

Объединенный институт ядерных исследований дубна

> ^Y/2-80 P6 - 12849

А.Будзяк, Н.Ганбаатор, И.Звольски, К.Зубер, В.Г.Калинников, В.В.Кузнецов, В.И.Стегайлов, Р.Р.Усманов

БЕТА-РАСПАД ¹⁵⁵ Ег И ВОЗБУЖДЕННЫЕ УРОВНИ ¹⁵⁵ Но

Будзяк А., и др.

P6 - 12849

Бета-распад ¹⁵⁵ Ег и возбужденные уровни ¹⁵⁵ Но

Выполнены исследования спектров гамма-лучей. Электронов внутренней конверсии, гамма-гамма- и электрон-гамма-совпадений, а также задержанных гамма-гамма-совпадений. Обнаружено около 50 гамма-переходов, сопровождающих бета-распад 155 Ег. Для 10 переходов установлены типы мультипольностей. Предложена схема распада 155 Er \rightarrow 155 Ho . В ядре 155 Но установлено существование изомерного состояния 142,0 кэВ, 11/2 с Т и = 0,88 мс. Идентифицированы в этом ядре также состояния 110,1 кэВ, 7/2⁺ и 230,4 кэВ, 9/2⁻, тем самым установлены головные уровни известных из ядерных реакций развитых полос. Обсуждаются свойства уровней 155 Но в предположении слабой деформации ядра.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1979

Budziak A. et al. P6 - 12849155 Er Beta-Decay and 155 Ho Excited Levels

Gamma-ray, internal conversion electrons, gamma-gamma and electron-gamma-coincidences spectra, and those of delayed gamma-gamma coincidences were investigated. About 50 gamma--transitions accompanying ¹⁵⁵Er beta-decay have been discovered. Types of multipolity have been established for 10 transitions. The ¹⁵⁵Er → ¹⁵⁵Ho decay scheme is proposed. The existence of 142,0 keV, 11/2 isometric state with T_{1/2} = 0.88 ms has been determined in ¹⁵⁵Ho nucleus. 110.1 keV, 7/2+and 230.4 keV, 9/2 states have been also identified in this nucleus, thus leading levels of the known from nuclear reactions developed bands have been established. The properties of ¹⁵⁵ Ho levels under the assumption of a week deformation are discussed.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nucleor Research. Dubna 1979

В последние годы проявляется большое внимание к исследованиям свойств ядер с N =88-89, близких к границе стабильной деформации. При бета-распаде $^{155}_{68}\mathrm{Er}_{87}$ возбуждаются

уровни ядра ¹⁵⁵₆₇ Но 88 , о которых до сих пор ничего не было

известно. Нуклид ¹⁵⁵Ег был обнаружен Тосом и др.^{/1/}, наблюдавшими его *а* -распад. Согласно^{/1/}, период полураспада ¹⁵⁵Ег $T_{42} = 5,3\pm0,3$ мин, а энергия *а*-перехода $E_a = 4,01\pm0,03$ МэВ^{/1/}, $E_a = 4,012\pm0,005$ МэВ^{/2/}. Вероятность *а*-превращения ¹⁵⁵Ег, согласно^{/2/}, /2,2±0,7/10⁻⁴, в ос-новном же этот изотоп испытывает $\beta^+ + EC - превращение.$ В работе^{/3/} приведена разность масс $Q_{\beta^+}(^{155}\text{Er}) = 3,997 \pm \pm 0,035$ МэВ ^{/3/}.

В работе /4/, выполненной в нашей Лаборатории, впервые сообщалось об исследовании бета-распада ¹⁵⁵ Er . Наблюдено несколько у -переходов, принадлежащих распаду ¹⁵⁵ Er. Возбужденные состояния¹⁵⁵ Но изучались также в ядерных реакциях. В работе Дэву и Сугихара /5/ идентифицированы две полосы, основанные на протонной орбитали h_{11/2}. Однако положение головных уровней 11/2" и 9/2" не было установлено. Эти два уровня, а также первое возбужденное состояние 7/2* установлены в нашей работе. Предварительные результаты нами опубликованы в /6/

Авторы работы^{/7/} в реакции (¹⁴ N.4n₂) исследовали полосу, построенную на уровне 11/2 , вплоть до состояния 35/2 , и обнаружили явление бэкбендинга. В этой работе измерен период полураспада изомера 11/2 / Т 4 = 0,84 мс/, однако его энергия осталась не установленной. Кроме данной полосы, авторы /7/ наблюдали три уровня полосы, построенной на состоянии $7/2^+$. Энергии первых двух уровней с I^{π} = $7/2^+$ и. 9/2 + этой полосы хорошо соответствуют нашим результатам /8/

Спин основного состояния 155 Но измерен Экстремом и др. 8/ методом атомного пучка: он равен 5/2.

В настоящей работе нами выполнены измерения спектров У -лучей, электронов внутренней конверсии, у - у- и е - у-

3

совпадений с целью установления схемы низколежащих возбужденных уровней ¹⁵⁵ Но.

1. УСЛОВИЯ ЭКСПЕРИМЕНТОВ И РЕЗУЛЬТАТЫ

1.1. Источники ¹⁵⁵ Ег

Изотоп $^{155}{\rm Er}$ получался в реакции глубокого расщепления тантала протонами с энергией ${\rm E}_{\rm p}$ = 660 МэВ. Мишень /танталовая фольга толщиной 50 мкм, вес 0,3 г/ после 5 мин облучения на выведенном пучке протонов /ток 0,1 мкА/ синхроциклотрона ОИЯИ при помощи пневмопочты доставлялась к электромагнитному масс-сепаратору и разделялась на изобары без какой-либо химической обработки. Выделенная изобара A =155, помимо $^{155}{\rm Er}$, содержала также $^{155}{\rm Ho}$ и очень небольшую активность $^{155}{\rm Dy}$.

1.2. Исследование спектра гамма-лучей

Спектры гамма-лучей ¹⁵⁵ Ег исследовались при помощи спектрометров с Ge(Li)-детекторами с чувствительными объемами: 0,8 см⁸ / $\Delta E_{\gamma} = 0,8$ кэВ при $E_{\gamma} = 121$ кэВ -- ¹⁵² Еu / и 27 см⁸ / $\Delta E_{\gamma} = 3,0$ кэВ при $E_{\gamma} = 1332$ кэВ -- ⁶⁰ Со /.

В табл.1 приведены экспериментальные данные об энергиях и относительных интенсивностях гамма-лучей ¹⁵⁵Er. Для нормировки интенсивностей принято, что интенсивность у -лучей перехода 110 кэВ равна 100 ед. К распаду ¹⁵⁵Er принадлежат, по крайней мере, 50 переходов, 40 из которых обнаружены нами впервые. При анализе гамма-спектров учитывались результаты исследования гамма-спектра дочернего ¹⁵⁵Ho, измеренного в тех же условиях.

1.3. Измерения электронов внутренней конверсии

Спектры электронов внутренней конверсии /ЗВК/ $^{155}{\rm Er}$ исследовались на безжелезном бета-спектрометре с тороидальным магнитным полем $^{9/}$ при максимальной светосиле ${\rm T}=20\%$ и разрешении $\Delta {\rm H}_{\rho}/{\rm H}_{\rho}$ = 1,1%. Для определения эффективности регистрации электронов сцинтилляционным детектором бетаспектрометра измерялись спектры ЗВК $^{169}{\rm Yb}$ и $^{171}{\rm Lu}$. Относительные интенсивности ЗВК $^{169}{\rm Yb}$ и $^{171}{\rm Lu}$ принимались соТаблица

Энергии	N	относительные	интенсивности	гамма-лучей
		при распад	ie ¹⁵⁵ Er	

$E_{\nu}(\Delta E_{\nu}), \kappa_{\partial}B$	Iv (AIv)	$E_{v}(\Lambda E_{v}), \kappa_{B}$	T_{v} (ΛT_{v})
	-,,,		-),(2-),
3I,7(I)	~0,20	308,2(3)	3,2(7)
Kx(IIo)	843(60)	322,9(3)	3,9(9)
88,2(I)	23,5(8)	328,7(2)	I2,7(I5)
91,6(3)	3,7(5)	333,8(2)	6,8(13)
110,12(7)	100	339,6(3)	5,3(14)
I23,8(I)	27(I)	344,9(3)	4,6(16)
131,2(3)	2,6(7)	352,0(5)	2,2(10)
147,6(3)	2,8(7)	358,6(3)	14,6(17)
157,0(3)	3,0(7)	360,9(6)	~3
164,7(3)	2,9(7)	373,3(5)	2,7(II)
I85,I(I)	19,5(7)	385,9(3)	4,4(IO)
I88,I(2)	5,0(6)	388,9(2)	8,7(IO)
193,6(I)	10,7(6)	397,0(3)	5,0(II)
201,1(1)	26,0(10)	399,7(5)	3,4(II)
221,1(2)	20,8(46)	404,8(7)	I,8(IO)
229,2(3)	15,0(43)	412,1(3)	4,8(9)
234,0(I)	40,0(18)	422,7(I)	20,2(13)
234,8(2)	19,2(18)	450,I(4)	6,1(18)
241,5(2)	65,I(74)	452,6(2)	24, I(20)
264,4(4)	2,5(8)	455,9(3)	7,4(13)
278,3(5)	I,9(9)	470,6(2)	12,8(14)
283,6(4)	I,9(7)	475,5(3)	5,6(13)
288,2(2)	5,8(7)	511,0(2)	15,3(67)
295,2(5)	I,9(7)	512,2(2)	37, I(68)
298,8(2)	7,6(9)	557,1(9)	~5

гласно работам^{/10,11/}. В табл. 2 приведены полученные нами экспериментальные значения энергий, относительных интенсивностей ЭВК и выводы о мультипольностях ряда у -переходов.

Мультипольность у -перехода 31,7 кэВ определена из сравнения экспериментально установленных отношений интенсивностей $L_I: L_{III}: L_{III} = /1,9 \pm 0,1/:<0,2:1$ /см. <u>рис.1</u>/ с теоретическими для M2-типа / $L_I: L_{III}: L_{III} = 2,0:0,16:1$ / перехода.

Таблица 2

Еу кэВ	Іу отн.	I _е (к) а	Х эксп. к	Х к	GL B
88,2	23,5	78	3,32	3,21	MI
110,1	IOO	170	I,7 0	I,7	Ш
123,8	27,0	5,8	0,21	0,15	EI
185,I	19,5	II,3	0,57	0,39	MI
201,1	26,0	8,4	0,32	0,31	MI
22I,I	20,8	3,5	0,17	0,24	(MI)
234,0	1 59.2	II.5			(EI) ^r
234,8	1	,-	-		(MI) T
241,5	65,I	12,7	0,195	0,19	MI

Относительные интенсивности электронов внутренней 155 конверсии, КВК и мультипольности переходов в ядре Но

- а/ Интенсивности электронов внутренней конверсии выражены в тех же единицах, что и гамма-лучи. Погрешности ΔI_e составляют 15% для сильных линий и до 50% для слабых. Интенсивность Σ L 31,7 определена равной 133 ± 40 отн.единиц табл.2.
- б/ При расчете а типа М1.
 к,эксп. принималось, что переход 110,1 кэВ
- в/ Приведена ближайшая к экспериментальному значению a_k величина $a_{k,\text{теор.}}$ по Хагеру и Зельцеру.
- г/ Смотри текст.

1.4. Исследование спектров гамма-гамма совпадений

Спектры гамма-гамма совпадений исследовались на установке с двумя Ge(Li)-детекторами с энергетическими разрешениями 2,5 кэВ / V = 41 см³ / и 3,0 кэВ / V = 27 см³ / для $E_y =$ =1332 кэВ - ⁶⁰Co. При проведении экспериментов ширина временного окна выбиралась равной 50 нс. Информация записывалась в матрице /4096 x 4096/ на ЭВМ HP-2116C с последующим сбросом на магнитную ленту. Интегральные спектры по осям "x"и "y" записывались на диске ЭВМ. Сортировка и анализ информации производились после окончания эксперимента. Результаты исследования спектров гамма-гамма-совпадений сведены в табл.3.

Таблица 3

Результаты	анализа с	пектров	$\gamma - \gamma -$	И	$e - \gamma$	-совпадений
	при ра	спаде	¹⁵⁵ Er			

"Окно" Еу, кэВ	Энергии гамма-переходов, наблюдаемых в совпадениях, кэВ					
88,2	221,1; 422,7; 452,6					
IIO,I	123,8; 185,1; 193,6 [*] ; 234,8; 278,3; 358,6 [*] ; 455,9					
123,8	IIO,I; 185,I; 295,2 .					
147,6	I64,7 [#] ; 24I,5					
185,I	II0,I; I23,8; 234,0					
201,1	I88,I; 328,7; 333,8; 5II,0					
221,1	88,2					
229,2	241,5					
234,0 234,8	IIO,I; I85,I; 295,2					
241,5	147,6; 229,2; 322,9					
328,7	201,1; 333,8					
452,6	88,2					
L 31,7	IIO,I					
K 88,2	188,1 [*] ; 221,1; 333,8 [*] ; 385,9; 422,7; 452,6					
K IIO,I	123,8; 185,1; 234,8; 278,3; 308,2; 358,6 [*] ; 455,9					

* Переходы не размещены в схеме уровней.

1.5. Исследование спектров е-у-совпадений

Измерения спектров $e - \gamma$ -совпадений проводились на установке $^{/12/}$, созданной на базе безжелезного бета-спектрометра с тороидальным магнитным полем, и спектрометра с Ge(Li)-детектором с чувствительным объемом 35 см⁸ /разрешение 3,5 кэВ при $E_{\gamma} = 1332$ кэВ 60 Со/. Разрешающее время схемы совпадений при проведении наших опытов составляло $2r = 5 \cdot 10^{-8}$ с.

820

780 ер канала

40

Номер

спектра

XO

Число импульсов

Число импульсов

электронов внутренней 155 г. внутренней измеренный Er. элек тронами гамма- лучей ИМВИНИП-U Рис.2. Слектр Г в совпадении с конверсии L₁31, 1 Рис.1. Участ

Нами исследованы спектры совпадений у -лучей с конверсионными электронами L, 31,7; К88,2 и К110,1. В табл.3 приведены качественные данные анализа спектров е-у-совпадений. В спектре мгновенных /L 31,7/(у)-совпадений наблюдены только у -лучи с Ev = 110,1 кэВ /рис.2/. Измерение временной кривой / L 31,7/ (у) - совпадений показало, что возбужденный уровень 142,0 кэВ, $I^{\pi} = 11/2^{-}$, введенный нами ранее $^{/6/}$, имеет время жизни $T_{14} > 10^{-6}$ с.

1.6. Измерение спектров задержанных гамма-гамма-совпадений и времен жизни возбужденных состояний

Измерение спектров задержанных у-у-совпадений проводилось на установке для измерения времен жизни, в режиме трехмерного анализа y-y-t , с использованием Ge(Li)детектора /объем 80 см⁸, разрешение ≃ 3.0 кэВ при Е, = =1332 кэВ - ⁶⁰Со/ и сцинтилляционного детектора NaJ(T1) ø40 x 40 мм³. Полуширина временного распределения составляла 4,9 нс.

2. СХЕМА РАСПАДА ¹⁵⁵Er. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Предлагаемая нами схема распада 155 Ег → 155 Но изображена на рис. 3. Она основывается на балансе энергий и интенсивностей у-переходов и анализе спектров у-у- и е-у -совпадений.

Наиболее тшательно мы изучили спектр у -лучей в области до ~600 кэВ. В области энергий 600-1300 кэВ нам не удалось отнести к распаду 155 Ег каких-либо γ -лучей, и для возмож-ных γ -переходов 155 Ег в этой области мы устанавливаем верхний предел интенсивности /7,5 отн. ед. табл. 1/. Наличие слабоинтенсивных у - переходов, не учтенных в схеме распада, не должно существенным образом ее изменить. Нам представляется, что предлагаемый вариант схемы уровней 155 Но является вполне обоснованным, так как все интенсивные и большое количество малоинтенсивных у -переходов включены в предлагаемую схему ¹⁵⁵ Er. Все уровни введены на основе наблюденных совпадений.

Остановимся прежде всего на первых трех уровнях 155 Но. Измерения Экстрема и др. /8/ и результаты изучения распада ¹⁵⁵Нр - ¹⁵⁵ Dy однозначно позволяют приписать основному состоянию ¹⁵⁵ Но спин и четность $I^{\pi} = 5/2^+$.

Переход 110,1 кэВ является самым интенсивным и поэтому мы направляем его на основное состояние, тем самым вводя уровень 110,1 кэВ.

В совпадениях с L31,7 проявился только у-переход 110,1 кэВ и потому переход 31,7 кэВ необходимо направить на уро-

8

вень 110,1 кэВ и ввести состояние с энергией 142,0 кэВ. Предположив у перехода 110,1 кэВ мультипольность М1 и установив для перехода 31,7 кэВ мультипольность М2, мы приписываем состояниям 110,1 и 142,0 кэВ характеристики 7/2⁺ и 11/2⁻, соответственно. Изомерный характер уровня 142,0 кэВ подтверждается тем, что оцененный нами экспериментально нижний предел времени жизни данного уровня T $\frac{1}{2} > 10^{-8}$ с. Дополнительно выполненные нами измерения ($\gamma - \gamma - t$) не обнаружили каких-либо других уровней с временем жизни,большим 1,5 нс.

Существование в ядре ¹⁵⁵Но изомера с I^{*π*} = 11/2⁻ и Т $_{1/2}$ = 0,88 мс было доказано в работе^{77/} при наблюдении задержанных $\gamma - \gamma$ -совпадений с γ -лучами энергией 110 кэВ. Для этого перехода был измерен коэффициент конверсии a_k = = 1,87 ± 0,20, по которому сделано заключение, что этот переход типа M1. По Мошковскому время жизни состояния 110 кэВ, высвечивающееся M1-переходом, должно составлять $\cong 5 \cdot 10^{-12}$ с. В связи с этим авторы^{77/} предположили наличие вблизи состояния 110 кэВ изомерного уровня 11/2⁻, разряжающегося низкоэнергетическим M2-переходом. Таким образом, наши заключения об уровнях 110,1 и 142,0 кэВ хорошо подкрепляются результатами^{77/}.

Аналогичная ситуация с уровнями $11/2^-$, $7/2^+$ и $5/2^+$ имеет место в других изотопах с N =88: $^{151}_{63}$ Eu и $^{153}_{65}$ Tb /см. табл. 4/.

Таблица 4

Свойства	низколежащих уровней	С	$I^{\pi} =$	5/2,	7/2	И	11/2
	в изотопах с	N	= 88				

Нуклид	E _{M2} - E _W Rob	E _{VZ} - E _Z kəB	T _{I/2} (II/2) MC	$F_3 = T_{1/2} \approx KC \pi / T_{1/2}$, S.P.
151 _{Eu}	175	21	0,058	174
.153 _{Tb}	82	80	0,173	148
155 _{Ho}	32	IIO	0,88	147

Еще в предварительной публикации $^{/6/}$ мы ввели уровень 230,4 кэВ с I^{π} = 9/2⁻, связав его сильным М1-переходом с энергией 88,2 кэВ с уровнем 142,0 кэВ 11/2⁻. Мы рассматриваем его как головной уровень полосы, введенной в работе Дэву $^{/5/}$ и начинающейся с состояния 13/2⁻.

Состояние с энергией 234,0 кэВ высвечивается переходами 123,8 и 234,0 кэВ. Мультипольность перехода 123,8 кэВ определена как Е1. Тогда состоянию 234,0 кэВ можно приписать спин и четность $I^{\pi} = 5/2^{-1}$ или $7/2^{-1}$.

Для дублета переходов 234,0 + 234,8 кэВ мы не смогли разрешить К-электроны внутренней конверсии. Предполагая для перехода 234,0 кэВ мультипольность типа E1, можно оценить вклад этого перехода в суммарную интенсивность наблюденной линии и затем оценить величину $\alpha_k \simeq 0,4$ для перехода 234,8 кэВ. Эта величина позволяет заключить, что переход 234,8 кэВ имеет мультипольность типа M1. В связи с этим состояние 344,9 кэВ, высвечивающееся переходами 234,8 и 344,9 кэВ, нами рассматривается как уровень 9/2⁺. Уровень с такой же энергией введен в работе ⁷⁷, ему условно приписаны I^T = 9/2⁺, и он рассматривается как второй член полосы, основанной на уровне 7/2⁺, 110,1 кэВ.

Как видим, при распаде ¹⁵⁵ Ег довольно сильно заселяются уровни ¹⁵⁵Но с высокими спинами (7/2, 9/2). Это не противоречит предположению ¹³⁷, что основное состояние ¹⁵⁵ Ег имеет характеристики 7/2.

Авторы работы ⁷⁷ рассматривают основное состояние ¹⁵⁵Но и уровень 110,1 кэВ как состояние с заметной деформацией, и приписывают им орбитали 5/2⁺[402] и 7/2⁺[404]. В соседнем, более деформированном, ядре ¹⁵⁷Но такие характеристики имеют уровни 53,2 и 66,9 кэВ, соответственно, а основное состояние имеет характеристики 7/2⁻[523]. Не исключено,

10

11

что такими характеристиками обладает состояние с энергией 234,0 кэВ в $^{155}{\rm Ho}$. Свойства "развязанных" полос, построенных на орбитали h $_{11/2}$, в ядрах-изотопах с N =88 / $^{151}{\rm Eu}$, $^{153}{\rm Tb}, ^{155}{\rm Ho}$ / свидетельствуют о том, что отмеченные ядра в состоянии 11/2 обладают малой деформацией. Для ядра $^{151}{\rm Eu}$ из результатов неупругого рассеяния протонов известно, что и в основном состоянии оно слабодеформировано: β_2 = 0,13 $^{/14/}$. Однако сейчас существуют х пользутого, что ядра-изотопы с N =88 в других состояниях обладают заметно большей деформацией.

ЛИТЕРАТУРА

- 1. Toth K.S. et al. Phys.Rev., 1969, 183, p. 1004.
- Toth K.S., Bingham C.R., Schmidt-Ott W.-D.Phys.Rev., 1974, C10, p.2550.
- 3. Tables of Isotopes, ed.M.Lederer. New York, 1978.
- Зубер Я. и др. Программа и тезисы докладов XXIV совещания по ядерной спектроскопии и структуре атомного ядра. Наука, Л., 1974, с.110.
- 5. Devons M.D., Sugihara T.T.Z. Phys., 1978, A288, p.79.
- Джелепов Б.С. и др. Тезисы докладов XXIX совещания по ядерной спектроскопии и структуре атомного ядра. Рига, "Наука", 1979, с.103.
- 7. Foin C., et al. Rapport Annual 1978, ISN, Grenoble.
- 8. Ekstrom C. et al. Nucl. Phys., 1969, A135, p.289.
- 9. Громов К.Я. и др. В кн.: Прикладная ядерная спектроскопия. 1978, Атомиздат, М., 1968, вып.8, с.59.
- Артамонова К.П., и др. Программа и тезисы докладов XXV совещания по ядерной спектроскопии и структуре атомного ядра. Ленинград, "Hayka", Л., 1975, с.129.
- 11. Артамонова К.П., и др. Программа и тезисы докладов XXV
- со совещания по ядерной спектроскопии и структуре атомного ядра."Наука", Л., 1975, с.133.
- 12. Кузнецов В.В., и др. ОИЯИ, Р13-12810, Дубна, 1972.
- 13. Aquer P., et al. J.Phys.G: Nucl.Phys., 1977, v.3, p.157.
- 14. Lamer R.G., et al. Phys. Rev., 1978, C18, p. 1608.

Рукопись поступила в издательский отдел 9 октября 1979 года.