ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

В.Андрейчев, Ж.Т.Желев, М.Еникова, К.М.Муминов, Т.М.Муминов. У.С.Салихбаев

2 -ЗАПРЕЩЕННЫЕ МІ-ПЕРЕХОДЫ В 131 Ва И 133 Ва

A-656

367/2-79

29/1-79

P6 - 11900

P6 - 11900

В.Андрейчев, Ж.Т.Желев, М.Еникова, К.М.Муминов, Т.М.Муминов, У.С.Салихбаев²

L -ЗАПРЕЩЕННЫЕ М1-ПЕРЕХОДЫ В ¹³¹Ва И ¹³³Ва

Направлено в ЯФ

¹Институт ядерных исследований БАН, София. ²Самаркандский государственный университет. Интенсивные экспериментальные и теоретические исследования состояния бария с А≈130 в последнее время привели к интересным результатам, которые, однако, не позволяют сделать однозначных выводов о природе этих состояний / 1-4/.

Известно, что М1-переходы с $\Delta \ell = 2$ в простой оболочечной модели запрещены / ℓ - запрет/. Ответственными за появление в выражении для магнитного дипольного оператора дополнительного члена, разрешающего такие переходы, считаются /5/ поляризация остова и пион-обменные токи в ядре. Дальнейшее исследование M1-переходов с $\Delta \ell = 2$ в конкретных ядрах способствует как определению структуры этих ядер, так и изучению важных эффектов, связанных со снятием ℓ -запрета.

В настоящей работе на основе измерения времен жизни уровней с энергией 108,2 кэВ в 131 Ва и 12,3 кэВ в 133 Ва проведен анализ вероятностей ℓ -запрещенных переходов типа $^{2d}_{3/2} \rightarrow ^{3s}_{1/2}$, разряжающих эти состояния.

РАДИОАКТИВНЫЕ ИСТОЧНИКИ И ЭКСПЕРИМЕНТАЛЬНАЯ АППАРАТУРА

Радиоактивные изотопы La получались при облучении гадолиниевой мишени протонами с энергией 680 *МэВ* на синхроциклотроне ОИЯИ. Из облученной мишени радиохимическими методами^{/6/} выделялась фракция изотопов La, которая затем разделялась по массам на электромагнитном масс-сепараторе ^{/7/}.

Рис. 1. Временные распределения е-у совпадений, измеренные при распаде ¹³¹La и ¹³³La.

Измерения проводились на установках^{/8/} е-γ задержанных совпадений, созданных на базе магнитнолинзового β-спектрометра, сцинтилляционного γспектрометра /сцинтиллятор NE104 Ø 25х25 мм, фотоумножитель типа XP1O2O/ и двух сцинтилляционных спектрометров со сцинтилляторами NE104 Ø 25х25 мм и NE111 Ø 10х0,2 мм.

Временные спектры обрабатывались по программам^{/9/}LIFTIM и МОМЕNT на ЭВМ CDC-6500.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Ŋ

J

На *рис. 1* приведены временные распределения е-у совпадений, полученные при распаде ¹³¹La и ¹³³La.

На вставке верхнего рисунка приведен спектр электронов внутренней конверсин 131 La, полученный при помощи магнитно-линзового β -спектрометра. Анализ временной кривой совпадений γ -лучей с электронами К -оболочки энергии 108,2 кэВ позволил приписать периоду полураспада уровня 108,2 кэВ 131 Ba значение Т $_{1/2}$ = 0,35±0,05 нс. В качестве реперного источника использовался 60 Co.

На установке с двумя сцинтилляционными спектрометрами при распаде 133 La проводились измерения совпадений у-лучей с L, M, N электронами перехода 12,3 кэВ. Для регистрации низкоэнергетических излучений использовался тонкий пластический сцинтиллятор NE111 ϕ 10х0,2 мм. Полученное временное распределение позволило приписать периоду полураспада уровня 12,3 кэВ 133 Ва значение $T_{1/2} = 6,8\pm0,4$ нс. Эта величина не противоречит значению, полученному в работе / 10/: $T_{1/2} = 8,1+2,0$ нс.

В таблице приведены экспериментальные вероятности γ -переходов, связывающих первые возбужденные и основные состояния в рассматриваемых ядрах Ва, а также одночастичные факторы торможения по Мошковскому, вычисленные с учетом статистического множителя. По характеру торможения М1-компонентов эти переходы могут быть отнесены к ℓ -запрещенным переходам типа $(2d_{3/2} \rightarrow 3s_{1/2})$.

На рис. 2 значения одночастичных факторов торможения для переходов 108,2 и 12,3 кэВ сравниваются с систематикой подобных переходов в других нечетно-

Таблица

Вероятности		и у-пе	γ -переходов $3/2^+ \rightarrow 1/2^+$					в ^{131,133} Ва	
Ядро	Е _{ур} , кэВ	Т _{1/2} , нс	Е _у , кэВ	δ2	B(M1), μ _N 2	B(E2) e2δ2	F _M (M1)	F _M (E2)	
¹³¹ 56Ba ₇₅	108,2	0,35(5)	108,2	2-2/11	4,6-2	1,1-1	36	27	
¹³³ 56 ^{Ba} 77	12,3	6,8(4)	12,3	*	4,4-2	-	26	-	

* Значение δ^2 неизвестно. Запись типа 4,6 - 2 означает 4.6x10⁻².

Рис. 2. Зависимость одночастичных факторов запрета ℓ -запрещенных М1-переходов типа $2d_{3/2} \rightarrow 3s_{1/2}$ от N и Z. Результаты работ $^{3, 12}$ и настоящих исследований.

нейтронных ядрах $^{/12/}$. Как видно из этого рисунка, для переходов этого типа наблюдается тенденция увеличения факторов торможения по мере приближения числа иуклонов в ядре к замкнутым нуклонным оболочкам с Z = 50 и N = 82.

ЛИТЕРАТУРА

- 1. Gizon J., Gizon A., Horen D.J. Nucl. Phys., 1975, A252, p.509.
- 2. Dobaczewski J., Rohozinski S.G., Srebny J. Z. Phys., 1977, A282, p.203.
- 3. Palmer D.C. J.Phys., 1976, 62, p.421.
- 4. Gizon J., Gizon A., Meyer-ter-Vehn J. Nucl.Phys., 1977, A277, p.464.
- 5. Arima A., Huang-Lin L.J. Phys.Lett., 1972, 41B, p.429.
- 6. Молнар Ф., Халкин В., Херрманн Э. ЭЧАЯ, 1973, 3, с.1077.
- 7. Афанасьев В.П. и др. ОИЯИ, 13-4763, Дубна, 1969.
- 8. Аликов Б.А. и др. ОИЯИ, Р13-10911, Дубна, 1977.
- 9. Аликов Б.А. и др. ЭЧАЯ, 1976, т.7, с.419.
- 10. Thun J.E. e.a. Nucl. Phys., 1964, 67, p.625.
- 11. Auble R.L., Hiddleston H.R., Browne C.P. Nucl. Data Sheets, 1976, 17, p.573.
- 12. Марупов Н.З., Морозов В.А., Муминов Т.М. ОИЯИ, P6-9005, Дубна, 1975.

Рукопись поступила в издательский отдел 19 сентября 1978 года.

6