

СООБЩЕНИЯ Объединенного института ядерных исследований

дубна

793

2 .00 P6 - 12895

И.Адам, А.В.Будзяк, З.Гонс, М.Гонусек, В.В.Кузнецов, Т.М.Муминов, К.М.Муминов, Р.Р.Усманов, Ф.Пражак, М.Яхим

161 УРОВНИ **Тт**, ВОЗБУЖДАЕМЫЕ ПРИ РАСПАДЕ ¹⁶¹ **УР**

1979

Адам И. и др.

P6 - 12895

Уровни ¹⁶¹ Tm, возбуждаемые при распаде ¹⁶¹ Yb

Исследовались спектры у-лучей, конверсионных электронов, e^-y -совпадений и трехмерных ууt -совпадений при распаде На основе анализа результатов предлагается и обсуждается схема возбужденных состояний 161 Yb. Измерено время жизни уровня 78,2 кзв 161 Tm - T₁₄ = (112 ±5) x10 ${}^{-9}$ c.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Сообщение Объединенного института ядерных исследования. Дубна 1979

Adam I. et al.

P6 - 12895

161 Tm Levels Excited at the 161 Yb Decay

Spectra of gamma-rays, of conversion electrons, $e_{-\gamma}$ -coincidences and three-dimensional $\gamma\gamma t$ -coincidences were investigated at the 161Yb decay. On the basis of results analysed a scheme of 161Yb excited states is proposed. The lifetime of 78.2 keV level has been measured: $1^{161}\text{Tm}-T_{\chi} = (112\pm5)\times10^{-9}\text{c}$.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1979

С 1979 Объединенный институт ядерных исследований Дубна

I. BBEJEHNE

Изотоп ¹⁶¹ юнл впервые обнаружен И.Адамом и др. /1/, определен период полураспада ¹⁶¹ у Т_{1/2} = 4,2(2) мин по спаду интенсивности К_{с,} (*Im*) рентгеновских лучей и /-лучей с энергией 78,17; 140,2; 188,2; 599,8 и 631,3 кэВ, возникающих при распаде 161 у ...

Первый вариант схемы распада 161 36, включающий в себя шесть уровней с энергией 78,2; 638,7; 647,9; 678,1; 709,6 и 1180,7 кэВ 161 5m, был предложен в работе /2/.

В настоящей работе исследовались спектры /-лучей, конверсионных электронов, е-/-совпадений и трехмерных //t -совпадений при распаде ¹⁶¹ %. На основе анализа результатов предлагается и обсуждается схема возбужденных состояний ¹⁶¹ Гл., возникающих при бета-распаде ¹⁶¹ %.

2. УСЛОВИЯ ЭКСПЕРИМЕНТА. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

2.1. Приготовление источников

Нейтронодефицитные изотопы редкоземельных элементов получались в реакциях расщепления тантала (гафния) протонами с энергией 660 МэВ на синхроциклотроне Лаборатории ядерных проблем ОИЯИ.

Мишени тантала (гайния) в виде металлической фольги толщиной 50 мкм и весом ~0,5 г облучались на выведенном пучке (J=0,I мкА) синхроциклотрона в течение 5-10 мин. Облученные мишени транспортировались при помощи пневмочочты и помещались в ионный источник. с поверхностной ионизацией /3/электромагнитного масс-сепаратора /4/.

3

Продукты ядерных реакций расцепления тантала (гафния) разделялись при помощи масс-сепаратора по изобарам по методу, описанному в работе ^{/5/}. При исследовании спектров *І*-лучей для получения источников ¹⁶¹ *У* использовалась мишень из гафния. В этом случае получается лучшее соотношение выхода изотопов иттербия по сравнению с выходом изотопов тулия ^{/6/}. В остальных случаях ис следований использовалась мишень из тантала.

Измерения радиоактивных источников изобары A = 161 начина – лись спустя 5 мин после окончания облучения, а в случае исследования спектров е/-совпадений спустя 10 минут.

2.2. Исследование спектров /-лучей 161 ув

Спектры У-лучей измерялись при помощи спектрометров с полупроводниковыми детекторами (ПЩД) - Ge(L1)-детекторами с чувствительными объемами 0,5 см³ с разрешением 0,8 кэВ при Е_У = I22 кэВ ⁵⁷Со и 4I см³ с разрешением 2,4 кэВ при Е_У = I332 кэВ ⁶⁰Со. Спектры накапливались в 4096-канальном анализаторе АИ-4096, записывались на магнитную ленту и обрабатывались на ЭВМ HP-2II6C.

На рис. І и 2 представлены спектры /-лучей изобары А = 161.

Рис.І. Участок спектра /-лучей ^{I6I} У (изобари A = I6I), полученный при измерении на спектрометре с Ge (Li)-детектором с чувствительным объемом 0,5 см³.

Рис.2 Спектр У-лучей ¹⁶¹ УС (изобары A = 161), полученный при измерении на спектрометре с $G_{e}(L_{i})$ -детектором с чувствительным объемом 41 см³.

В измеренных спектрах /-лучей помимо фотопиков /-лучей ¹⁶¹ % наблюдени фотопики /-лучей ¹⁶¹ Гт. ¹⁶¹ Ег и в небольшом количестве соседних изобар. Гамма-лучи ¹⁶¹ Гт. и ¹⁶¹ Ег идентифицировались согласно работам ^{/7},8[/]. Гамма-лучи, возникающие при распаде ¹⁶¹ % идентифицировались по спаду их интенсивностей в нескольких сериях измерений спектров изобары A = 161.

Энергии /-лучей определялись при измерениях спектров изобарн A = 161 вместе с калибровочными источниками /9/_ 133 ва, 182 ба, 110 м Ag, 152 Eu и 226 Ra. Кривые эффективности регистрации /-излучения Ge(Li)-детекторами определялись с использованием стандартных источников и описывались аналитической функцией с шестью параметрами, как в работе /10/.

Определение интенсивности аннигиляционного излучения проводилось в специальном опыте в определенной геометрии с окружением источника поглотителем из свинца для более эффективной остановки позитронов.

			TCCOLUCIO T		
	Энергии и интенс	сивности /-дучей,	возникающих при	распаде 161у	
	Ey(A Ey) KOB	Jy(aJy)	Ey(a Ey) ROB	Jy (aJy)	
-	Kal (Tm)	530(40) ^{a)}	569,73(14)	43,2(20)	
	70,90(10)	3.7(8)	599,88(IO)	197,5(92)	
	78,20(3)	260(20)	63I,45(IO)	105,5(4,6)	
	140,25(8)	21,5(20)	641,22(21)	4,2(5)	
	144,43(6)	35,0(40)	644,9(4)	3,4(7)	
	159,67(18)	4,5(IO)	659, IO(I4)	24,6(10)	
	I6I,85(I5)	5,3(IO)	690,75(20)	8,2(7)	
	188,28(5)	27,2(20)	714,9(4)	4,0(7)	
	192,26(14)	4,4(4)	722,15(23)	5,7(8)	
	197,7(5)	0,3	730,9(5)	2,0(7)	
	222,47(20)	I,8(3)	745,6(4)	I,9(5)	
	261,2(3)	I,8(5)	771,24(28)	3,5(6)	
	266,0(5)	6,0(20)	781,2(3)	4,3(8)	
	298,45(15)	10,3(6)	789,47(27)	4,3(5)	
	310,3(3)	3,4(6)	793,02(23)	9,3(6)	
	314,70(15)	20,3(8)	800,45(28)	7,5(IO)	
	318,63(18)	4,9(4)	805,24(24)	5,4(6)	
	330,10(24)	21,0(13)	813,15(28)	3,0(4)	
	344,72(28)	II,0(IO)	816,5(3)	2,3(4)	
	359,92(17)	8,5(6)	823,5(5)	I,8(6)	
	381,03(14)	12,6(6)	842,7(3)	4,5(6)	
	410,44(17)	9,4(7)	959,6(4)	3,2(7)	
	443,02(24)	3,1(5)	1007,2(4)	7,0(8)	
	458,22(16)	21,8(8)	1018,5(4)	6,2(6)	
	47I,00(IO)	12,6(7)	1022,0(4)	3,9(5)	
	5II	222(30)0)	1038,2(5)	3,5(6)	
	519,12(20)	4,8(5)	1042,7(4)	7,7(6)	
	532;9I(23)	4,8(7)	III7,3(5)	3,6(9)	
	536,6(3)	3,3(7)	II45,6(5)	7,3(7)	
	550,0(5)	2,0(6)	II67,I(6)	4,5(7)	
	552,I(5)	2,0(6)	1182,5(5)	6,4(7)	
	555,50(15)	II,I(6)	1364,9(5)	7,3(7)	
	560,48(20)	16,2(12)	1517,8(5)	7,2(9)	
	566,92(22)	5,4(7)	1805,8(15)	4,6(10)	

а) Значение интенсивности К_« (*Sm*) взято из работы /1/. б) Значение интенсивности аннигиляционного излучения 161уь.

Результаты анализа спектров /-лучей сведены в таблице I. Обнаружено 67 /-переходов, принадлежаних распалу 161 44.

2.3. Исследование спектров конверсионных электронов

Измерение спектров конверсионных электронов проводилось при помощи спектрометра с S: (Li)-детектором толшиной 3 мм. плошалью 150 мм² и разрешением 2,2 кэВ в области Е_е = 100 кэВ, и безжелез-ного бета-спектрометра с тороидальным магнитным полем /II/.

Одновременное измерение спектров конверсионных электронов и У-лучей при помощи ШІД позволило определить мультипольности нескольких переходов, принадлежащих распаду ¹⁶¹ ус относительным ме-тодом по /-переходам, возникающим при распаде ¹⁶¹ Sm. /7/. В таблице 2 приведены полученные значения коэффициентов внутренней конверсии и выводы о мультипольности для 8 переходов в 1619

Таблица 2

Значения коэффициентов внутренней конверсии (КВК) и выводы о мультипольности переходов в 161 Гт

Ey, R	эВ	KBK a)	Мультипольность
18,90)		
78,20	0)	0,12	EI + 0,2% M2
140,25	I	K I,7	EI, E2, MI
144,43	F	(I,I	EI, E2, MI
188,28	i i	(0,20	EI, E2
314,70	H	K 0,I2	MI, (E2)
330,IC	H	K 0,I2	MI, (E2)
599,88	I	(0,02	MI(E2)
631,45	H	(0,023	MI(E2)

а) Погрешность в определении КВК составляла 2 30%.

б) Интенсивность Ј_{MI8,9} и Ј_{K78,20} определялась при измерениях на бета-спектрометре с тороидальным магнитным полем /II/.

Интенсивность конверсионных электронов перехода с энергией 18,9 коВ определялась из спектра, измеренного при помощи безжелезного бета-спектрометра. При расчете баланса интенсивностей схемы распада 161 32 принималось, что переход с энергией 18,9 кав типа Е2 (см.ниже).

2.4. Исследование спектров /-/- совпадений

Для исследования спектров многомерных совпадений использовалась установка /12/ с двумя Ge(Li)-детекторами с чувствительным объемом 41 см³ и 48 см³ с разрешением 2,4 каВ и 2,8 каВ при Е_у = 1332 каВ ⁶⁰со, соответственно. Временное разрешение аппаратуры составляло 25.10⁻⁹с. Спектры совпадений регистрировались в матрице 4096х4096х4096 каналов и записывались на магнитную ленту ЭВМ HP2II6C, сортировались и обрабатывались по методике, описанной в работе /12/. На рисунке 3 показан выбранный из матрицы спектр задержанных совпадений /-лучей с /-лучами с энергией 78,2 каВ.

Рис.З Спектр задержанных / 78,20 - /-совпадений.

Из анализа временного распределения совпадений у 78,20 кэВ с *І*-лучами ¹⁶¹ *УС* оценено значение периода полураспада возбуж денного уровня с энергией 78,2 кэВ ¹⁶¹ *Гт* : T_{1/2}= 140(20)x10⁻⁹ с (рис.4).

Рис. 4 Кривая временного распределения (178,20-1599,88)-совпадений, полученная при обработке 1-1-t-совпадений.

В таблице 3 сведены результаты обработки многомерных спектров уус -совпадений.

2.5. Исследование спектров е/-совпадений

Измерения спектров е/-совпадений проводились при помощи установки /13/, созданной на базе безжелезного бета-спектрометра с тороидальным магнитным полем /11/ и спектрометра с $Ge(\mathcal{L}t)$ -детектором с чувствительным объемом 35 см³ (энергетическое разрешение 3,5 кэВ при Е_Y = 1332 кзВ ⁶⁰Со). Временное разрешение установки составляло 50 x 10⁻⁹ с.

Измерения спектров е/-совпадений длились полчаса с использованием шести источников в каждом случае (рис.5).

Информация накапливалась в памяти 4096-канального амплитудного анализатора ICA-70 с выводом на цифропечать и плоттер.

На рис.5 приведены спектри совпадений У-лучей с электронами К 78,20, К I44,43 и М I8,9 I6I ув, а также спектр У-лучей изобары А = I6I (вверху). На этом же рисунке показан участок спектТаблица З

Результати анализа спектров // совпадений при распаде 161

-				and the second se
	Еу, кэВ	Еу, кэВ	J ууэксп. а)	Ј уурасч. б)
	3a	держанные () 78,	20 -) совпадени	я
	78,20	560,48	~ 8,5	10,0
		569,73	25,8	26,7
		599,88	122,0	≡ 122,0
		63I,45	64,3	65,4
	Mr	новенные //-совп	адения	
	144,28	266,0	~ 3,2	6,0
	298,46	159,67	~2,8	3,5
	569,73	532,91	~ 6,8	4,8
	631,45	471,00	II,7	≡ II,7

а) Погрешности в определении интенсивностей совпадений составляют 20% для интенсивных совпадений и ≤ 50% для случаев совпадений, обозначенных ~.

6) Расчетные значения Јуу получены согласно предложенному нами варианту схемы распада 161 Ув.

ра конверсионных электронов изобары A = 161, измеренный на безлелезном бета-спектрометре (вверху справа).

В таблице 4 приведены относительные интенсивности ў-лучей, полученные из анализа спектров еў-совпадений, здесь же даны интенсивности, рассчитанные из предлагаемой нами схемы распада 161 ус.

Как видно из рис. 3 и 5, таблиц 3 и 4 результати е/-совпадений хорошо согласуются с данными анализа //-совпадений (/78,2-/).

2.6. Исследование времени жизни уровня с энергией 78.2 кэВ ^{I6I} Лт

Нами исследовались временные распределения совпадений при распаде изобаров 161уг - 161 Гт - 161 Ег как методом //t -совпадений (/ 78,2-/-t), так и методом совпадений /-лучей (Ey-30 квВ) с ЭВК К 78,2 161 уг + L27,9 161 Гт, при номощи установки

Результаты	анализа	спектров	е)-совпадений
при	распаде	161 YB	

Конверсионные электроны переходов	е Еу, кәВ	Іеў эксп.а)	Iey pacy.d)
	Задержанные е	-совпадения	10 11 11
K 78,20	560,48	2,7	3,0
and a dar of	569,73	II,2	7,9
	599,88	37,5	36,3
	63I,45	19,5	≡19,5
]	Игновенные е/-	совпадения	Alter and the and the
K 144,43	266,0	~1,7	I,5
	298,46	~2,5	≡2,5
	458,22	~ 2,8	1
M 18,9	I40,25	~I.6	2,9
	659,IO	~3,3	≡3,3
	690,75	~2,6	I,I

б) Расчетные значения І_еу получены согласно предложенному нами варианту схемы распада ¹⁶¹ Ув.

На рис.6 представлено временное распределение (К 78,2 ¹⁶¹ УС + 127,9 ¹⁶¹ Гт) У-совпадений. Левый склон характеризует время жизни уровня с энергией 189 кэВ ¹⁶¹ Ег (T_{1/2} = 73(3) х 10⁻⁹ с), правый склон кривой характеризует время жизни уровня с энергией 78,2 кэВ ¹⁶¹ Гт (T_{1/2} = 112(5) х 10⁻⁹ с). Оценка T_{1/2} уровня 78,2 кэВ ¹⁶¹ Гт, полученная из анализа УУС -совпадений (рис.4), не противоречит этому результату.

На рис.5 вверху (справа) показан участок спектра ЭВК изобары A = 161.

Pac.6 Кривая временного распределения (127,9 1619m+K 78,2 16196) /(Ey > 30 кэВ) совпадений при распаде изобары A = 161. Справа, вверху - участок спектра ЭВК изобары $\mathbf{A} = \mathbf{I}\mathbf{6}\mathbf{I}$.

K782+L_27

3. ОБСУЖЛЕНИЕ РЕЗУЛЬТАТОВ

З.І. Схема распада 161 42 - 1614

На основе анализа спектров /-лучей, ЭВК, // , мгновенных и запержанных ей-совпадений нами предлагается схема распада 161 ус - 161 5m. При составлении баланса интенсивностей схемы распада для относительно высокоэнергетических переходов принималось Ј_{полн.} З Ју. Предполагая, что в основное состояние ¹⁶¹ Гт не идет бета-распад ¹⁶¹ Ув, мы оценили из отношения в/в+ /14/ энергию распада 161 ус равной Q = 3850(250) каВ.

На рис.7 показана схема распада 161 36, включающая в себя уровни с энергией 18,90; 78,20; 144,43; 159,20; 410,44; 442,90; 602,65; 638,63; 647,93; 678,IO; 709,65 и II80,7 кэВ. В схеме распада переход с энергией 159,67 кэВ размещен в двух местах. На основе анализа мгновенных совпадений (/ 298,40 / 159,67) он размещен между уровнями с энергией 602,65 и 442,90 кэВ. Однако Јуу эксп. меньше Јуу расч. Исходя из этого, мы заключили, что переход с энергией 159,67 кэВ сложный. В схеме распада не размещено < 20% по интенсивности /-переходов. Из анализа интенсивности К -излучения можно сделать заключение о возможном су-

13

ществовании высоковозбужденных состояний ¹⁶¹5m, заметно заселя-емых при бета-распаде ¹⁶¹ Ув.

3.2. Идентификация состояний 161 Sm.

По аналогии с ядрами с N = 91 /15/, предполагаем, что основное состояние 161 ж имеет квантовые характеристики 3/2"/521/. Спин основного состояния ¹⁶¹ Гт измерен Экстремом и Ламмом /16/ и равен 7/2. В работе /7/ оно идентицируется как состояние 7/2⁺ /404/. Волизи состояния 7/2+/404 / в соседних ядрах, состояния которых рассчитывались с использованием потенциала Саксона-Вудса /15/ имеются состояния 7/2 /523/. Однако, состояние 7/2, 7/2 /523/ не может быть основным состоянием 1615m, так как при бета-распаде 1615m с относительно малой вероятностью заселяются сос-тояния ротационной полосы 5/2 /523/ 161 сг /7/ (большие значения log ft). Квантовые характеристики 7/2, 7/2-/523/ мы приписываем состоянию с энергией 78,2 кэВ 1615m. Это следует из сравнения с соседними ядрами тулия: из значений энергии и времени жизни этого уровня, разряжаемого типичным ЕІ-переходом 7/2"/523/ + 7/2"/404/ /17/

В ближайшем ядре 165 Sm состояние 7/27/523/ с энергией 160,47 кэВ идентифицировано как в ядерных реакциях, так и при бета-распаде 165 уг/18/. При бета-распаде 163 уг автори работи /19/ состояние 7/2⁻/523/ 163 Гт идентифицировали при энергии 86.95 кэВ. Андрейчев и др./17/ характер зависимости В(ЕІ) от массового числа А для переходов 7/27/523/ -7/2+/404/ объясняит предположением об изменении величины гексадекапольной дефор-мации. Чунг и др./20/ на основе величин энергий возбужденных состояний в ядрах тулия 1655m + 1715m также делают заключение о том, что изменяется значение гексадекапольной деформации, а величина квадрупольной деформации остается приблизительно постоянной. Полученные нами значения B(EI) = 4.9x10⁻⁹e². барн и фактор торможения по Вайскопфу Fw(EI) = 1.2x10⁶ для перехода с энергией 78,2 каВ не противоречат этому заключению.

Введенное нами возбужденное состояние 1615т с энергией 18,9 кэВ вероятнее всего можно интерпретировать как состояние 3/2*/411/, лисо 5/2*/402/. Однако для однозначной идентификации необходимо провести дополнительные эксперименты по определению, по крайней мере, мультипольности перехода 18,9 кэВ и измерению времени жизни этого состояния.

Мультипольности переходов с энергией 599,88 и 631,45 кэВ указывают на то. что состояния с энергией 678.08 и 709.65 каВ имеют отрицательную четность. Значения logft не противоречат выволу о квантовых характеристиках 3/27/521/ основного состояния IGI YR

Состояния с энергией выше 600 кэВ

По величинам значений logft для близлежащих уровней в области 600-700 кэВ можно сделать предположение, что они являются фрагментированными состояниями.

а) В случае переходов с энергией 599,88 и 631,45 кэВ типа Е2 спины и четности уровней с энергией 678,08 и 709,65 кэВ будут $J^{\pi}_{=3/2}$. Наиболее вероятной примесью в этих состояниях являет-ся /523/ + Q_{32} . Однако, как и в случае ¹⁶³ Jm/21/, трудно построить такой вибрационный фонон в микроскопической модели, чтобы объяснить малые значения logft.

б) Если же предположить, что мультипольности переходов с энергией 599.88 и 631.45 кэВ типа МІ, то возможна примесь волновых функций 5/27/523/ в этих состояниях по аналогии с 163 5m/21/

в) Исходя из значений logft, можно предположить, что в этой области энергий фрагментирована волновая функция трехквазичастичного состояния {p 7/2 /523/, n3/2 /521/, n5/2 /523/} . Более высокие состояния 161 5т. можно интерпретировать как состояния с примесью волновой функции трехквазичастичного состояния с К³⁷ = 1/2" и вибрационных состояний. Согласно работе /22/, трехквазичастичные состояния данного вида с К = 1/2 должны быть выше трехквазичастичных состояний с К = 5/2.

Нами были вычислены энергии одночастичных состояний нечетных изотопов тулия с использованием потенциала Саксона-Вудса и с учетом парного взаимодействия. Параметры потенциала были выбраны в соответствии с /23/: глубина потенциальной ямы V = 59,2 МаВ, константа спин-орбитального взаимодействия 2 = 0,355 фм. Ro = 1,25 фм и параметр размытия края потенциальной ямы < = I,63 фм^{-I}. В согласии с работой В.Г.Соловьева /24/. онло принято значение парной энергии A = I,0 МэВ. Все расчеты производились для A = 165 при различных значениях квадрупольной - E, и гексадекапольной - Е. деформации. Необходимость введения гексадекапольной деформации Е4 для нечетных изотопов тулия была обусловлена. анализом приведенных вероятностей переходов 7/2⁺/404/ = 7/2⁻/523/ и согдасно работе /20/. Наилучшее согласие с экспериментом ранее ·

в /20/ было достигнуто при вычисленных значениях \mathcal{E}_4 /25/ с добавлением к нему величины – 0,02. Нами же были приняты значения квадрупольной и гексадекапольной деформаций, как в работе /26/, в которой вычислены состояния нечетных изотопов тулия, за исключением того, что все значения \mathcal{E}_4 мы изменили на величину – 0,02, как в /25/.

Параметры деформации для нечетных изотопов тогда равны:

A	161	I63	165	167	I69	171
Ez	0,22	0,25	0,26	0,26	0,26	0,26
84	-0,035	-0,02	-0,0I	0	0,01	0,02.

При сравнении теоретических и экспериментальных данных следует подчеркнуть, что расчет проводился в рамках модели независимых квазичастиц (без учета остаточного взаимодействия) и что параметры потенциала специально не подгонялись. Несмотря на это, можно сделать заключение о том, что зависимость рассчитанных энергий от A соответствует экспериментальным данным, и что это согласие нельзя получить без введения гексадекапольной деформации.

В заключение авторы благодарны К.Я.Громову за помощь и ценные замечания, А.Ф.Новгородову, Ю.В.Юшкевичу - за приготовление источников.

ЛИТЕРАТУРА

- I. Адам И. и др. ОИЯИ, Р6-7760, Дубна, 1974; Изв. АН СССР, сер.физ. 1974, 38, с.1572.
- 2. Адам И. и др. Тезисы докладов XXУШ Совещания по ядерной спектроскопии и структуре атомного ядра, Алма-Ата, 1978, с.96.
- 3. Beyer G. et al. Nucl. Instr. and Meth., 1971, 96, p.437.
- 4. Musiol G., Raiko V.I., Tyrroff.H. Preprint JINR, P6-4487, Dubna, 1969.
- 5. Latuszynski A. et al. Preprint JINR, E6-7780, Dubna, 1974.
- 6. Beyer G.J. et al. Preprint ZfK-307, Rossendorf, 1976.
- 7. Адам И. и др. Изв. АН СССР, сер.физ., 1975, 39, с.1679.
- 8. Tuli J.K. Nucl.Data Sheets., 1974, 13, n.4, p.493.
- 9. Александров В.С. и др. ОИЯИ, Р6-7308, Дубна, 1973.
- IO. McNelles L.A., Campbell J.L. Nucl.Instr.and Meth., 1973, 109, p.241.
- II. Громов К.Я. и др. В сб.: Примладная ядерная спектроскопия. Атомиздат, 1978, 8, с.59.
- 12. Гонусек М. и др. ОИЯИ, IO-IOOO7, Дубна, 1976.

- 13. Кузнецов В.В. и др. ОИЯИ, Д6-11574, Дубна, 1978.
- 14. Джелепов Б.С. и др. В кн.: Бета-процессы. Наука, Ленинград, 1972.
- 15. Громов К.⁹. и др. ЭЧАЯ, 1975, 6, вып. 4, с.971.
- I6. Ekstrom C., Olsmast M., Wannberg B. Nucl. Phys., 1971, A170, p.649.
- I7. Sohilling K.D., Andrejtscheff W., Winter G. J. Phys., 1977, G3, n.9, p.1255.
- T8. Adam I. et al. CERN, 76-13, 1976, p.406.
- 19. Adam I. et al. Preprint JINR, E6-8886, Dubna, 1975.
- 20. Cheung H.C., Burke D.G., Lovhoiden G.Can.J. Phys., 1974, 52, p.2108.
- 2I. Gromov K.Ya. et al. Nucl. Phys., 1975, A254, p.63.
- 22. Громов К. Я. и др. ЭЧАЯ, 1971, 1, с. 527.
- 23. Гареев Ф.А. и др. ЭЧАЯ, 1973, 4, вып. 2, с. 357.
- 24. Соловьев В.Г. Теория сложных ядер, Наука, 1971, с. 167.
- 25. Mielsen B.S., Bunker M.E. Mucl. Phys., 1975, A245, p.376.
- 26. Ekstrom C., Lamm I.-L. Physica Scripta, 1973, 7, p.31.

Рукопись поступила в издательский отдел 30 октября 1979 года.