

Объединенный институт ядерных исследований дубна

5-903

P6 - 12403

3/12-79

А.В.Будзяк, Т.Крецу, В.В.Кузнецов, Н.А.Лебедев, Г.И.Лизурей, Ю.В.Юшкевич, М.Яницки

ИССЛЕДОВАНИЕ ПОЗИТРОННОГО РАСПАДА ¹⁴⁷Eu И ¹⁵⁵Dy

P6 - 12403

А.В.Будзяк, Т.Крецу, В.В.Кузнецов, Н.А.Лебедев, Г.И.Лизурей, Ю.В.Юшкевич, М.Яницки

ИССЛЕДОВАНИЕ ПОЗИТРОННОГО РАСПАДА 147_{Е И} И 155_{Ду}

Направлено в "Известия АН СССР" /сер. физ./

* Политехнический институт, Бухарест.

объенинськай иномитут идерных истандования БИБЛИЮТЕКА Будзяк А.В. и др.

P6 - 12403

Исследование позитронного распада 147Ец и 155 ри

Приведены результаты исследования позитронного распада 147 Еш и 155 Dy. Отношения интенсивностей компонентов позитронов 147 Eu к интенсивности К-конверсионных электронов перехода с энергией 197 кав

тенсивности К-конверсионных электронов перехода с энергией 197 кз8 равны: $J_{\beta_1}^{+/J}_{K_{197}} = 4,80/25/\cdot10^{-2}$, $J_{\beta_2}^{+/J}_{K_{197}} = 2,60/40/\cdot10^{-2}$ и $J_{\beta_3}^{+/J}_{K_{197}} = 1,95/30/\cdot10^{-2}$. $\beta_2^{+/J}_{K_{197}} = 2,60/40/\cdot10^{-2}$. Разность масс 147Ец - 147Sm $\Theta_{\beta_1}^{+=1723/3}$ кз8. Относительные интенсивности компонентов позитронов 155 Dy $J_{\beta_2}^{+/J}_{K_{297}}$ равны: для β_1^{-} 0,027/7/, для β_2^{-} 0,019/3/, для β_3^{-} 0,95/7/ и для β_4^{-} 0,098/10/. Разность масс 155Dy -155Tb $\Theta_{\beta_1}^{+=}$ 2094/2/ кз8.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1979

Budziak A.V. et al.

P6 - 12403

Investigation of ¹⁴⁷Eu and ¹⁵⁵Dy Positron Decay

Results of investigation of ¹⁴⁷Eu and ¹⁵⁵Dy positron decay are given. Intensity ratios of 147Eu positron components to the intensity of K-conversion transition electrons with 197 keV energy are

equal to: $J_{\beta_1^+}/J_{K197} = 4.80(25) \cdot 10^{-2}$, $J_{\beta_2^+}/J_{K197} = 2.60(40) \cdot 10^{-2}$ and $J_{\beta_2^+}/J_{K197} = 1.95(30) \cdot 10^{-2}$. The mass difference ${}^{147}\text{Eu} - {}^{147}\text{Sm} \ Q_{\beta^+} = 1723(3)$ keV.Positron component relative intensities ${}^{155}\text{Dy} \ J_{\beta'}/J_{K207}$ are equal to:for β_1 -0.027(7), for $\beta_2 = 0.019(3)$, for $\beta_3 = 0.95(7)$ and for $\beta_4 = 0.098(10)$. The mass difference ${}^{155}\text{Dy} - {}^{156}\text{Tb} \ Q_{\beta^+} = 2094(2)$ keV.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1979

I. Введение

Позитронное излучение $I47 \mathcal{E}_{u}$ ($T_{1/2} = 24$ дн) изучалось ранее в работах /1,2/, однако в значениях разности масс $I47 \mathcal{E}_{u} - I47 \mathcal{E}_{m}$ (Q_*), полученных в этих работах, наблюдается расхождение. Нами предпринята попытка, с одной стороны, устранить имеющееся расхождение, с другой - уточнить интенсивности компонентов позитронов при распаде 147 Е.

Позитронный распад ¹⁵⁵ ру (Т_{1/2}= 10 час) исследовался ранее в работах ^{74,57}, но ни в одной из них не проведен анализ и хотя бы оценка вероятности бета-перехода 3/2 - 5/2⁺, ведущего к заселению возбужденного состояния 65.5 ков 15578.

2. Экспериментальные результаты

2.1. Источники, метод измерений, обработка в*-спектров.

Радиоактивные изотопы редкоземельных элементов европия и диспрозия получались в реакциях глубокого расшепления тантала протонами с энергией 660 МэВ на синхроциклотроне Лаборатории ядерных проблем ОИЯИ. Элементы европия и диспрозия химическим путем ⁷⁶⁷ выделялись из танталовой мишени, облученной в течение 10 часов. Ионы исследуемых изотопов ¹⁴⁷с. и ¹⁵⁵ру внедрялись при помощи масс-сепаратора ⁷⁷⁷ в алюминизированную майларовую фольгу толщиной 680 мкг/см². Глубина внедрения составляла не более 15 мкг/см² /8/

Спектр позитронов исследовался при помощи безжелезного бетаспектрометра с тороидальным магнитным полем /9/ при максимальной трансмиссии Т≈20% и разрешающей способности R≈I, I%.

Обработка экспериментальных распределений позитронов проводилась по методике, описанной в работе /9,10/.

Для определения доли позитронов на распад измерялись спектры конверсионных электронов ¹⁴⁷ с. и ¹⁵⁵ Ду при тех же значениях уровня дискриминации импульсов и трансмиссии спектрометра.

2.2. Результаты обработки спектров позитронов 147 Е.

Спектр позитронов при раснаде ¹⁴⁷ Е. состоит из трех компонентов. На рис. I представлен график Ферми-Кири позитронов ¹⁴⁷ Е., полученный при обработке одного из четырех измеренных экспериментальных распределений. В таблице I приведены результаты обработки экспериментальных спектров позитронов ¹⁴⁷ Е. – граничные энергии и относительные интенсивности компонентов позитронов. В последней строке приведены средневзвешенные значения E_{ρ}^{*} с. компонентов позитронов и их относительных интенсивностей.

Ошноки средневзвешенных величин, приведенных в таблицах I-4, определялись, как описано в работе /II/. В этих таблицах указаны весовые погрешности значений, так как они оказались больше погрешностей разброса.

Отношение интенсивностей компонентов позитронов к интенсивности К-конверсионных электронов перехода с энергией 197 кэВ оказались равными $J_{s'}/J_{k197} = 4,80(25) \times 10^{-2}$, $J_{s'}/J_{k197} = 2,60(40) \times 10^{-2}$ и $J_{s'}/J_{k197} = 1,95(30 \times 10^{-2})$.

Таблица I

Граничные энергии и относительные интенсивности позитронов при распаде ¹⁴⁷Ец

Omer	E , kəB	Е β 2 кэВ	E je s rəB	$J_{\beta_1}: J_{\beta_2}: J_{\beta_3}$
I	702(3)	584(7)	508(5)	I,00:0,4I(7):0,40(3)
2	7II(5)	593(6)	507(5)	I,00:0,6I(II):0,5I(5)
3	708(4)	567(6)	50I(6)	I,00:0,68(I0):0,3I(3)
4	698(2)	576(IO)	504(3)	I,00:0,37(I0):0,47(3)
Средневзвеш. значения	701(3)	58I(6)	505(3)	I,00:0,49(7):0,4I(4)

Используя величины (٤+5^{*})% /12/, мн рассчитали (^с/3)_{эксп} при распаде ¹⁴⁷ с. для переходов на соответствующие уровни ¹⁴⁷ Sm.

	Значения	$J_{B^{+}}(\pi),$	E/s+ , logft	Таблица 2 при распаде ¹⁴	⁷ E4
Est	J.+(%)a)	£/3*	٥)	Заселяемые	R ch
KaD	Jo	теор.	эксп.	кэВ	togft
701	0,18(2)	82,5(12)	83(2I)	0	8,5(I)
58I	0,10(2)	I42(7)	210(40)	121,22	8,4(I)
505	0,07(3)	248(II)	295(120)	197,28	8,3(I)
Thomas	ounune: o)	No podomu	/T2/ 101000	ITTO 7 -3 8	T(2T) # #9

pacnag 147Eu . б) Е/д+теор взято из таблиц /13/ для разрешенных в+-переходов.

На рис.І, в правом углу, приведен фрагмент схемы распада 147 \mathcal{E}_{u} - ¹⁴⁷ S_{m} позитронами при распаде ¹⁴⁷ \mathcal{E}_{u} .

Позитроны ведут к заселению основного 0 ков (7/2), первого

позитроны ведут к заселению основного 0 кзв (7/2), первого 121,22 кзв (5/2) и 197,28 кзв (3/2) состояний 1475. Отсида разность масс 1475. , Q = 1723(3) кзв. Значение разности масс хорошо согласуется с Q = 1730(6) кзв /3/ и отличается от Q = 1652(15)/1/ и Q = 1767(10)/2/. Как видно из табл.2, отношения $\mathcal{E} / \mathcal{F}$ эксп. для всех трех компонентов позитронов близки по своему значению к $\mathcal{E} / \mathcal{F}$ теор. для разрешенных \mathcal{F} -переходов, тогда как в работе /2/ наблюдалось

2.3. Результаты обработки спектров позитронов 155 Ди

В спектре позитронов ¹⁵⁵ Ду выделено четыре компонента. На рис.3 показан график Ферми-Кюри позитронов ¹⁵⁵ Ду, полученный при обработке одного из четырех измеренных экспериментальных распределений.

В таблице З приведены результаты обработки экспериментальных спектров позитронов 155 Ду - граничные энергии и относительные интенсивности компонентов позитронов. В последней строке приведены средневзвешенные значения Ер+гр. компонентов позитронов и их относительных интенсивностей.

энергии и относительные интенсивности позитронов Таблица

NOI

Граничные

	Гранична	вя энергия	Erp St . Et	BB	Относительные интенсивности
UIRI	E.A.	Elez	E PS	B. 84	Jar : Jar : Jas : Jar
П	I090(25)	I033(4)	846(2)	533(I8)	0,028(24):0,030(I4):I,00:0,095(II)
03	, I084(20)	I04I(I3)	843(3)	1	0,017(I2):0,047(I0):I,00
m	II35(4I)	I018(6)	845(2)	ł	0,03I(I3):0,0I3(4):I,00
4	I088(25)	I021(I0)	843(3)	539(35)	0,040(I8):0,025(5):I,00:0,I32(I3)
средневзвеш. значение	I090(I5)	I030(5)	845(2)	534(I6)	0,027(8):0,021(3):1,00:0,103(8)

Относительные интенсивности компонентов позитронов J_{B^+}/J_{K227} оказались равными для $\beta_2 - 0,027(7)$, для $\beta_2 - 0,019(3)$, для $\beta_3 - 0,95(7)$ и для $\beta_4 - 0,098(10)$.

0,019(3), для $\beta_3 - 0,95(7)$ и для $\beta_4 - 0,098(10)$. Используя значение ($\epsilon + \beta + \beta_8'/17/$, мы рассчитали (ϵ/β^*)_{эксп}. при распаде ¹⁵⁵ д. для перехода на возбужденное состояние с энергией 227 кэв ¹⁵⁵ g. На основе анализа данных получено, что ($\epsilon + \beta^*$)% в основное состояние ($3/2^+$) составляет 1,2(4)%, а на первое возбужденное состояние ($5/2^+$) с энергией 65,5 кэв ¹⁵⁵ g – 1,1(2)%.

В таблице 4 приведены величины Ја*(%), экспериментальные и теоретические значения уровней ¹⁵⁵ ГС при бета-распаде ¹⁵⁵ D₄.

Таблица 4

1	Вначения	(%), e/s+	logft при	pachage 155 Dy	
Erpst	7.+(g) B)	E/B+	r)	Заселяемые	logft
кэВ		теор.	эксп.	кэВ	
1090	0,06(2)	22,1(12		0	8,I(I)
1030	0,04(I)	27, I(5)	•	65,5	8,I(I)
845	I,95(25)	54,20	36(+8)	227,0	6,I(I)
534	0,20(3)	295(40)	-14		6,2(2)

Примечание: в) Из работы /17/принято, что $J_{k22\overline{f}}$ 2,08(20)% на распад ¹⁵⁵ D_{i} . г) $\mathcal{E}/_{\mathcal{B}^+}$ теор. Бзято из таблиц /13/ для разрешенных \mathcal{B}^+ - переходов.

На рис.3 в правом верхнем углу приведен фрагмент уровней 155 \mathcal{T}_{6} , на котором показано заселение возбужденных состояний 155 \mathcal{T}_{6} позитронами при распаде 155 \mathcal{D}_{9} . Позитроны ведут к заселению основного 0 кэВ (3/2⁺), 65,5 кэВ (5/2⁺), 227 кэВ (5/2⁻) и возбужденных состояний с энергией ~500 кэВ $155 \mathcal{T}_{6}^{2}$. Отспда разность масс $155 \mathcal{D}_{9}$ - $155 \mathcal{T}_{6}^{2} \mathcal{Q}_{\mp} 2094(2)$ кзВ. Ранее Перссоном и др.⁴ позитроны, ответственные за заселение первого возбужденного состояния с энергией 65,5 кэВ (5/2⁺) $155 \mathcal{T}_{6}^{2}$, не были обнаружени. В их работе методом 3⁺-7⁻-совпадений было показано, что интенсивный компонент позитронов с Е_{гр.5}⁺ = 850 кзВ при распаде 155 ду заселяет возбужденное состояние с энергией 227 кзВ (5/2⁻) 155 К.

Рис.3 График Ферми-Кюри позитронов ¹⁵⁵Д, полученный при обработке одного из четырех измеренных экспериментальных распределений. В правом верхнем углу приведен фратмент схемы распада ¹⁵⁵Д, -¹⁵⁵Л8

Литература

- I. К.Я.Громов, Ж.Желев, Кун Сян-цзинь, Г.Музиоль, Хань Шу-жунь ОИЯИ, Р-2166, Дубна, 1965.
- 2. I.Adam, K.S.Toth, R.A. Meyer, Phys. Rev., 159, (1967), 985

3. A.H.Wapstra,K.Boss,Atomic Data and Nuclear Data Tables, 19/3, (1977),New York-London

4. L. Persson, H. Ryde, K. Oelsner-Ryde, Nucl. Phys., 44, (1963), 653

- М.Гасиор, И.Громова, Т.Крецу, В.В. Кузнецов, Н.А.Лебедев, Г.Лизурей, Г.Макарие, Д.Мончка. Тезисы докл.XXУI Совещ.по яд. спектр.и стр.ат.ядра, Баку, изд."Наука", Ленинград, 1976 г. стр.IIO.
- Ф.Молнар, В.А.Халкин, Э.Херрманн, ЭЧАЯ, т.4, вып.4 стр. 1077, (1973).
- В.П.Афанасьев, А.Т.Василенко, И.И.Громова, Ж.Т.Желев,
 В.В.Кузнецов, М.Я.Кузнецова, Д.Мончка, Ю.Поморски, В.И.Райко,
 А.В.Ревенко, В.М.Сороко, В.А.Уткин. ОИЯИ, I3-4763, Дубна,
 1969.
- В.Жук, М.Киселевич, А.Лятушински, Б.П.Осипенко, В.И.Райко, ОИЯИ, 6-10058, Дубна, 1976.
- К.Я.Громов, Т.Крецу, В.В.Кузнецов, Г.Лизурей, В.М.Горожанкин, Г.Макарие, сб."Прикладная ядерная спектроскопия", Атомиздат, М., вып.8, 59,1978 г.
- IO. Т.Крецу, В.В.Кузнецов, Г.Макарие, ОИЯИ, Р6-IOI83, Дубна, 1976; Rev.Roum. Phys., <u>22</u>/9,975, Bucarest, 1977
- II. Б.С.Джелепов, в кн. "Методы разработки сложных схем распада", "Наука", М., 1974, с.155.
- 12. Ц.Вылов, Ш.Оманов, Я.Саржински, В.В.Кузнецов, О.И.Кочетов, Н.Б.Бадалов, Р.Р.Усманов, Н.А.Лебедев, У.С.Салихбаев, Ю.В.Кшкевич, ОИЯИ, Р6-11848, Дубна, 1978.
- Б.С. Джелепов, Л.Н. Зырянова, Ю.П. Суслов, в кн. "Бета-процессы", Л., "Наука", 1972.
- 14. И.И.Громова, Т.Крецу, В.В.Кузнецов, Н.А.Лебедев, Г.Макарие, А.В.Потемпа, Е.Сенявски, Тез.докл.ХХУП Совещ.по яд.спектр.и стр.ат.ядра, Ташкент, 1977 г., изд."Наука", Л., стр.78.
- I5. Т.Крецу, Г.Макарие, А.В.Потемпа, Е.Сенявски, Изв.АН СССР, сер.физ., т.4I, №IO, 2032, 1977 г.
- 16. Ц.Вылов, Ш.Оманов, В.С.Александров, Н.Б.Бадалов, А.Будзяк, В.В.Кузнецов, Р.Р.Усманов, Ю.В.Юшкевич, Тез.докл.XXIX Совещ. по яд.спектр.и стр.ат.ядра, Рига, изд."Наука", Л., 1979 г., стр.88.
- 17. К.Зубер, Ц.Вылов, И.И.Громова, Я.Зубер, ОИЯИ, 6-8517, Дубна, 1975.

- 18. М.П.Авотина, А.В.Золотавин, в кн. "Изобарные ядра с массовым числом А = 147", Л. "Наука", 1971.
- 19. K.S.Toth, Phys. Rev., C10, (1974), 2550

Рукопись поступила в издательский отдел 19 апреля 1979 года.