенных вероятностей M1-компонентов у-переходов 440,5 кэВ и 292,8 кэВ подтверждают сделанную интерпретацию уровней. М1переход между состояниями одной конфигурации (у-переход 440,5 кэВ) запрещен. Наличие этого перехода указывает на примеси других конфигураций к состоянию 440,5 кэВ. Е2-характер у-перехода 147,7 кэВ и некоторое ускорение М1-компонента у-перехода 292,8 кэВ по сравнению с у-переходом 440,5 кэВ согласуются с приписанием главному компоненту волновой функции состояния 292,8 кэВ конфигурации $(p1h_{9/2}^2, n2g_{9/2}^2 1i_{11/2})$. Имеющиеся экспериментальные данные о свойствах более высоких уровней ²¹³Ро: значения $\log ft$ и характер разрядки γ -переходами — не позволяют сделать определенные заключения об их спинах и четности. Вероятно, все эти уровни имеют положительную четность, а спины их ограничены значениями 7/2, 9/2, 11/2. Большое значение $\log ft = 8,6$ для β -перехода на уровень 867,9 кэВ допускает приписание этому уровню и J = 13/2.

Таблица 5. Приведенные вероятности γ -переходов с уровней 292,8 и 440,5 кэВ в ²¹³Ро

Е _γ уровня,	$T_{1/2}(\Delta T_{1/2}),$	$\mathbf{E}_{\gamma},$	σL	δ^2	$B(\sigma L),$
кэВ	пс	кэВ			WU
292,8	78(14)	292,8	M1	1,4	$5,1.10^{-3}$
		292,8	E2		~ 20
	a a (a)				
440,5	93(3)	440,5	M1(+E2)	$\leq 0, 15$	$2,8 \cdot 10^{-3}$
		147,7	E2		$8,7 \cdot 10^{-1}$

Распад ²⁰⁹ Tl. Предлагаемая нами схема распада ²⁰⁹ Tl изображена на рис.5. Приведенные на схеме интенсивности β -распада на уровни ²⁰⁹Pb и значения приведенных вероятностей β -переходов – log ft рассчитаны на основе баланса интенсивностей γ-переходов при предположении, что β -распада в основное состояние ²⁰⁹Pb и на уровни 1566,9 и 2032,1 кэВ нет. При этом, однако, следует отметить, что, как было показано выше, интенсивность распадов ²¹³Ві в ²⁰⁹Тl согласно [7] равна 2,20(3)% распадов ²¹³Bi, а суммарная интенсивность γ -переходов в основное состояние ²⁰⁹Pb (см. табл.2) равна 2,00(10)% распадов ²¹³Bi, что означает, что в предлагаемой схеме распада не учитывается не менее 5% распадов ²⁰⁹Tl. Это можно объяснить или тем, что происходит распад ²⁰⁹Tl в основное состояние ²⁰⁹Pb и на уровни 1566,9 и 2032,1 кэВ, или, что более вероятно, тем, что при распаде ²⁰⁹ Tl заселяется ряд еще не обнаруженных уровней ²⁰⁹Pb с интенсивностью не менее 5% на распад ²⁰⁹Tl (0,10% на распад ²¹³Ві). Поправка на это обстоятельство в значениях logft незначительна (в пределах погрешности их определения).

Спины и четности первых трех уровней ²⁰⁹Pb, возбуждаемых при распаде ²⁰⁹Tl: 1566,9 кэВ – 5/2⁺; 2032,1 кэВ – 1/2⁺; 2149,3 кэВ – 1/2⁻ установлены в исследованиях ядерных реакций [11] и подтверждаются определенными в настоящей работе мультипольностями γ -переходов. Уровни 2319(2) кэВ – (3/2)⁻; 2904(4) кэВ – 3/2⁻ и 3076(5) кэВ – 3/2⁻ наблюдались в иследованиях (p,d), (d,p) и (t,p) ядерных реакций [11]. Предполагая, что при β -распаде ²⁰⁹Tl заселяются те же уровни, мы приписываем уровням 2315 кэВ, 2905 кэВ, 3070 кэВ J^{π} = (3/2)⁻, 3/2⁻ и 3/2⁻ соответственно. Значения log*ft* для β -распада на эти уровни и характер наблюдаемой разрядки их γ -переходами не противоречат таким их характеристикам. Ардиссон и др. [5] сообщили о наблюдении при распаде ²⁰⁹Tl уровней с энергиями 2461, 2525 и 3390 кэВ. Мы не получили экспериментальных данных, подтверждающих возбуждение этих уровней.

В рамках сферической модели оболочек основному состоянию ядра 209 Pb с одним валентным нейтроном следует приписать конфигурацию $n2g_{9/2}$, уровню 1566,9 кэВ – $n3d_{5/2}$, уровню 2032,1 кэВ – $n4s_{1/2}$ и уровню 2149,3 – $n3p_{1/2}$. Пока нет достаточных оснований для интерпретации в рамках модели оболочек более высоких уровней 209 Pb. Вероятно, среди них есть состояния, в волновую функцию которых вносит значительный вклад одночастичное состояние $n3p_{3/2}^{-1}$, и состояния с более сложной структурой.

Для того чтобы на основе измерений спектров излучений при распаде ²⁰⁹Tl сделать заключение о степени запрета по радиальному квантовому числу β -перехода р $3s_{1/2} \rightarrow n4s_{1/2}$ (распад ²⁰⁹Tl, $J^{\pi} = (1/2^+)$ на уровень 2032,1 кэВ, $J^{\pi} = 1/2^{+209}$ Pb), необходимо получить экспериментальные данные об интенсивностях γ -переходов 465,2 и 117,2 кэВ. Разность полных интенсивностей этих переходов с поправками на заселение уровня 2032,1 кэВ малоинтенсивными γ -переходами есть интенсивность В-распада на уровень 2032,1 кэВ. При наших вычислениях баланса интенсивностей в схеме распада ²⁰⁹ТІ полные интенсивности *γ*-переходов 117,2; 465,2 и 1566,9 кэВ совпали с точностью лучшей одного процента. Однако мы не можем гарантировать точность определения зависимости эффективности использованных у-спектрометров от энергии γ -лучей лучше чем 3% и должны считать, что интенсивности этих переходов равны в пределах 3%. Поэтому мы, к сожалению, не смогли даже приблизиться к тому минимальному пределу (0,1%) интенсивности β-распада на уровень 2032,1 кэВ ²⁰⁹Pb, который получен в эксперименте Датара и др. [12].

Авторы глубоко признательны В.Г.Егорову за предоставление для выполнения экспериментов большого (200 см³) НРGе-детектора. Авторы благодарят В.М.Горожанкина за плодотворные обсуждения в ходе выполнения работы. Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты 94-02-04828а и 98-02-16451).

Литература

- 1. Вылов Ц., Головков Н.А., Джелепов Б.С. и др. Изв. АН СССР, сер. физ. 41 (1977) 1634.
- Dickens J.K., Mc Connell J.W. Radiochem. Radioanal. Lett. 47 (1981) 331.
- Helmer R.G., Reich C.W., Lee M.A., Ahmad I. Int. J. Appl. Radiat. Isot. 37 (1986) 139.
- Ardisson G., Barci V., El Samad O. Nucl. Instr. and Meth. A339 (1994) 168.
- 5. Ardisson G., Barci V., El Samad O. Phys. Rev. C57 (1998) 612.
- 6. Ваврыщук Я., Каляпкин К.В., Юлдашев М.Б. и др. Изв. РАН, сер. физ. 61 (1997) 32.
- 7. Чумин В.Г., Фоминых В.И., Фуряев Т.А.и др. Изв. РАН, сер. физ. 61 (1997) 2062.
- 8. Джелепов Б.С., Иванов Р.Б., Михайлова М.А.и др. Изв. АН СССР, сер. физ. **31** (1967) 568.
- Kouassi M.C., Hachem C., Ardisson C., Ardisson G. Nucl. Instr. and Meth. A280 (1989) 424.
- 10. Ellegaard C., Barnes P.D., Flynn E.R. Nucl. Phys. A259 (1976) 435.
- 11. Martin M.J. Nucl. Data Sheets 63 (1991) 723.
- Datar V.M., Baba C.V.K., Acharya S.N et al. Phys. Rev. C22 (1980) 1787.
- Антюхов В.А., Вюонг Дао Ви, Динель З. и др. Сообщение ОИЯИ 10-80-650. Дубна, 1980.
- 14. Журавлев Н.И., Крайпе Г., Опалек Т. и др. Сообщение ОИЯИ **P10-88-937**. Дубна, 1988.
- 15. Фоминых В.И., Ваврыщук Я., Веселов Г.В. и др. Приборы и техника эксперимента 5 (1995) 19.
- 16. Горожанкин В.М., Громов К.Я., Калинников В.Г. и др. Приборы и техника эксперимента **3** (1997) 8.

- Tsupko-Sitnikov V.V., Norseev Yu.V., Khalkin V.A. J. Radioanalit. Nucl. Chem. 202 (1996) 75.
- 18. Громов К.Я., Джаббер Д.К., Маликов Ш.Р. и др. Изв. РАН, сер. физ. 63 (1999) 860.
- 19. Audi G., Bersillon O., Blachot J., Wapslra A.H. Nucl. Phys. A624 (1997) 1.
- 20. Leang C.F., Bastin-Scoffier G. Comp.Rend **266B** (1968) 629. Leang C.F., Thesis University Paris (1969)
- 21. Джелепов Б.С., Золотавин А.В., Иванов Р.Б. и др. Изв. АН СССР. Сер. физ. **33** (1969) 1607.
- 22. Громов К.Я., Фоминых В.И. Изв. РАН. Сер. физ. 61 (1997) 2051.
- Банд И.М., Тржаковская М.Б. Таблицы КВК γ-лучей на K,L,M,оболочках, Ленинград, 1978.
- 24. Akovali Y.A. Nuclear Data Sheets 66 (1992) 237.
- Chumin V.G., Fominykh V.I., Gromov K.Ya. et al. Z. Phys A358 (1997) 33.

Рукопись поступила в издательский отдел 15 мая 2000 года.