ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

> 19/11-79 P6 - 11987

Рб-923/2-79 Я.Дупак, М.Фингер, Хан Хен Мо, Н.А.Лебедев, А.Махова, В.Н.Павлов, И.Ржиковска, А.Ф.Шусь, Р.А.Фокс, У.Д.Гамильтон

> ядерная ориентация ¹⁵⁶ ть в гадолиниевой матрице

11#11

......

P6 - 11987

Я.Дупак, М.Фингер, Хан Хен Мо, Н.А.Лебедев. А. Махова! В.Н. Павлов, И. Ржиковска! А.Ф. Шусь? Р.А.Фокс³, У.Д.Гамильтон³

156 ть ЯДЕРНАЯ ОРИЕНТАЦИЯ В ГАДОЛИНИЕВОЙ МАТРИЦЕ

Направлено в "Чехословацкий физический журнал"

- ¹ Политехнический институт, Прага.
- ² Харьковский государственный университет.
- ³ Сассекский университет, Брайтон, Великобритания.

06-	195 Jones Hallington, Sal		2 •	-71
164 ° 2004 -				à
داريد محق		k	i.	Ň

.

Дулак Я. и др. P6 - 11987 Ядерная ориентация ¹⁵⁶Tb в гадолиниевой матрице Методом ядерной ориентации при сверхнизких температурах изучался распад 156 Тр. В диапазоне температур 14,6-68,4 мК измерены асимметрии гамма-излучения ориентированных ядер 156Tb. Определены константы сверхтонкого магнитного дипольного и электрического квадрупольного взаимодействий для ¹⁵⁶ Tb в гадолинии: $a_0 = (9,70\pm1,26) \cdot 10^{-18} \text{ pr}$ P = (1,02\pm0,38) \cdot 10^{-18} \text{ pr} и рассчитаны значения магнитного и квадрупольного моментов ¹⁵⁶ Tb: |μ| =(1,9±0,3) я.м., Q=(2,9±1,0) барн. Для ряда гамма-переходов в 156 Gd определены параметры смешивания мульипольностей. Работа выполнена в Лаборатории ядерных проблем ОИЯИ. Препринт Объединенного института ядерных исследований. Дубна 1978 Dupak J. et al. P6 - 11987 Nuclear Orientation of ¹⁵⁶Tb in Gadolinium Matrix The decay of 156 Tb was studied using the method of nuclear orientation at ultralow temperatures. Anisotropies of gamma-rays emitted by the oriented ¹⁵⁶Tb nuclei have been measured in the temperature region from 14.6 to 68.4 mK, Parameters of magnetic dipole and electric quadrupole hyperfine splitting were determined for ¹⁵⁶Tb in gadolinium matrix $a_0 = (9.70 \pm 1.26) \cdot 10^{-18}$ erg P = (1.02 \pm 0.38) \cdot 10^{-18} erg and the values of magnetic dipole and electric quadrupole moment of ¹⁵⁶ Tb were calculated $|\mu| = (1.9 \pm 0.3)$ m.m., $Q = (2.9 \pm 1.0)$ bn. Multipole mixing ratios were determined for a number of gammatransitions in 156Gd. The investigation has been performed at the Laboratory of Nuclear Problems, JINR,

Preprint of the Joint Institute for Nuclear Research. Dubng 1978

Угловое распределение $\int -излучения ориентированных ядер ¹⁵⁶ Tb (T_{1/2}=5,35 дн.) изучалось в /1,2/. В работе /1/ ядра ¹⁵⁶ Tb были ориентированы в монокристаллах Nd - и Y -этилсульфата, охлажденных до сверхнизких температур методом адиабатического размагничивания. На основании экспериментальных данных был определен спин ¹⁵⁶ Tb I=3, а также значения магнитного и квадрупольного моментов: <math>|m| = 1,45(18)$ я.м. l = 1,4(5) барн. В работе /2/ ядра ¹⁵⁶ Tb ориентировались в гадолиниевой матрице, охлажденной до сверхнизких температур с помощью ³ Не-⁴ Не рефрикератора. В этой работе изучались также $\int -f - u e^{-} f$ - угловые корреляции. Получены значения параметров смешивания мультипольностей для 21 f-перехода в ¹⁵⁶ Gd.

В настоящей работе выполнены опыты по ядерному ориентированию ¹⁵⁶Ть в гадолинии с целью определения констант сверхтонкого взаимодействия для примесных атомов Ть в гадолинии и для получения новых данных о магнитном и квадрупольном моментах ¹⁵⁶Ть. Получена такие новая информация о мультипольностях γ -переходов в ¹⁵⁶Gd.

I. Экспериментальная часть

I.I. Условия эксперимента

Радиоактивный источник ¹⁵⁶ТЬ онл получен при облучении гадолиниевой мишени дейтонами с энергией 6,7 МаВ на циклотроне У-120 ИЯИ

АН УССР. Химическое виделение тербия из мишени осуществлялось методом экстракционной хроматографии ^{/3/}. Образец для ядерной ориентации был приготовлен имплантацией ¹⁵⁶Ть в гадолиниевую матрицу (чистота Gd - 99,9%) на электромагнитном масс-сепараторе при ускорящем напряжении 25 кВ. После имплантации образец бистро (в течение нескольких десятков секунд) нагревали в вакуумной печи до температуры 1400°С. Для получения однородного распределения тербия в гадолинии делали выдержку в несколько секунд при этой температуре. Технология приготовления образца должна обеспечивать правильную кристаллическую структуру матрици. В связи с этим последущее его охдаждение в области фазового перехода гадолиния из объемноцентрированной кубической в гексагональную плотноупакованную структуру (~1260°С) осуществлялось достаточно медленно (~45°С/мин. в течение 10 мин.).

Вся термообработка производилась в вакууме ~10⁻⁶ мм рт.ст.

Охлаждение образца до сверхнизких температур производилось с помощью комбинированного рефрижератора растворения ³_{Не в} 4_{Не} /4/. Внешнее магнитное поле (8,5 кГс), используемое для магнитного насыщения матрицы, создавалось парой сверхпроводящих катушек Гельмгольца.

Гамма-излучение от ориентированных ядер ¹⁵⁶ТЬ регистрировалось двумя Ge(Li)-детекторами с рабочими объемами 30 и 35 см³ (разрешение ~3 кэВ при E_f = I332,5 кэВ), установленными под углами 0⁰ и 90⁰ по отношению к направлению внешнего магнитного поля. Гамма-спектры накапливались в 4096-канальных анализаторах ICA-70.

Обработка полученных данных осуществлялась с помощью ЭВМ "Минск-2" и ICL- 4/72.

I.2. Экспериментальные результаты

С целью определения констант сверхтонкого взаимодействия для 156_{ТБ} в гадолинии были измерены температурные зависимости асимметрии Г-лучей с энергиями 199, 356, 534, 1222 и 1422 кэВ. Измерения проведены в интервале температур 14,6-68,4 мК. Интенсивности Г-лучей нормировались по соответствующим значениям при температуре ~1,2 К. Температура определялась с помощью ⁵⁴Mn(Ni)-термометра. Температурные зависимости № (f,T) для гамма-лучей 199, 534 и 1222 кэВ показаны на рисунке.

Для определения параметров смешивания мультипольностей *Г*-переходов мы использовали данные, полученные при T=I4,6 мК. Значения нормированных интенсивностей $\iint^{tx} (\theta, T=I4, 6 \text{ мK})^{\cdot}$ для 25 *Г*-переходов приводятся в табл. I. Там же, для сравнения, приведены и данные работы /2/.

<u>Таблица I</u>	Значения	нормированных	интенсивностей	
	τ56 ₩ (ϑ,	Т=14.6 мК)	гамма-переходов	в
	- Gd·			

NG NG		$\mathcal{H}(\Omega^{O})$			14 (0 0 0		
π/1	E, ROB		N (0°)		₩ (90°)		
		I	2	I	2		
I	I99,2	0,789(5)	0,800(2)	T.09T(6)	T TOF(2)		
2	262,6	0,851(17)	0.872(3)	T TT6(29)	1,100(3)		
3	296,5	0,759(21)	0.749(3)	T TTT(37)	1,093(7)		
4	356,4	0,669(7)	0.682(3)	T T3T(T4)	1,132(0)		
5	381,1	0,57(14)	_	1,101(14)	1,150(4)		
6	422,4	I,I43(I6)	I.137(3)				
7	534,3	0,627(4)	0.637(2)	T 201(5)	10,940(3)		
8	578,9	I,05(2I)	-	0.84(38)	1,100(3)		
9	747,9	0,71(25)	-	0,01(00)	-		
10	780,2	I,237(7I)	I.254(7)	0.938(83)	0.975(TC)		
II	926,0	0,920(40)	0.899(4)	T 042(6T)	T OCT(T2)		
12	949,3	I,40(I2)	I.26I(I3)	0.91(13)	1,001(12)		
13	959,8	I,IO9(89)	I,076(II)	0.94(12)	0,955(31)		
14	II54,2	0,648(12)	0,691(3)	I. I66(29)	T T29(5)		
15	II59,0	I,060(22)	I,0I3(3)	0.988(33)	1,123(3)		
16	II87,I	I,33(25)	I,263(2I)	0.87(T7)	0,000(0)		
17	1222,4	I,274(9)	I,258(2)	0.872(9)	0,862(3)		
18	1230,7	0,73(IO)	-	1.06(15)	0,002(0)		
I9	I266,5	0,699(59)	-	I.05(II)	-		
20	1334,3	I,4I3(44)	I,430(5)	0.804(42)	0.857(TO)		
21	1421,6	0,702(IO)	0,681(3)	I.I64(T9)	$T_{148(5)}$		
22	1646,2	I,II8(29)	I,I05(3)	0.972(35)	0.959(9)		
23	I8I5,3	I,07(II)	-	0.938(18)	-		
24	1845,4	I,220(28)	I,26I(3)	0.969(29)	0.878(8)		
25	2014,5	I,254(54)	I,240(7)	0.863(57)	0.879(15)		
					0,0,0(10)		

I - Настоящая работа

2 - Uluer I. et al. /2/

2. Анализ экспериментальных данных

H_M = -

2.1. Константы сверхтонкого взаимодействия

Тербий с гадолинием во всем диапазоне концентраций образует твердый раствор ^{/5/}, который при низких температурах является ферромагнетиком ^{/6/}. Ядра ^{I56}ТЬ в гадолиниевой матрице "чувствуют" эффективное магнитное поле:

$$\vec{H}_{eff} = \vec{H}_{hf} + \vec{H}_{o} - 4\pi D\vec{M}, \qquad (2.1)$$

где: $\vec{H}_{i,f}$ - сверхтонкое магнитное поле, \vec{H}_{o} - внешнее магнитное поле, 4π D \vec{M} - размагничивающее поле (D -фактор размагничивания, \vec{M} - намагниченность образца). Взаимодействие эффективного поля H_{eff} с магнитным моментом ядра описывается гамильтонианом:

$$\vec{\uparrow} \vec{H}_{eff}.$$
 (2.2)

Эксперименты и теоретические оценки ^{/7,8/} показывают, что в случае чистого металлического тербия или атомов ТЬ, растворенных в гадолиниевой матрице, кроме магнитного дипольного взаимодействия, необходимо учитывать и электрическое квадрупольное взаимодействие. Таким образом, полный гамильтониан содержит два члена:

$$H = H_{\mu} + H_{a}. \tag{2.3}$$

Если градиент электрического поля обладает осевой симметрией относительно направления магнитного поля, то собственные значения гамильтониана H определяются выражением:

 $E_{m} = -G_{o} I_{z} + P \left[I_{z}^{2} - \frac{1}{3} I (I+1) \right], \qquad (2.4)$ где $Q_{o} = \frac{\mu}{I} H_{eff}$ и $P = 3 e Q V_{zz} / 4 I (2I-1)$ - константи соответственно магнитного дипольного и электрического кведрупольного взаимодействий.

При определении констант сверхтонкого взаимодействия l_o и Р методом ядерной ориентации измеряется температурная зависимость углового распределения (-лучей ориентированных ядер. Эту зависимость можно записать в виде /9/:

$$W(\theta,T) = \sum_{\kappa=0}^{n_{max}} B_{\kappa} A_{\kappa} U_{\kappa} Q_{\kappa} P_{\kappa} (\cos \theta).$$
(2.5)

Здесь ϑ - угол между направлением испускания гамма-кванта и направлением магнитного поля, $B_{\rm K}$ - коэффициенты ориентации; $A_{\rm K}$ - коэффициенты угловой корреляции; $U_{\rm K}$ - коэффициенты, описывание изменение ориентации, обусловленное переходами, предлествущими наблодаемому; $Q_{\rm K}$ - поправки на консчный телесный угол детектора; $P_{\rm K}$ ($\cos \vartheta$) - полиномы Лежандра. Суммирование ведется только по четным индексам. Как правило, к $max} = 2, 4.$

Выражение (2.5) является точным только в случае полного магнитного насыщения матрицы. Незначительное отклонение от состояния полного насыщения может заметно ослабить асимметрию гамма-ивлучения /IO/. При малых отклонениях от полного насыщения выражение (2.5) следует писать в виде /II/:

$$W(\theta, T) = 1 + (1 - 3\varepsilon) B_2 A_2 U_2 Q_2 P_2 (\cos \theta) + (1 - 10\varepsilon) B_4 A_4 U_4 Q_4 P_4 (\cos \theta)$$
(2.6)

Здесь $\varepsilon = \frac{1}{M} / M_s$ - относительное отклонение от полного насыщения матрици (M_s - намагниченность матрицы при насыщении).

Проведя анализ температурных зависимостей (подробно см. приложенке), мы получили следующие значения констант сверхтонкого взаимодействия для ¹⁵⁶Tb в гадолинии:

2.2. Магнитный момент 106ТЬ

Кобаящи и др. ^{/7/} методом ядерного магнитного резонанса определили константи сверхтонкого взаимодействия для сплава ТЬ – Gd, содержащего IO ат, % ^{I59}Tb. По их данным, H_{kf} на ядрах ^{I59}Tb равно 3,03(3) MTc. Это значение H_{kf} можно использовать для определения магнитного момента ^{I56}Tb, т.к. эксперименти ^{/8/} показывают, что для редкоземельных элементов магнитная сверхтонкая аномалия пренебрежимо мала и, кроме того, величина сверхтонкого магнитного поля не очень чувствительна к концентрации примесных атомов Tb в гадолиник. Таким образом, используя значение $H_{hf} = 3,03(3)$ МГс, получаем: м (156 Tb) = 1,9(3) я.м.

Так как для редкоземельных элементов можно не учитывать сверхтонкую магнитную аномалию, то отношения магнитных расщеплений для разных изотопов ТЬ в гадолинии должны быть равны отношениям соответствующих q-факторов. Взяв в качестве "опорного" ^{I60}TЬ, для которого есть независимые измерения магнитного момента (M = I, 685(5)я.м. /I2/) и параметра сверхтонкого магнитного расщепления в гадолиниевой матрице ($d_o = 8, 60(87) \cdot 10^{-18}$ эрг /I3/), получим: $a_o^{160}/a_o^{156} = 0,89(15);$ $q_{160}^{160}/q_{156}^{156} = 0,89(17)$ – настоящая работа; $q_{160}^{160}/q_{156}^{156} = I, I6(13)$ – работа /I/.

Видно, что указанные отношения хорошо согласуются друг с другом в первом случае и только удовлетворительно во втором.

Если на основе экспериментального значения константи сверхтонкого магнитного расщепления для ¹⁵⁶ть в гадолинии и значения магнитного момента (¹⁵⁶ть)=1,45(18) я.м. ^{/1/} вычислить эффективное поле на ядрах тербия в гадолинии, то получим ^H_{hf} =4,0(7) МГс. Это значение намного выше результата, полученного Кобаящи и др. ^{/7/}. Причем столь большую разность нельзя объяснить отличием электронных структур 156_{ть и} 159_{ть при их} растворении в гадолиниевой матрице.

Полученное нами значение магнитного момента ¹⁵⁶ть хорошо согласуется с расчетным в рамках модели Нильссона без учета взаимодействия нечетных частиц: м (¹⁵⁶ть) = 1,92 я.м. 2.3. Квадрупольный момент ¹⁵⁶ть

В кристаллической решетке к градиенту электрического поля (ГЭП) на ядре от собственных 4 ^f -алектронов необходимо добавить вклад от кристаллического поля решетки и электронов проводимости. В случае гадолиниевой матрици тензор ГЭП аксиально симметричен относительно

главной кристаллографической оси (). При наложении внешнего магнитного поля направление магнитного момента 4^f -электронов может не совпадать с направлением оси С. Это приводит к неаксиальности тензора ГЭП. В таком случае для отдельного кристалла константа электрического квадрупольного взаимодействия в первом приближении имеет вид /8/:

 $P = P \parallel + \frac{1}{2} (3 \cos^2 \alpha - 1) P_c \qquad (2.7)$

Здесь $P \parallel -$ вклад собственных 4^f -электронов, $P_c -$ вклад кристаллического поля решетки и электронов проводимости ($P_c \sim 5-10\%$ $P \parallel$ у всех редкоземельных элементов, за исключением гадолиния /8/), $\alpha -$ угол между направлением электронной намагниченности и осыс кристалла С.

Полученное значение константы электрического квадрупольного взаимодействия $P=(1,02\pm0,38)\cdot10^{-18}$ эрг можно понимать как среднее по совокупности отдельных кристаллов. Это не совсем точно, исо на самом деле усредняются не значения Р отдельных кристаллов, а величины $B_{\rm K}$ /14/.

Тот факт, что градиент электрического поля на примесных ядрах ТЬ в Gd определяется, в основном, собственной 4^f --оболочкой, позволяет определить квадрупольный момент ¹⁵⁶Tb: Q =2,9(10) барн (V_{zz} вычислено по известному значению квадрупольного момента ¹⁵⁹Tb -Q =I,32(10 барн /¹⁵/ и известному значению константы квадрупольного взаимодействия для ¹⁵⁹Tb в гадолинии - P=2,326(13) · 10⁻¹⁸ эрг /⁷/). Соответствущее значение внутреннего квадрупольного момента Q_o= 6,9(14) барн находится в хорошем согласии со значениями внутренных квадрупольных моментов ¹⁵⁸Tb и ¹⁶⁰Tb: 6,5(12) /¹²/ и 7,2(12) /¹²/, соответственно.

Для изотопов ¹⁶⁰ть и ¹⁵⁶ть в гадолинии должно выполняться соотношение: $p^{160}/p^{156} = (160)/(1^{156})$. Подставляя экспериментальные данные $(p^{156} = 1,02(38) \cdot 10^{-18}$ эрг - настоящая работа, $p^{160} = 1,38(21) \cdot 10^{-18}$ эрг - работа /13/ (160=3,0(5) барн - работа /12/), получаем: $\frac{p^{160}}{p^{156}} = 1,35(54)$ $\frac{(156)}{(1^{156} = 1,4(5))} = 1,03(39)$ Видно, что указанное соотношение лучше выполняется, когда для (¹⁵⁶ берется значение, полученное в настоящей работе.

Величина eV_{zz} / H_{kf} для изотопов Ть в гадолинии определяется, в основном, электронной структурой Ть и не должна сильно зависеть ни от концентрации тербия в гадолинии, ни от того, для какого конкретного изотопа Ть она рассчитана. Это, в общем, подтверждается данными табл.2 (результати / 16/ мы считаем ошибочными). Если же взять в качестве исходных данных значения M_{r}^{156} и (156 из работы / 1/, то для eV_{zz} / H_{kf} получим 0,73(40) я.м./барн.

2.4. Мультипольности гамма-переходов

Коэффициенты угловой корреляции $A_{\mathbf{k}}$, входящие в выражение (2.6), в случае смещанных переходов имеют следущий вид /18/: $A_{\kappa} = [F_{\kappa}(L,L,I_{f},I_{i}) + 2\delta F_{\kappa}(L,L',I_{f},I_{i}) + \delta^{2} F_{\kappa}(L',L',I_{f},I_{i})] / (1 + \delta^{2})$ ($F_{\kappa}(L,L,I_{i},I_{f}) -$ это F-коэффициенты угловой корреляции, они табулированы, например, в /19/; δ – отношение приведенных матричных элементов: $\leq I_{f} \parallel L' \parallel I_{i} > \$).

Если измерения выполняются под углами 0° и 90° по отношению к направлению внешнего магнитного поля, то можно однозначно определить величины $\mathcal{R}(\top) = (1-3\varepsilon) \mathcal{B}_2 \mathcal{A}_2 \mathcal{U}_2$ и $\mathcal{S}(\top) = (1-10\varepsilon) \mathcal{B}_4 \mathcal{A}_4 \mathcal{U}_4$:

$$R(T) = -\frac{\&A(90^{\circ}) + \ImA(0^{\circ}) [\Omega_{4}(90^{\circ})/\Omega_{4}(0^{\circ})]}{4 \Omega_{2}(90^{\circ}) + \Im\Omega_{4}(0^{\circ}) [\Omega_{4}(90^{\circ})/\Omega_{4}(0^{\circ})]}$$
(2.8)

$$S(T) = -\frac{A(0^{\circ}) + \Omega_{2}(0^{\circ})R(T)}{\Omega_{4}(0^{\circ})}$$

Здесь $A(0^{\circ})=I-W^{e^{\epsilon}}(0^{\circ})$ в $A(90^{\circ})=W^{e^{\epsilon}}(90^{\circ})-I$. Делее, если известны величны $B_2^{e^{\epsilon}}=(I-3\varepsilon)B_2$, $B_4^{e^{\epsilon}}=(I-I0\varepsilon)B_4$ и U_{κ} , можно определить коэффициенты угловой корреляции A_{κ} и, следовательно, получить информацию о мультипольности перехода.

В принципе анализ мультипольностей можно проводить по экспериментальным данным $W^{ex}(\theta, \top)$, полученным при измерениях только под одним из углов. Именно так мы поступали для переходов 381 и 748 кэВ. Но выражения (2.8) являются более предпочтительными при интерЗначения магнитных в квадрупольных моментов некоторых изотопов Ть. Константы сверхтонкого взаимодействия и величины е V₂₂ / H_{hf} для этих изотопов в гадоливеличины е∨_г ниевой матрице. Таблица 2

Изотоп	Кон- пентр. Ть,	M , A.)	. м	U, 0	apu	U, x IO ¹ Bpr	œ `	F x IO ^{I6} apr	m î	е V ₂₂ / Н _h f . я.м./барн
I56 _{Tb}	- ∠,0,I	I,45(I8) I,9(3)	/I/ наст. работа	I,4(5) 2,9(IO)	/I/ наст. работа	- 9,70(I26)	наст. работа	- I,02(38)	наст. работа	
159 _{Tb}	00I ~	I,994(4)	/15/	I,32(I0)	/15/	20,67I 20,327(20)	/8/ /7/	2,233 2,326(I3)	/8/ /7/	0,4 4 0,46(3)
160 _{TL}	<pre>< 0,I < 0,I < 0,I < 0,I</pre>	I,685(5)	/12/	3,0(5)	/12/	9,6 8,60(87) 8,81(62)	/16/ /13/ /17/	2,0 I,38(2I) 0,79(I4)	/16/ /13/ /17/	0,78 0,60(15) 0,34(9)

Ildemergencie: $\frac{e \sqrt{i}}{H_{hf}} = \frac{4}{3} (2I - 1) \frac{p}{a_o} \frac{\mu}{a}$

^{[56} G.d.
н
щ
гамма-переходов
Мультапольноста
Таблипа 3

Eyp ,			Е	T T	IIa	pamerp cmem	авания в	
КаВ	'n	U4	кэ́В		Настоящая	работа	121	
	1	-		-	E2/MI	M2/EI	E2/MI	M2/EI
н	2	3	4	5	6	7	8	6
	0		2014,2 1815.0	3- 2+ 3- 2+ 3- 4+		-0,024(54) 0.002(104)		-0,013(7)
c 'm12	ne, 'n	191 . U	949,I 747,9	$3^{-}_{3} - 2^{+}_{5}$ $3^{-}_{3} - 4^{+}_{5}$		-0,027(3I) -0,56(24)		-0,025(12)
2044,9	0,905	0,681	534,3 422,3	$4^{-} - 4_{4}^{+}$ $4^{-} - 5_{4}^{+}$		0,006(2) ^{a)} -0,024(I9)		0,06(2) -0,009(4)
1934,4	0,750	0,167	I845,4 I646,I 780,I 578.9	3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4		-0,008(25) -0,015(35) 0,048(21)		-0,030(5) 0,012(4) -0,024(8)
I622,5	0,850(4)	0,543(5)	I334,5 I037,9	54 - 49 54 - 69	3,40(+45,-57)		-3,8(2) -6,7(+30,-210)	
I5I0, 6	0,776(7)	0,363(I8)	I222,4 262,5	$4^{+}_{4} - 4^{+}_{6}$ $4^{+}_{4} - 3^{+}_{6}$	-1,70(+16,-29) 7,65(55)		-2,07(I3) I,2(7)	
I355,4	0,643(I8)	0,153(53)	I067,2	$4^+_f - 4^+_q$			-4,0(+9,-I6)	

12

	6		-0,08(3)						
авнажиототп	8			-II,8(7) -II,7(+27,-53)	-6,5(+26,-79)	M3/E2	0,014(I2) 0,068(6)	0,014(12)	
	7	-0,I56(+II,-8)	-0,061(37)						
	6			-8,6(+23,-48) -19,3(190)		M3/E2	0,002(26) 0,095(85)	0,I6(+24,-I9) -0,029(23)	-0,12(25)
	5	$2_{oct}^{-} - 2_{g}^{+}$	$3_{\infty t}^{-} - 2_{\eta}^{+}$	$3_f^+ - 2_q^+$ $3_f^+ - 4_q^+$	$z_{f}^{t} - 2_{q}^{t}$		4+ 4+ 4+ 4+ 4+ 4+ 4+ 4+ 4+ 4+ 4+	$4^{+}_{4} - 2^{+}_{5}$ $4^{+}_{4} - 2^{+}_{5}$	$4_{f}^{+}-2_{f}^{+}$
	4	I230,7	I276,I	II59,0 959,7	I065,I		I42I,6 925,7	38I,I 356,4	I266,6
	3			0,0I8(7)	0,I6I(7)		0,363(18)		0,I53(53)
	2	0,754(62)	0,690(34)	0,535(17)	0,638(6)		0,776(7)		0,643(I8)
	-	I3I9,7	I276,I	I248,0	II54,2		1510,6		I355 ,4

0,06(2) было взято в качестве "опорного" при вычислении козфрициента В₂ 5 Значение

претации данных опыта, т.к. в этом случае уменьшается вклад систематических ошибок величин $M^{ex}(f,T)$.

Для определения B_2^{ex} в качестве "опорного" взят переход с энергией 534 кэВ. Считая, что его мультипольность EI+M2 с $\delta = 0,06(2)/2/$ и что уровень 2045 кэВ (4⁻⁻) заселяется разрешенным бета-переходом, мн получили $B_2^{ex}=0,914(16)$.

Коэффициенты ()_к, учитывающие геометрию опыта, вычислялись аналогично /20/. Интенсивности [и ß -переходов, необходимые для вычислений коэффициентов U_к, взяты из работ /21,22/.

Анализ экспериментальных данных проводился последовательно, так, чтобы в расчетах использовались значения б, определенные уже в настоящей работе. Полученные результаты сведены в табл.3. Видно, в общем, хорошее согласие с результатами работы ^{/2/}. Для ряда переходов получены новые данные.

Автори $^{/2/}$ обратили внимание на наличие МЗ-примесей в переходах $4^+_4 - 2^+_9, 4^+_4 - 6^+_9$ и $4^+_4 - 2^+_{\Gamma}$, разряжащих двухквазичастичный уровень I5I0,6 кэВ. Наши данные подтверждают наличие МЗ-компонентов в этих переходах. Кроме того, не исключена МЗ-примесь и в переходе 380, I кэВ ($4^+_4 - 2^+_{\beta}$). В принципе, в этом нет ничего удивительного, ибо переходы типа Е2 из этого состояния на уровни ротационных полос с $\kappa^{\pi} = 0^+$ запрещены правилами отбора по квентовому числу К.

Нали данные также подтверждают тот факт, что разрядка уровней 2103,5 кэВ (3⁻) и 1934,4 кэВ (3⁻) происходит практически чистным ЕІпереходами (М2-примеси не превышают 0,4%).

В работе $^{/23/}$ в рамках микроскопической модели Кумара, учитываищей спаривание и квадрупольное взаимодействие, рассчитаны значения параметров δ для переходов с уровней бета- и гамма-вибрационных полос для конкретного случая 156 Gd. В табл.4 проведено сравнение экспериментальных значений δ^{ev} с расчетными для переходов с уровней гамма-вибрационной полосы. Видно, что абсолютные значения δ^{t} на-

14

Taomua 4	Сравнение расчетных значений параметров смешивания
	с экспериментальными для переходов с уровней гамма-
	вибрационной полосы.

$I_i^{\pi} - I_f^{\pi}$	^Е г, кэВ	δ ^t , /23/	δ ^{ex}
$2^{+}_{r} - 2^{+}_{q}$	1065,2	-4I,O	-6,5(+26, -79) ^{a)}
$3^{+}_{f} - 2^{+}_{g}$	II59,0	5	-8,58(+212, -415)
3 ⁺ , - 4 ⁺	959,8	-37,3	-19,3(190)
$4^+_{\int} - 4^+_{g}$	1067,2	13,7	-4,0(+9, -I6) ^{a)}

a) Uluer I. et al. /2/.

Таблица 5	Значения констант сверхтонкого взаимодействия
	и Р для ¹³⁰ ТЬ в Gd, полученные разными мето-
	дами анализа температурной зависимости
	гамма-лучей с энергией 534 кэВ.

Q ₀ ,я.м. х МГс	P x 10 ¹⁹ , spr	Метод	Примечание
2,63 <u>+</u> 0,7I	24,2 <u>+</u> 4,7	A	$\theta = 0^{\circ}, \varepsilon = 0, \delta = 0,06$
2,06 <u>+</u> 0,43	12,0 <u>+</u> 5,2	Б	∯ = 0 ⁰
I,92 <u>+</u> 0,34	I0,0 <u>+</u> 3,7	Б	∮ =0 ⁰ , "поправленные" температуры а)
2,06 <u>+</u> 0,36	I0,9 <u>+</u> 4,6	Б	∮ =90 ⁰ , "поправленные температуры а)
2,06 <u>+</u> 0,32	9,9 <u>+</u> 3,3	В	θ = 0 ⁰
I,92 <u>+</u> 0,25	I0,4 <u>+</u> 3,8	г	$\theta = 0^{\circ}$, 90° , $T_{r} = 14.6 \text{ mK}$

а) "Поправленные" температуры - это расчетные значения температур, полученные методом Г.

много выше $|\delta^{e_{X}}|$. Кроме того, для перехода 4⁺ - 4⁺ они имеют разние знаки.

В заключение авторы выражают благодарность В.В.Тришкину (ИЯИ АН УССР) за помощь при приготовлении радиоактивного источника ^{I56}Ть и В.А.Деркге, И.Гавору, Я.Коничску за помощь при проведении измерений. Приложение

Перепишем вырежение (2.6) в виде:

Искомые параметры a_o и Р определяются методом наименьших квадратов путем согласования выражения (А.I) с экспериментальными данными. При этом возможны различные подходы к решению этой задачи.

<u>А</u>. Фиксируются коэффициенты к₂, к₄ и угол \emptyset . Предполагается, что температура измеряется точно. Тогда параметры \emptyset_{\circ} и Р находят путем минимизации функционала:

$$\chi^{2}(a_{o}, P) = \sum_{i}^{N} \left[\frac{W^{ex}(T_{i}) - W(a_{o}, P, T_{i})}{\Delta W^{ex}(T_{i})} \right]^{2}$$
(A.2)

(N - число экспериментальных точек).

<u>Б</u>. Параметри Q_o , P, κ_2 и κ_4 определяются путем минимизации функционала: $\chi^2(o, P, \kappa, \kappa) = \sum_{i=1}^{N} \left[W^{ex}(T_i) - W(Q_o, P, \kappa, \kappa, T_i) \right]^2$

$$\chi^{2}(\mathfrak{a}_{o}, \mathsf{P}, \mathsf{K}_{z}, \mathsf{K}_{4}) = \sum_{1} \left[\frac{\mathsf{W}(1i) - \mathsf{W}(\mathfrak{a}_{o}, \mathsf{P}, \mathsf{K}_{z}, \mathsf{K}_{4}, \mathsf{I}_{i})}{\Delta \mathsf{N}^{\mathfrak{a}_{N}}(\mathsf{T}_{i})} \right].$$
(A.3)
B. Учитываются ошибки температур $\Delta \mathsf{T}_{i}$:

 $\chi^{2}\left(\mathbf{a}_{o},\mathbf{p},\mathbf{k}_{z},\mathbf{k}_{4},\mathsf{T}_{i},\mathsf{N}_{i},\lambda_{i}\right) = \sum_{i}^{N} \left[\left(\frac{\mathsf{T}_{i}^{ex}-\mathsf{T}_{i}}{\Delta \mathsf{T}_{i}^{ex}}\right)^{2} + \left(\frac{\mathsf{N}_{i}^{ex}-\mathsf{N}_{i}}{\Delta \mathsf{N}_{i}^{ex}}\right)^{2} + \left(\frac{\mathsf{N}_{i}^{ex}-\mathsf{N}_{i}}{\Delta \mathsf{N}_{i}^{ex}}\right)^{2} + \left(\frac{\mathsf{A}_{i}}{\Delta \mathsf{N}_{i}^{ex}}\right)^{2}\right]$

+ 2 $\lambda_i \in (\mathcal{Q}_0, \mathcal{P}, \kappa_1, \kappa_1, \mathcal{W}_i)$] Здесь λ_i – множители Лагранжа, а функции \in представляют N связывающих условий, накладиваемых на параметры подгонки:

$$F\left(a_{0}, P, K_{2}, K_{4}, T_{i}, W_{i}\right) \equiv W_{i} - W\left(a_{0}, P, K_{2}, K_{4}, T_{i}\right) = 0.$$
(A.5)

Определяются параметры Q, P, к2 и к4.

<u>Г</u>. Если температурные зависимости углового распределения $\int -u_{3-}$ лучения измеряются для двух различных углов \oint , то по экспериментальным данным можно однозначно определять величины $R^{ex}(T_i)$ и $S^{ex}(T_i)$ (см. 2.8). Отношения типа $R^{ex}(T_i) / R^{ex}(T_r)$ и $S^{ex}(T_i) / S^{ex}(T_r)$ не зависят от величин ε , A_2 , U_2 , A_4 , U_4 (T_r – некоторое фиксированное значение температурн). В этом случае параметри a_o и Р определяются минимизацией функционала: $\int_{1}^{2} (a_o, p, \chi_i, \chi_i, \lambda_{i_o}^e) = \sum_{i_f}^{N} \left[\left(\frac{T_i^{ex} - T_i}{\Delta T_i^{ex}} \right)^2 + \left(\frac{\chi_i^{ex} - \chi_i}{\Delta \chi_i^{ex}} \right)^2 + \left(A.6 \right) 2 \left(\frac{\chi_i^{ex} - \chi_i}{\Delta \chi_i^{ex}} \right) + 2 \lambda_i^e F(a_o, p, T_i, \chi_i) + 2 \lambda_i^e G(a_o, p, T_i, \chi_i) \right].$ Здесь $\chi_i^{ex} = R_i^{ex} / R^{ex}(T_r)$, $Y_i^{ex} = S_i^{ex} / S^{ex}(T_r)$, а услония связи имеют вид: $F(a_o, p, T_i, \chi_i) = \chi_i^{ex} - \frac{B_2(a_o, p, T_i)}{B_2(a_o, p, T_r)} = 0$; $G(a_o, p, T_i, \chi_i) = Y_i^{ex} - \frac{B_4(a_o, p, T_i)}{B_1(a_o, p, T_i)} = 0$.

Коротко остановимся на недостатках и преимуществах конкретных методов. Недостатком метода А является то, что значения параметров Ω_o и Р могут иметь систематическую ошибку, которая обусловлена тем, что в большинстве случаев ми не знаем точно коэффициентов к₂ и к₄. Более правильным было би осуществлять подгонку и этих параметров, как это делается в Б и В. Еце одним недостатком этого метода является то, что не учитиваются ошибки значений температур, в то время как эти ошибки сравними с ΔW^{ex} и, более того, сильно увеличиваются с ростом температур. Этот недостаток присущ также и методу Б. Результати вичислений в случае Г могут иметь систематическую ошибку, обусловленную неточным значением T_r . Выбирая T_r в области наибольшей чувствительности термометра, можно уменьшить вклад этой ошибки.

Сравнение результатов, полученных разными методами, проводится в табл.5.

Литература.

- 1. Lovejoy C.A. and Shirley D.A., Nucl. Phys. 30(1962)452.
- 2. Uluer I. et al., J. Phys. G: Nucl. Phys. 1(1975)476.
- 3. Do Kim Tiung et al., J. Radional. Chem. 30(1976)353.
- 4. Pavlov V.N. et al., Cryogenics, 18(1978)115.
- 5. Shunk F.A., in Constitution of Binary Alloyee. Second supplement, McGraw Hill, New York, 1969, p. 383.
- 6. Тейлор К., Дарби М., Физика редкоземельных соединений. Перев. с англ. И., "МИР", 1974.
- Kobayashi S., Seno N., Itoh J., J. Phys. Soc. Japan, 23(1967)474.
- Bleany B., in Magnetic Properties of Rare Earth Metals, ed. by Elliot R.J. Plenum Press New York, 1972, pp. 383-420.
- Hamilton W.D., in Electromagnetic Interaction in Nuclear Physics, ed. by Hamilton W.D., North-Holland, Amsterdam, 1975.
- 10. Cameron J.A. et al., Lew Temperature Physics, Part B, Plenum Press, New York, 1965, p. 1033.
- 11. Berglund P.M. et al., J. Low Temp. Phys. 6(1972)357.
- 12. Easley W.S., Barcley J.A., Shirley D.A., Phys. Rev. 170(1968)1083.
- 13. Ерзинкян А.Л. и др., ЖЭТФ, 72(1977)1902
- 14. Haroutunian R., Meyer M. and Coussement R., Phys. Rev. C17(1073)292.
- Авотина М.П. и Золотовин А.В., Моменты основных и возбуяденных состояний ядер. ЛИЯФ АН СССР, 1976.
- 16. Fox R.A. and Hamilton W.D. in Int. Conf. Hyperfine Inter., Uppsala, 1974, p. 176.

- 17. Громова И.И. и др., ОНЯИ, Р6 11871, 1978.
- 18. Steffen R.M. and Alder K., in Electromagnetic Interaction in Nuclear Physics, ed. by Homilton W.D., North-Holland, Amsterdam, 1975.
- 19. Krane K.S., LA-4677, Los Alamos, 1971.
- 20. Krane K.S., Nucl. Instr. Meth. 98(1972)205.
- 21. Fujioka M., Nucl. Phys. A153(1970)337.
- 22. McMillan D.J., Homilton J.H. and Finajian J.J., Phys. Rev. C4(1971)542.
- 23. Gupta J.B., Kumar K. and Hamilton J.H., Phys. Rev. C16(1977)427.

Рукопись поступила в издательский отдел 30 октября 1978 года.