

5-903

Объединенный институт ядерных исследований

дубна

17/12-79

P6 - 12596

М.Будзынски, Г.Лизурей, Я.Саржински, М.Суботович, Т.Хазратов

ГАММА-ГАММА УГЛОВЫЕ КОРРЕЛЯЦИИ В 169 УЬ

Будзынски М. и др.

P6 - 12596

Гамма-гамма угловые корреляции в ¹⁶⁹ Yb

Впервые измерены гамма-гамма угловые корреляции в Yb для 10 каскадов. На их основе установлены спины уровней 1463 и 1658 кэВ как 7/2 и 5/2, соответственно. Подтверждены спины нескольких уровней. Определены или уточнены мультипольности ряда гамма-переходов.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ,

Препринт Объединенного института ядерных исследований. Дубна 1979

Budzynski M. et al.

P6 - 12596

Gamma-Gamma Angular Correlations in ¹⁶⁹Yb

Angular correlations in 169 Yb have been first measured for 10 cascades. On their base level spins of 1453 and 1658 keV are determined as 7/2 and 5/2, correspondently. Spins of a few levels are confirmed. Multipolities of a series of gamma-transitions are determined or refined.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1979

ВВЕДЕНИЕ

Свойства возбужденных состояний ¹⁶⁹ Уb обсуждаются в обзорной работе ^{/1/}. Исследования распада ¹⁶⁹ Lu \rightarrow ¹⁶⁹ Уb проводились многими авторами, однако до сих пор неоднозначно установлены спины некоторых возбужденных состояний с энергией выше 1 МэВ и мультипольный состав *у* -переходов. Измерения *уу*-угловых корреляций в ¹⁶⁹ Yb выполнены впервые для 10 каскадов. На их основе установлены спины уровней 1463,4 кэВ и 1658 кэВ как 7/2 и 5/2, соответственно. Подтверждены спины уровней 278,6; 389,5; 569,8; 647,8 кэВ как 7/2, 9/2, 5/2 и 7/2, соответственно. Уточнены мультипольности ряда *у* -переходов.

1. МЕТОДИКА ЭКСПЕРИМЕНТА

Источники ¹⁶⁹ Lu получались путем облучения танталовой мишени протонами с энергией 660 МэВ на синхроциклотроне ЛЯП ОИЯИ. После химической обработки мишени хроматографически выделялась фракция лютеция и разделялась по изотопам на масс-сепараторе. Для измерения уу-угловых корреляций алюминиевая фольга с внедренным источником растворялась в 0,1 н растворе соляной кислоты в воде и помещалась в плексигласовую ампулу Ø 3 мм и длиной 10 мм.

Измерения проводились на корреляционном спектрометре с Ge(Li) - и двумя NaJ(T1) - детекторами /4/.

В качестве накопителя информации использовался многоканальный амплитудный анализатор NTA -512 В.Регистрировались совпадения *у*-лучей с фотопиком 191 кэВ для углов между детекторами: 90, 135 и 180°. Измерения корреляции *у*-лучей с энергией меньше 500 кэВ проводились с целью уменьшения вклада от аннигиляционного излучения в спектре совпадений, для углов между детекторами: 90, 120, 150°. Центровка источника в начале всех серий измерений была сделана с точностью лучшей, чем 1%, и контролировалась в течение всего эксперимента. Время экспозиции при каждом значении угла со-

3

ставляло 200 с. Разрешающее время быстрой схемы совпадений составляло 40÷60 нс.

2. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Результаты измерений коэффициентов уу -угловых корреляций для исследуемых каскадов приведены в табл.1. При обработке результатов учитывались поправки на случайные совпадения, на центровку источника и эффективность, телесные углы Ge(Li) -детектора /5/ и NaJ(TI)-детекторов /6/. Коэффициенты угловой корреляции А44 для всех каскадов, перечисленных в табл.1, в пределах погрешности равны нулю.

При обработке экспериментальных данных принималось, что спин основного состояния 169 YbJ = 7/2 $^{/7/}$, а переход 191 кэВ является чистым Е1.

Каскад /87.4 - 191.2/ кэВ разряжает последовательно возбужденные уровни 278,6 и 191,2 кэВ в основное состояние. Принимая из работы /8/ для этого каскада последовательность спинов 7/2 - 5/2 - 7/2, определяем мультипольность у-перехода 87,4 кэВ как: M1 + /2±1,5/% Е2 или M1 + /99±2/% Е2 для $\delta > 0$. Учитывая значения КВК $^{/2/}$, можно принять, что этот у -переход имеет мультипольность М1+ (2+1.5)% Е2.

Каскад [110,9 - (87,4) - 191,2] кэВ осуществляется между возбужденными состояниями с энергиями: 389,5 - 278,6-191,2 кэВ и основным состоянием со следующей последовательностью спинов: 9/2 - 7/2 - 5/2 - 7/2. Используя рассчитанный коэффициент для ненаблюдаемого нами перехода 87,4 кэВ U = 0.865+0.007. определяем мультипольность у -излучения с энергией 110,9 кэВ как М1+(7,5^{+4,3})% Е2, для δ> 0. Для каскада (198,3 – 191,2) кэВ экспериментальный коэф-

фициент угловой корреляции A $^{9{\rm KCII}}_{22}$ = - 0,030 ± 0,022 делах погрешности согласуется с теоретическим в пре-A Teop -0,025, рассчитанным для чистого Е2-перехода между уровнями со спинами: 9/2 - 5/2.

Каскад [291.2 - (87.4) - 191.2] осуществляется между уровнями (569,8 - 278,6 - 191,2 - 0) кэВ с последовательностью спинов 5/2 - 7/2 - 5/2 - 7/2 / 1,2/. Используя U = 0,865±0,007 для перехода 87,4 кэВ, определяем мультипольность у -перехода с энергией 291,2 кэВ как M1 + (2,9^{+2,9})%E2 $\delta < 0.$

Тройной каскад [369,3 - (87,4) - 191,2] кэВ разряжает уровни (647.8 - 278.6 - 191.2)кэВ в основное состояние. В этом каскаде последовательность спинов следующая: 7/2 - 7/2 - 5/2 - 7/2. Из анализа A22 по методу Арнса-Виденбека следует, что у-переход с энергией 369,3 кэВ является чистым М1 или М1 + < 1% Е2.

Ny ibrilioab Hocts
Цультипольность 43 К&К / 1
SHOK Å
LYJETHIOJEIOCTE E3 // (0)
У-излуч. Ег(каВ)
$^{A}22 \pm \Delta ^{A}22$
(KaB)
Каскад

1.

169 Yb

корреляций

-yrnobex

27

измерений

Результаты

Таблица

21+12 NI +E2

II+(5,9+0,4)/II 11+(7,8±2,1)252

020 5>0

MI+(2+I,5)% E2 MI+(7,5⁺⁴,3)%E2

87,4 II0,9

40°030+0°017 +0,065±0,011

191,2

1 97.4 II0,8-(87,4)-I91,2

片

日

MI+(21+6)% 2

넕 년

	EI	I466,9	-0,057+0,008	I466,9 - I9I,2
	BI	I379	+0,051+0,018	I379-(87,4)-I9I,2
970	MI+(0,9-0,0%E2	II84,9	-0,055±0,010	II84,9-(87,4)-I9I,2
0<0	MI+(5,4-3,5) / 102	456,6	+0,063+0,013	456,6 - I9I,2
	UN .	378,6	-0,047±0,012	378,6 - I9I,2
	MI NUN MI+ <is e2<="" td=""><td>369,3</td><td>-0,079+0,024</td><td>369,3-(87,4)-191,2</td></is>	369,3	-0,079+0,024	369,3-(87,4)-191,2
020	MI+(2,9-1,7)%E2	291,2	+0,074+0,0I2	291,2-(87,4)-191,2
н	2	I98,3	-0,030±0,012	198,3 - 191,2

님 E

늺

13

3

EI+(< 6,5)%

늬

2

MI+(49+23)#

Спин уровня 569,8 кэВ J = 5/2^{/1,2/} подтверждает анализ коэффициентов угловой корреляции (378,6 – 191,2) кэВ при учете, что переход 378,6 кэВ типа M1.

Из анализа коэффициентов корреляции для каскада (456,6-191,2) кэВ при последовательности спинов: 7/2-5/2-7/2 у-излучению с энергией 456,5 кэВ следует приписать мультипольный состав М1+(5,4^{+4,6})% Е2, δ>0. Уровню 1463,4 кэВ в работе^{/3/} приписаны характеристики

Уровню 1463,4 кэВ в работе^{(3/} приписаны характеристики 9/2 или 7/2⁻. На основе измеренных коэффициентов корреляции для тройного каскада [1184,9 - (87,4) - 191,2] кэВ при учете мультипольностей γ -переходов 87,4 и 191,2 кэВ получаем парциальный коэффициент $A_2(1184,9) = -0,476\pm0,086$. Из анализа этого коэффициента методом Арнса-Виденбека следует γ -переходу с энергией 1184,9 кэВ приписать мультипольность M1+(0,9^{+4,0})Е2 при последовательности спинов 7/2 - 7/2 или M1+>20%Е2 для последовательности спинов 9/2 - 7/2. Последний вариант считаем маловероятным согласно данным по КВК ^{/2/}. По-видимому, следует приписать уровню 1463,4 кэВ спин 7/2, как это предполагалось в работе^{/1/} при изучении уровней ¹⁶⁹ Yb, возбуждаемых в реакции ¹⁶⁸ Yb(n. γ)¹⁶⁹ Yb. Скорее всего, переход 1272,5 кэВ, разряжающий этот уровень, не является чистым E2, как отмечено в работе^{/2/}, а M1+E2как в^{/1/}.

Уровень 1658 кэВ с предполагаемыми спинами 5/2, 7/2 разряжается в основное состояние двумя каскадами [1379 – (87,4) – 191,2] кэВ и (1466,9–191,2) кэВ. Из-за недостаточного разрешения Ge(Li)– детектора при обработке результатов измерений коэффициентов корреляции тройного каскада [1379 – (87,4) – 191] кэВ учтен вклад прямого каскада (1374,5–191,2) кэВ согласно интенсивностям и мультипольному составу у -переходов и квантовым характеристикам возбужденных состояний. Из анализа парциального коэффициента корреляции $A_2(1379) = +0,44 \pm 0,16$ получаем информацию о мультипольности У -излучения 1379 кэВ - Е1 при последовательности спинов 5/2 - 7/2 и Е1 + <80% Е2 - при последовательности спинов 7/2 - 7/2. Принимая во внимание значение КВК ^{/2/}, исключаем последнюю возможность.

Коэффициент угловой корреляции для каскада (1466,9 – 191,2) кэВ хорошо согласуется с теоретическим значением $A_{22} = -0,057$ при последовательности спинов 5/2-5/2-7/2 и для дипольных переходов. Если уровень 1658 кэВ имеет спин 7/2, тогда переход с энергией 1466,9 кэВ должен быть смешанным, причем примеси M2 должно быть больше 30%, что не согласуется с данными КВК ^{/2/}. Учитывая рассмотренные выше аргументы, можно однозначно установить спин для уровня 1658 кэВ как 5/2.

3. ЗАКЛЮЧЕНИЕ

Результаты наших исследований уу -угловых корреляций

¹⁶⁹Yb 99 позволили:

1. Установить спины уровней: 1463,4 и 1658 кэВ как 7/2 и 5/2, соответственно.

2. Подтвердить значения спинов для возбужденных состояний: 275,6; 389,5; 569,8; 647,8 кэВ как: 7/2, 9/2, 5/2 и 7/2, соответственно.

3. Уточнить мультипольный состав ряда гамма-переходов.

Надо отметить хорошее согласие в определении мультипольности гамма-переходов с результатами, полученными из измерений КВК $^{/1-2/}$. Наши измерения позволили уточнить мультипольный состав *y*-переходов: 87,4; 291,2; 456,6; 1184,9 кэВ. Из измерений угловых корреляций для *y*-переходов, разряжающих возбужденные состояния с $E_y > 1$ МэВ и жестких *y*-переходов, можно получить ценную информацию даже в случае так хорошо известного ядра как 169 Yb.

В заключение авторы выражают благодарность Т.М.Муминову, Н.А.Бонч-Осмоловской за полезные обсуждения и С.Бацеву за интерес, проявленный к данным исследованиям.

ЛИТЕРАТУРА

- 1. Балалаев В.А. и др. Свойства атомных ядер, вып.22, 1978.
- 2. Бацев С. и др. ОИЯИ, Р6-11607, Дубна, 1978.
- 3. Бонч-Осмоловская Н.А. и др. ОИЯИ, Р6-11608, Дубна, 1978.
- 4. Аликов Б.А. и др. ОИЯИ, Р13-9607, Дубна, 1976.
- 5. Camp D.C., Van Lehn A.L., Nucl.Instr.Meth. 1969, 76, 192.
- 6. Фергюсон А.Ф. Методы угловых корреляций в гамма-спектроскопии, Москва, 1969.
- 7. Champeau R.J., Michel J., Waltner H., J.Phys. 1974, B7, 262.

Рукопись поступила в издательский отдел 27 июня 1979 года.

6