

2-906

P6 - 12615

В.Г.Чумин, М.П.Авотина, Л.Вашарош, И.И.Громова, М.Я.Кузнецова, В.В.Кузнецов, Г.И.Лизурей, М.Миланов, Ю.В.Норсеев, Р.Усманов, Ю.В.Юшкевич, А.Ф.Новгородов, А.Абдумаликов

ИССЛЕДОВАНИЕ ИЗЛУЧЕНИЙ ПРИ РАСПАДЕ 207 At

Чумин В.Г. и др.

Исследование излучений при распаде 207 At

Исследованы спектры у-лучей, конверсионных электронов и $e-\gamma$ совпадений при распаде ²⁰⁷At. Работа предпринята для получения более полного набора экспериментальных данных об излучениях, возникающих при распаде ²⁰⁷At. Измерения проводились с помощью спектрометров с Ge(Li) -детекторами, с Si(Li) -детектором, помещенным в магнитное поле, и спектрометра типа "Апельсин". Результаты по измерению $E_{\gamma,I_{\gamma}}$, I_e, мультипольностям переходов и $e-\gamma$ -совпадениям представлены в трех таблицах. Обнаружено 220 у-переходов, для 62 из них определены мультипольности. Интенсивность у-переходов с энергией 814,41 каВ равна /38 ± 6/% на распад ²⁰⁷At. Доля β +распада составляет ~1,2% на распад. Полученные результаты позволяют составить более полное представление о с хеме уровней и характеристиках уровней ²⁰⁷Po.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1979

Chumin V.G. et al.

P6 - 12615

Study of the Radiations in the 207At Decay

The spectra of γ -rays, conversion electrons and $e_{-\gamma}$ -coincidence in the decay of ²⁰⁷At were studied. The aim of this work was to complete the experimental data of radiations initiated by the decay process of ²⁰⁷At. The spectra were measured using spectrometers with Ge(Li) -detectors, Si(Li) -detector in magnetic field and spectrometer of the "Orange" type. The experimental results of E, I_γ, I_e and $e_{-\gamma}$ -coincidences, as well as the multipolarity of the transitions are represented in 3 tables. There were found 220 γ -transitions, and for 62 of them the multipolarity were determined. The intensity of the γ -transition with energy of 814,41 keV and the ratio of β^+ -decay were found to be 38 ± 6 % and \sim 1.2% per decay, respectively. These results allow one more fully to complete our imagination about the scheme of 207 Po levels and of their characteristics.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1979

С 1979 Объединенный институт ядерных исследований Дубна

ВВЕДЕНИЕ

Первым довольно полным исследованием распада 207 At является работа Джоисона и др. $^{/1/.}$ Авторы этой работы изучали спектры γ -лучей, электронов внутренней конверсии и $\gamma - \gamma$ совпадений, используя Ge(Li) и Si(Li) -детекторы. При исследовании спектра электронов внутренней конверсии в области низких энергий использовался также магнитный β -спектрометр с двойной фокусировкой. В качестве источника излучения применялся 207 At -продукт распада 207 Rn, который получался при разделении радиоактивных изотопов радона на электромагнитном масс-сепараторе в режиме "он-лайн" с облучением мишени. В работе $^{/1/}$ предложена схема распада 207 At $_{-207}$ Po, которая включает девятнадцать возбужденных состояний 207 At 207 Po,

Гамма-излучение ²⁰⁷ At при помощи Ge(Li) - детекторов исследовалось также в работе ^{/2/}.В качестве радиоактивного источника использовался ²⁰⁷ At, полученный по реакции ²⁰⁹ Bi (³ He, 5n)²⁰⁷ At. Разделение препарата астата по массам не проводилось.

Н.А.Головков и др. ^{/3/} предложили схему уровней ²⁰⁷ Ро, возбуждающихся при *a*-распаде ²¹¹Rn: O, 68, 238, 391, 585, 684 и 812 кэВ.

Из сопоставления данных ^{/1}/ и ^{/3}/ видно, что при распаде ²⁰⁷At - ²⁰⁷Po возбуждения состояний ²⁰⁷Po с энергиями 391 и 684 кэВ не наблюдалось. Для установления причин этого расхождения между результатами указанных работ имеющегося экспериментального материала явно недостаточно.

Целью настоящей работы является получение более полного набора экспериментальных данных о распаде ²⁰⁷ At. В предлагаемой работе представлены результать исследования спектров γ-лучей, конверсионных электронов и е⁻-γ-совпадений. В измерениях использовался моноизотоп ²⁰⁷Аt.

Схема распада ²⁰⁷Аt -> ²⁰⁷Ро и обсуждение полученных результатов будут опубликованы позже.

УСЛОВИЯ И РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

Радноактивные изотопы астата образовывались при облучении торневой мишени протонами с энергией 660 *МэВ* на синхроциклотроне Лаборатории ядерных проблем ОИЯИ. Астат из тория выделялся методом, аналогичным описанному в работе ⁴⁴. Облученная мишень помещалась в горячую зону /1200°С / термохроматографической колонки и сжигалась в токе воздуха. Выделяющиеся во время сжигания летучие продукты выносились в градиентную по температуре часть колонки потоком воздуха. Астат сорбировался на серебряной фольге в зоне 50-180°С. Полученные таким образом его изотопы разделялись при помощи масс-сепаратора.

Спектры гамма-лучей исследовались с помощью спектрометров с Ge(Li) - детекторами объемом O,8 см³, 38 см³ и 50 см³. Энергетическое разрешение детекторов: 570 эВ /для $E_{\gamma} \sim 100 \ \kappa з B$ /, 2,3 и 2,5 кзВ /для $E_{\gamma} \sim 1,3 \ M з B$ /, соответственно. Экспериментальные результаты обрабатывались по методике, описанной в /5 /.

Спектры электронов внутренней конверсии были получены при помощи бета-спектрометра с Si(Li) -детектором /разрешение 2,5 кэВ на линии 121 ¹⁵²Eu /, помещенным в магнитное поле ^{.6.}, безжелезного торондального бета-спектрометра ^{.7} и бета-спектрографов с разрешением 150-300 эВ ^{.8.}

Измерение спектров е γ -совпадений проводилось на установке ^{/9}, собранной на базе тороидального β -спектрометра и Ge(Li) -детектора объемом 41 см³ с разрешением -3,5 кэВ для E_{γ} -1,3 МэВ.

Для определения эффективности регистрации конверсионных электронов тороидальным бета-спектрометром в области энергии электронов до 140 кэВ были использованы данные по распаду ¹⁶⁹Lu -, ¹⁶⁹Yb -, ¹⁶⁹Tm и ¹⁷¹Lu -, ¹⁷¹Yb из работ Артамоновой и др. /10,11/. В области 70 ÷750 кэВ значения эффективности получены с помощью внутренних реперов - интенсивностей электронов внутренней конверсии для переходов с энергиямн 167.90 (М1). 191.26 (М1). 236,48 (М1); 300,65 (М2); н 814,41 (Е2) кэВ. Для этих переходов интенсивности конверсионных электронов были получены на основе экспериментальных значений I и КВК, рассчитанных по программе центра данных ЛИЯФ 12. Мультипольности первых трех переходов установлены нами при нсследовании спектров электронов внутренней конверсии в области энергий до 140 кэВ. Мультипольность переходов 300,65 и 814,41 кэВ принята как M2 и E2, соответственно, согласно работам /1.13/. Эти же реперы были применены и для определения эффективности регистрации конверсионных электронов спектрометром с Si (Li) - детектором в области энергий 70 ÷ 750 кэВ. а лля области 500-1350 кэВ использовались интенсивности конверсионных электронов, сопровождающих распад 206Ро14. 206Bi /15.' # 207Po /16.'.

Экспериментальные результаты, полученные на основе анализа изучаемых спектров γ -лучей и конверсионных электронов, приведены в табл. 1-3. Ошибки интенсивностей γ -лучей и электронов внутренней конверсии определялись как среднеквадратичческие из 3÷5 опытов. В погрешностях ΛI_{γ} и ΛI_{e} . приведенных в табл. 1 и 2, учтены также систематические ошибки - для I_{γ} 5%, а для I_{e} - 10%, обусловленные неточностью в определении относительных эффективностей регистрации γ -лучей и конверсионных электронов соответственно.

Результаты, полученные при исследовании спектров $e^-\gamma$ совпадений - L_1 48,28 - γ , L_2 56,8- γ , L_1 63,87- γ , L_1 68,55 - γ , K121,O3- γ . K167,9- γ , K191,26- γ , K221,27- γ , представлены в *maбл.* 4. В каждом случае максимальная интенсивность совпадений принималась за 100 ед. В этих исследованиях было проведено по одному опыту, и погрешности полученных результатов в основном обусловлены статистическим разбросом точек в измеряемых спектрах и неопределенностью при введении поправки на фоновые совпадения. Учитывался вклад от случайных совпадений /<5%/. Орнентировочно можно принять, что для интенсивностей $I_{e\gamma}$ выше 20 единиц /*maбл.* 4/ ошибки $\Delta I_{e\gamma}$ не превышают 30%, а для менее интенсивных совпадений они могут достигать 50%. Знак "+" указывает на наличие совпадений.

Таблица 1

Энергии у-лучей, относительные интенсивности у-лучей и конверсионных электронов ²⁰⁷Аt. Мультипольности переходов ²⁰⁷Ро

Еу(аЕу) кэВ	Iy(AIy) OTH.eg.		І _с (АІ _с) отн.ед.	Мультипольность перехода	III (AIII) OTH.EZ.
I	2		3	4	5
76,86 Kda	660(70)		-	-	-
79.29 Kd	II70(60)			-	-
89.8 KA	410(40)		-	-	-
92.4 KA2	I3I(8)		-	-	-
43,7(I) ^{ā)}	-	he	0,40(12) 0.67(23)	MI+(≤33)%E2	1,3(8)
45 8(T)a		1.	0.22(4)	100% EI	0,9(2)
40,0(1)		L2 MT 0	0,24(3)	MI+(11+3)% E2	
48,28(4)	0,36(7)	LI La	4,2(5) 0,33(6)	MI+(≤1,5)% E2	7,6(8)
		MI+2	0,37(7) I,40(24) 0.39(II)		
56,8(I) ^{a)}	-	1-3+4+5 Le Le	· 0,54(16) 2,5(4)	MI+(≤3,5)% E2	7,2(12)
63,87(2)	0,53(9)	hi	4,5(7)	EI+(≤9)% 112 11+(≤7)% E2	7.6(9)
65(I) ^{a)}	-	he ha	0,62(14)	UI+(433)% E2	2,7(4)
		ha	0,41(17)		
68,55(2)	4,8(14)	LI+2	52(6)	100% E2	142(9)
	-	hitz hatha	0,06 ^m) I,09 ^m)		
		MI+2	17,5(23) 5,2(6)		
69,40(3)	2,6(12)	h2 ha	I,90(23) 2,4(5)	EI+(≤8)% 1.12 MI+E2	8,7(15)

I	2	-	3	4	5
97,27(4)	0,64(6)	La	0,39(7)	MI+(43+11)% E2	2,74(18)
		he	0,85(13)		
		ha	0,36(6)		
121,03(3)	3,44(26)	K	II,0(I4)	EI+(8,3+0,7);3M2	18,7(15)
~ >		41+2	2,88(30	MI+E2	
1300)			-		
156,54(5)	I,80(3I)		-	-	
163,88(4)	4,4(II)	K	7,9(9)	EI+(12+5)% M2	13,9(14)
		hr.2	1,20(12)	MI+(≤16)% E2	
167,900(20)	22,5(12)	K	47(5)	MI+(≤4,2)% E2	81(6)
		MI 2	8,6(IO)		
		Lila	9,4 ^x)		
		1.	≤0,60		
		N	0,32(14)		
169,08(3)	3,05(32)	K	\$6,0	EI+(<22)% 112	
				MI+E2	
187,15(15)	I,8(6)	K	2,58(28)	MI+(<39)% E2	8.0(15)
		he	4I.6		
		ha	0,45(6)		
		ha	€0,6		
191,256(8)	II,8(7)	K	16,6(17)	MI+(≤10)% E2	34,5(24)
		hr. 2	63.2		
		he.	€0.2		
		M	0,77(17)		
		N	€0,9		
213,87(7)	2,4(6)	-	-	-	
221,270(20)	26,7(15)	K	24,0(26)	MI+(≤20)% E2 ^Д)	57.0(35)
		he	~4 ()		
233,58(5)	2,9(6)	Ř2	2,24(3I)	MI+(≤35)% E2	5,7(7)
				EI+(24+6)% M2	
236,477(15)	21,7(13)	K	17.4(18)	MI+(<13)% E2H)	43,4(23)
		he	~3 X)		
		ha	~0.4 x)		
264.04(14)	3.8(10)	K	~0.4 =)	MT+E2, ET+42	
268.08(6)	4,26(36)	K	~0.4 x)	ment faire } and there	
278,8(3)	~ 3	К	~(.4 I)	HI+E2 EI+12	
286,835(35)	6.7(5)	K	0.66(17)	E2+(<13)% 'IT	7.7(6)
			- succession	EL+(4.5+T.7)9/42	111101
				SHOLL \$ 140 4 141 9 1419	

6

I	2	3	4	5	6
473,04(25)	3,5(5)	К	<0,5	MI, E2, EI	4,1(6)
487,96(8)	6,4(12)		_	-	
498,23(IG)	8,6(8)		-		
503,40(13)	II,0(30)	K	0,88(13)	EI+(≤62); E2 ^Д)	12,1(31)
511	59(7)	анниги	ляционный пр	IK	59(7)
520,78(9)	19,0(13)	к	I,77(20)	MI+(≤15)% E2 ^{A)}	21,2(14)
		by. 2	0,36(6)		
529,790(25)	77(5)	K	7, I(8)	MI+(≤9,3)%E2 ^{Д)}	86(5)
		Lr.o	I.29(I9)		
		Like	>7 =)		
538,53(I2)	3,6(7)	me	-	-	
553, 58(22)	2,6(5)		-	-	-
562, 10(20)	I.6(5)		· _	-	-
583, 340(30)	49.0(29)	К	2,49(28)	MI+(35+12)%F2E)	52(3)
588, 333(23)	432(23)	К	9.3(10)	E2+(11+5) % MI	444(23)
000,000(00)	100 (00)	4	2 00(25)	ET+(9 0+T 4)512	111(20)
		I 1 1 1	3/0 9/20 3		
599(I)d)	-	WEY MEY N3 1	,0,0,0,0,0,0	-	-
603 8(5)	8 0(16)	к	0 40(8)	MI+ (456) (F2. A)	8 5(16)
612(1)0)	0,0(10)	II.	0,40(0)	MIT(2007/0 DC	0,0(10)
617 20(4)	40 5(24)	К	0.70(II)	R2+(<13)% MT	AT 4(24)
017,00(4)	40,0(24)	A	0,/0(11/	PT. (8.2)% M2	41,3(03)
626 77(A)	43 0(25)	V	0 57(10)	E1+(0+27% MZ	13 8(25)
020, //(4)	43,0(23)	n .	0,57(10)	EG+(=0,0)/0 MI	40,0(20)
COD 000(00)	EC(E)	T	2 7(4)	HI ((22) 0 POL)	CO(E)
637,270(20)	26(2)	A	3,1(4)	MI+(\$23)% LC	60(5)
	TA OUTEL	~I+2	0,55(9)	HT. (24.00)(TOIL)	TA 0/101
641,00(7)	14,0(17)	K	0,56(10)	M1+(34+22)%E2	14,7(17)
648,095(20)	96(7)	K	5,2(7)	MI+(<17)% E247	103(8)
		ha	~0,9")		
		ha	<0,2*		
658,40(15)	144(16)	K	4,3(7)	E2+(47+20)%MI	150(17)
		~I+2	0,80(13)	EI+(20+4)% 142	
670,41(7)	84(8)	K	0,79(21)	EI+(4+2)% M2	85(8)
675 TEA(22)	T52(TO)	K	0 62(11)	FT. (CO T7) 4/10	153(10)
COT 00(TA)	102(10) T EQ(20)	R	0,02(11)	E1+(\$ 0,17)7682	155(10)
COC 0(14)	1,50(20)		-		-
666,0(10)	~ 45		0 05/701	-	-
693,33(6)	57,7(33)	K	0,75(10)	E2+(\$14)% MI EI+(8+3)% M2	58,7(35)

Продолжение табл. 1

I	2		3	4	5
292,816(25)	8,1(7)	К	2,80(34)	111+122	12,1(8)
		LT. 2	0,93(18)	EI+M2	T
300,648(13)	287(14)	K	393(19)	100% M2	805(42)
		hr.2	92(6)		
		Lika	25 x)		-
		h	6.2(6)		
		M	25.4(28)		
324,408(20)	17.8(12)	К	5,9(6)	MI+(≤15)% E2 ^Д)	24.7(14)
		40	0.74(25)		
		Like	>5 %)		
336,80(35)	3.I(3)	K	0.72(10)	MI+(\$45)% E2A)	4.0(4)
339, 10(25)	4.0(4)	K	I.50(20)	100% iIIA)	5.8(6)
343,5(I,0) ^{d)}			-	-	-
357, 153(15)	60.2(35)	К	15.6(10)	MI+(69.4)% E2	81(4)
		her a	3.8(8)		
		1 :1	>7.5 ()		
		ha s	40.12		
		M	0.68(19)		
365,34(II)	5.00(30)	K	1.37(20)	MI+(<15)% E2 ^A)	6:6(6)
373, 14(8)	9.I(IO)	K	~2.5 *	MI+E2. EI+M2	
	-,-(,	he	50.4 ^m)	ma tang ana tuno	
392.94(6)	17.9(14)	к.	3.9(7)	MT+(\$16)9 22	22.4(TE)
		he a	0.48(6)	EI+(19+3)%12	
411,10(4)	13,3(9)	K s	2.50	e)	I6 2(II)
		han	0.87(12)		10,0(11)
425, 19(25)	4.3(8)	1+2			_
432,96(IO)	9.4(7)	К	-0 3 x)		
438,5(5)	~2	1.	-		
449, 12(13)	4.8(4)		-	-	_
456,750(20)	40, 5(26)	к	6 0(6)	MI+(<a) (toda)<="" td=""><td>48 0(28)</td></a)>	48 0(28)
	10,0(20)	han	0.74(15)	MIT (94/ JOLK	20,0(20)
	-3	1+2	>5 %)		
		M 1.6-3	0.40(20)		
459 690(30)	37 9(25)	K	T TT(T2)	P2. (40 5) 9HT	20 5(27)
200,000(00)	01,0(20)	IL.	1,11(16)	PI. (5.2) (210	39,5(21)
467, 116(13)	T60(T0)	K	5 8(2)	F2 (II 5) Cur	TCP(TO)
10(10)	100(10)	1-	T AT(TO)	LC+(11+0)/041	100(10)
		7+2	0.35(8)		
		M	0,36(8)		
		100	0,00(0)		

8

. 9

Продолжение табл. 1

1	2		3	4	5
721,14(4)	135(11)	K	6,2(9)	MI+(\$23)% E2,1()	143(12)
		W1.2	1,24(19)		
726,0(2)	9(3)	LTG	-	-	-
755,08(9)	II,I(9)		-		-
760(I) ⁰⁾		-	-	***	-
765,03(10)	12,8(9)		-	-	
768.30(30)	II.2(7)		-		
772.20(15)	9.0(6)		-	-	-
781.0(15)0)	-			-	· _
789.54(25)	5.0(6)		-		-
793(1)6)	-		-	-	-
798.20(12)	5.4(6)		-	-	-
814.407(27)	1000(50)	К	8,5(4)	100% E2	1010(50)
		hr.o	I.84(20)	10-10	
		1.1	>2.6*)		
		M1. W2	<0.4		
820,50(15)	12.0(16)	N3	-		
833.06(10)	10,6(15)			-	-
838(I) ⁰⁾			-	-	-
847.55(17)	6.7(12)	K	0,25(6)	MI+(40.6)%E2A)	7.1(12)
852,46(16)	5,5(5)				-
862,46(5)	16.0(II)	К	0,42(4)	MI+(<16)% 12 ¹⁾	I6.4(II)
865,3(4)	5.0(6)	К	0.18(6)	MI+(<10)%E2 Д)	5.2(6)
880,92(4)	24.5(18)	К	0.27(5)	E2+(<51) % III	24,9(18)
			0,01(0)	EI+(15+9)% 12	waşe (aer
893.34(23)	7,9(9)		-	-	-
907.08(3)	149(9)	К	3 T(5)	MT+(<30)% F2A)	T53(9)
		han	0.64(12)		200(0)
932.73(20)	8.6(7)	1436	-	-	
934 6(3)	~2		-	-	-
948.37(10)	15.0(12)		-	-	-
959 79(18)	4.8(5)		-	-	
967 80(9)	5 9(TT)		_	-	-
974C)	O, O(11)		_		
1001 5(5)	~ 2		-	-	-
1004 56(6)	5 4(8)		-		
1015 40(8)	5 3(6)		-		
1027 67(12)	19 6(12)	K	0 13(4)	P2. (230) % MT	10 9(12)
	1910(7%)	A	0,13(4)	EL+(12+6)% 42	13,0(13)

I	2		3	4	5
1024,6(2)	3(1)		-	-	-
1042,39(8)	6,6(6)		-	-	- 1
1054,22(4)	24,0(17)	К	0,34(4)	MI+(428)% E2	4/ 24,4(18)
		h	0,07(2)		
1077,68(3)	44,4(27)		-	-	
1081.0(15)0)	-		-	-	-
I087,06(IO)	6, 1(7)		-	-	-
1095, 13(15)	3,7(5)		-		
III5, I96(24)	108(6)	K	0,55(7)	e) .	109(7)
		L	0,24(4)		
III8,25(8)	9,1(9)			-	-
II27,90(30)	3,0(10)		-	-	-
II3I,72(6)	10,2(8)		-	-	-
II34,57(26)	2,0(5)		-		-
1139,03(22)	I,7(5)		-	-	-
II54,65(II)	3,6(6)-		-	-	-
II63, I6(33)	2,0(5)		-	-	-
1171,62(4)	27,9(17)	K	0,106(15)	E2+(≤0,4)% MI EI+(II <u>+</u> 3)% M2	28(17)
II74,60(8)	10,3(8)				-
1188,260(30)	38,7(23)	K	0,20(5)	EI+(I5 <u>+</u> 6)% M2 E2+(≤33)% MI	39,0(23
II93.44(7)	10.6(8)		-		-
1225,620(30)	26,4(18)	K	≤0,28 .	MI+E2 J)	26,6(19)
1242.62(7)	17.5(15)	K	0,180(27)	MI+(≤23)%E2 ^{A)}	17,7(16)
1245,46(5)	I3.4(II)		-	-	-
1254.11(15)	2.52(22)		-	-	-
1263.71(4)	I2.I(9)	K	0.18(6)	(MI),I)	12,3(9)
1275.17(25)	3.1(3)			-	-
1277,83(23)	3.3(4)		-	-	-
1283.08(4)	27,4(16)		-		-
1291,83(35)	2,30(26)		-		-
1298,84(24)	4.2(II)		-	-	-
1305,43(25)	5,8(16)		-	-	-
I320(I)	3,6(18)		-		-
1323, 12(15)	4.5(6)		-	-	-
1331,63(12)	4,0(6)		-	-	
1334.0(10)	~I		1		-

I THE REPORT OF A DESCRIPTION OF A DESCRIPANTE A DESCRIPANTE A DESCRIPANTE A DESCRIPTION OF A DESCRIPTION OF

÷ .

THE IS A STORE OF

11

			and the second se		
I	2	-	3	4	5
1339,17(16)	6,2(7)		-		
I348,0(IO)	~2				
1350,73(II)	9,4(9)	-		-	-
1364,70(20)	3,0(5)	-		-	-
1380,5(10) ⁶⁾	-		-	-	
1396,19(4)	31,8(18)	K	~0,06	(EI)	31,9(18)
1409,86(5)	25,9(15)	К	0,16(4)	MI+(≤2I)%E2 ^H)	26, I(15)
1413,15(5)	22,4(13)	К	0,16(4)	MI+(≤5)% E2 ^Д)	22,6(14)

Примечание:

а) Переход обнаружен только в конверсионном спектре.

б) Переход обнаружен только в спектре е - /-совпадений.

- в) Интенсивность оценена из данных по е-У-совпадениям.
- г) Полная интенсивность перехода бралась как сулма имектихся экспериментальных значений іу и І_е, а в случае их отсутствия использовались расчетные значения Іу или І_е для полученных в эксперименте мультипольностей.
- д) Для этих переходов молет быть также EI+(≥20)% М2.
- е) Возможно, это дублет.
- х) Данные получены на магнитных бета-спектрографах с постоянным магнитным полем и регистрацией спектров на фотопластинках /8 /. Ввиду трудностей количественной оценки погрешностей ошибки не приьодятся.

Используя экспериментальные значения интенсивностей рентгеновских лучей и конверсионных К-электронов и учитывая, что доля *a*-распада²⁰⁷ At составляет 10% ¹⁷ мы рассчитали абсолютные интенсивности - I_{у814} =/38±6/% и I_β 1,2% на распад ²⁰⁷ At. Поправки на флюоресцентный выход и захват орбитального электрона с L,М и N оболочек брались из работ ^{18,19} соответственно, а при оценке I_β принималось, что интенсивность у-лучей с энергией 511 кэВ /I_γ =59±7 ед. *шабл.* 1/ полностью обусловлена аннигиляцией позитронов. Коэффициент счета аннигиляционных квантов принят 2.

Сравнение наших результатов с данными $^{/1,2/}$ показывает, что в основном результаты всех трех работ согласуются друг с другом. Имеются и некоторые противоречия. По нашим данным, интенсивности переходов с энергиями 422,2 и 960,6 кэВ не больше 1 и 5 ед. / табл. 1/ соответственно. В работе $^{/1}$ эти переходы даются с интенсивностями 41 ± 3 и 50 ± 4 ед. / табл. 1

	÷ _					
Ey (LEy) Kob	Iy(AIy) OTH.eg.	Еу(▲Еу) кэВ	Іу(АІу) отн.ед.	Ey(\$\Delta Ey) K3B	Іу(ΔІу) отн.ед.	
I	2	1	2	I	2	
1450.75(20)	I.30(30)	1867,97(25)	I.7(5)	2457,57(35)	3,73(29)	
1455.06(25)	0,80(20)	1875,74(15)	7,2(5)	2473,69(25)	2,02(25)	
I488,9I(I2)	6,9(7)	1881,19(27)	2,00(30)	2486,65(35)	3,22(32)	
I493,23(I2)	5,7(6)	1887,47(15)	4,0(6)	2514,30(15)	1,20(30)	
1506,97(9)	14,3(9)	1891,87(II)	6,8(8)	2526, 50(30)	0,20(20)	
1510,59(8)	II,7(8)	1897,0(5)	I,3(4)	2535, 57(25)	I,74(I7)	
1548,21(8)	26, 1(16)	1908,22(25)	3,3(5)	2545,38(18)	3,7(5)	
1552,48(13)	7,2(5)	1993,7(5)	2,0(4)	2558,42(12)	6,4(6)	
1556,54(II)	6,2(7)	2006,58(26)	I,8I(27)	2566, 10(13)	6,3(6)	
1574,64(II)	3,7(4)	2016,25(10)	I6,0(II)	2572,85(20)	I,97(30)	
1589,19(15)	3,8(4)	2026,78(18)	4,20(37)	2582,4(4)	0,63(6)	
I598,3I(I8)	2,90(30)	2046,21(26)	3,0(5)	2591,30(15)	4,3(4)	
1631,16(20)	2,10(30)	2053,02(30)	6,6(8)	2627,36(15)	3,13(25)	
1641,82(6)	21,1(12)	2056,20(30)	3,5(6)	2684,21(15)	2,94(25)	
1676,50(IO)	€8(4)	2064,51(32)	4,I(4)	2691,20(30)	0,76(20)	
I684,07(I8)	2,60(30)	2071,60(27)	2, I(4)	2712,50(15)	27,4(17)	
1697,0(4)	1,20(12)	2075,27(7)	II,0(IO)	2721,3(5)	0,90(20)	
1712,60(9)	29,8(18)	2099,5(5)	3,0(IO)	2772,70(35)	2,10(30)	
1716,39(10)	20,9(12)	2134,10(20)	2,5(4)	2792,5(4)	0,70(20)	
1719,1(4)	4,2(6)	2143,57(12)	3,6(4)	2800,6(4)	~ I	
1730,70(6)	84(5)	2188,79(25)	2,80(35)	2854,70(30)	I,20(20)	
1736,7(4)	I,5(6)	2197,0(5)	2,4(7)	2861,80(30)	1,20(20)	
1745,32(7)	15,6(9)	2293,81(25)	I,50(24)	2877,0(7)	0,60(15)	
1768,0(5)	I,60(3I)	2303,50(30)	1,33(20)	2888, 12(35)	1,00(25)	
1772,77(7)	15.0(9)	2342,65(10)	16,3(12)	2962,5(6)	0,60(IO)	
1781,6"(7)	12,1(8)	2365,45(20)	I,60(22)	2968,5(5)	0,50(10)	
1786,5%(7)	19,3(II)	2373,45(25)	0,90(14)	3008,9(5)	1,06(21)	
1805,25(6)	I6,4(I2)	2380,42(15)	I,46(I3)	3080,4(6)	0,40(12)	
1807,5(4)	7,9(26)	2393,04(15)	3,25(30)	3096,5(7)	0,59(15)	
1811,42(23)	5,3(12)	2426, 52(28)	I,00(30)	3179,2(5)	0,80(12)	
1825, 52(18)	4,3(7)	2444,3(5)	0,85(25)	3272,1(5)	0,42(7)	
1854,54(9)	12,1(9)	2450,75(30)	I,7(4)	3458,3(7)	~0,5	

Таблица 4

Таблица 3

Переходы, предположительно отнесенные к распаду ²⁰⁷At

Е г (<u>с</u> Ег) кэВ	$I_{\sigma}(\Delta I_{\sigma})$ oth.eq.	I _е (ΔІ _е) отн.ед.
123,38(17)	0,61(12)	K 2,13(31)
747,07(9)	9,5(8)	-
1050,62(32)	2,5(5)	-
1465,63(17)	2,60(30)	-
1472,77(30)	0,90(20)	-
1482,42(17)	3,2(10)	-
1584,07(30)	4,2(6)	-
2030,0(4)	5,1(5)	-
2129,5(3)	2,40(20)	-
2644,2(5)	2,2(4)	-
2668,4(4)	0,90(30)	-

н 2/ соответственно. В работе^{/2/} переход с энергией 422,2 кэВ обнаружен, но имеет интенсивность, в 8 раз меньшую, чем в^{/1/}, а переход с энергией 960,6 кэВ, как и у нас, не наблюдался. По нашему мнению, рассматриваемые переходы могут быть обусловлены распадом ²⁰² Ві ^{.20./}, который мог образоваться в источнике при *а*-распаде примесного ²⁰⁶ Rn

(²⁰⁶Rn <u>а, 5,7 мин.</u> 202 ро <u>с, 45мин.</u> 202 ві <u>с, 1,67 ч</u> 202 ро)/1/

Экспериментальные результаты настоящей работы существенно дополняют опубликованные ранее 1,2 . Нами обнаружено более 220 γ -переходов, сопровождающих распад 207 At, причем сведения о 140 γ -переходах получены впервые. Для 62 переходов определены мультипольности, для 38 из них - впервые. Получены первые сведения о $e^{-\gamma}$ совпадениях при распаде 207 At.

Относительные	интенсивности	e	у -совпадений
---------------	---------------	---	---------------

Е г коВ	Іст отн. сд.	E r kəB	Ier OTH. CA.	Er Kob	Іст Стн. сд.	Е г кэБ	Ler oth. ca.	E F Kəb	Іст отн. сд.
L	48	ha	68	456	II	503	+	KIS	I
тот	5	156	+	467	65	529	+	456	40
213	+	167	35	487	35	603	+	467	80
221		TOT	+	511	15	626	+	473	15
264	T	221	25	520	IO	6.18	20	529	55
243	35	286	+	588	70	658	+	588	20
343	30	200	5 .	637	35	670	100	617	8
201	TE	324	40	670	+	675	55	641	17
300	10	440	6	675	+	68I	5	670	25
109	30	443	CE.	686	25	693	7	675	TOO
508	20	626	6	760	55	72I	25	907	40
099	25	CAR	25	793	25	726	6	1054	15
503	20	040	20	838	45	820	5		
612	+	000	+	932	+	847	+	R2	IS
814	60	670	100	1087	+	852	+	292	17
1081	+	670	25	III8	50	974	+	324	7
L	.56	761	20	1171	+	IOCI	6	392	TO
	200	. 720	10	1320	100	1095	+	588	9
520	+	772	+	1409	+	II7I	. 7	617	60
675	+	798	9	2342	130	II74	7	648	20
755	÷	880	7			- I245	. +	675	700
772	+	948	.7	KI	67	1254	+	696	200
781	+	1001	8	97	+	1263	-	DOD	40
833	·Ir	III8	10	T30	+	1275	+	101	20
	63	1245	10	T56	+	1277	+	10:00	70
	100	1275	+ '	TOT	-	T323	+	1007	14
459	+	1348	12	221	+	1334	+	1712	+
599	+	1396	25	264	-	1364	+		
IO8I.	+	1507	9	278	- T.	1396	15		
I245	+	1676	IO	200	T	1507	7		
1320	+	707	OT	200	T	1730			
1380	+	KI	21	440	+	1750	+	-	
1507	+	167	12	449					

В заключение мы благодарим Ц.Вылова, Ш.Оманова, В.М.Горожанкина и Н.А.Головкова за помощь при проведении экспериментов, а также И.В.Никитину за вычисление теоретических значений КВК на ЭВМ.

ЛИТЕРАТУРА

- 1. Jonson B. et al. Nucl. Phys., 1971, A177, p. 81.
- 2. IKO Progress Report 71/72, p.60.
- 3. Головков Н.А. и др. Изв. АН СССР, сер физ., XXXV, 1971, № 11, с. 2272.
- 4. Вахтель В.М. и др. Радиохимия 18, 1976, № 6, с. 886.
- 5. Вылов Ц. ОИЯИ, Р.6-10417, Дубна, 1977.
- 6. Вылов Ц. и др. В сб.: "Прикладная ядерная спектроскопия", 1976, вып. 6, с. 3.
 - 7. Гасиор М. и др. ОИЯИ, Д6-7094, Дубна, 1973, с. 167.
 - 8. Абдуразаков А.А., Громов К.Я., Умаров Г.Я. "Бетаспектрографы с постоянными магнитами". Изд. "ФАН" УзССР, Ташкент, 1970.
- 9. Кузнецов В.В. и др. Тезисы докладов XXVIIIсовещания по ядерной спектроскопии и структуре атомного ядра, Алма-Ата, 1978, с. 508.
- Артамонова К.П. и др. Программа и тезисы докладов XXV совещания по ядерной спектроскопии и структуре атомного ядра, Л., 1975, с. 133.
- Артамонова К.П. и др. Программа и тезисы докладов XXV совещания по ядерной спектроскопии и структуре атомного ядра, Л., 1975, с. 129.
- 12. Банд И.М. и др. Препринты ЛИЯФ, №№ 289-300, Л., 1977.
- 13. Schmidt-Ott W.D., Dincklage R.D. Z. Physik, 1978, A286, p. 301.
- 14. Kanbe M., Fujioka M., Hisatake K. Journ. Phys. Soc., 1975, 38, p. 917.
- 15. Kanbe M., Fujioka M., Hisatake K. Nucl. Phys., 1972, A192, p. 151.
- 16. Arbman E., Burde J., Gerholm T.R. Ark.Fysik, 1958, 13,

p. 501.

- 17. Schmorak M.R., Auble P.L. Nucl.Data Sheets, 1971, B5, p. 207.
- 18. Кн.: "Альфа-, бета- и гамма-спектроскопия". Под ред. К.Зигбана, Атомиздат, М., 1969, т. 4, с. 210.
- 19. Джелепов Б.С., Зырянова Л.Н., Суслов Ю.П. "Бета-процессы", Изд. "Наука", Л., 1972.
- 20. Coring S., Hanser A. Z. Physik, 1974, 271, p. 183.

Рукопись поступила в издательский отдел З июля 1979 года.