ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

P6 - 11687

4704/2-78 Б.А.Аликов, В.Андрейчев, Ж.Т.Желев, Т.А.Исламов, В.Г.Калинников, А.Караходжаев, Г.А.Кононенко, В.В.Кузнецов, Г.И.Лизурей, Н.З.Марупов, Т.М.Муминов, У.С.Салихбаев, В.И.Стегайлов, Р.Р.Усманов, Е.Г.Цой

О РАСПАДЕ **157 157 Dy**

A-50

11

P6 - 11687

- Б.А.Аликов,¹ В.Андрейчев,² Ж.Т.Желев,² Т.А.Исламов,³ В.Г.Калинников, А.Караходжаев,³ Г.А.Кононенко, В.В.Кузнецов, Г.И.Лизурей, Н.З.Марупов,¹ Т.М.Муминов,¹ У.С.Салихбаев,¹ В.И.Стеч, Р.Р.Усманов,¹ Е.Г.Цой⁴
- 0 РАСПАДЕ 157 157 Dy

Направлено в "Nukleonika"

1 Самаркандский государственный университет.

² Институт ядерных исследований и ядерной энергетики БАН, София.

³ Ташкентский государственный университет.

⁴ Институт ядерной физики АН УзССР, Ташкент.

Аликов Б.А. и др. О распаде ¹⁵⁷Но + ¹⁵⁷Dy При распаде ¹⁵⁷Но + ¹⁵⁷Dy исследовались спектры электронов внутренней конверсии, е - у -совпадений и измерены времена жизни уровней ¹⁵⁷Dy с энергиями 61,1; 147,7; 188,0 и 341,1 кэВ. Результаты этих исследований позволили установить возбуждение при распаде ¹⁵⁷Но изомерных состояний 161,9 (1^π = 9/2⁺) и 199,2 кэВ (1^π = 11/2⁻), проанализировать вероятности электромагнитных переходов в ¹⁵⁷Dy. Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1978

С 1978 Объединенный институт ядерных исследований Дубна

I. ВВЕДЕНИЕ

Изучение структуры нечетных ядер, расположенных в начале области деформированных ядер редкоземельных элементов (N≈90), позволяет получить сведения, необходимые для понимания изменения свойств ядер при переходе от сильнодеформированных нуклидов к нуклидам со слабой деформацией. Уменьшение квадрупольной деформации ядра приводит к усилению смешивания одноквазичастичных состояний и изменяет энергетику ротационных полос. Это особенно заметно проявляется в полосе положительной четности, которая наблюдается в ряде деформированных нечетно-нейтронных ядер. В ядрах с N = 89,91 / 151 Sm, 153 Gd, 155 Dy, 157 Dy, ¹⁵⁹Er, ¹⁶¹Er/ основным состоянием этой полосы становится уровень с $I^{\pi} = 9/2$ причем члены с меньшими значениями спинов /1/2 ÷7/2/ лежат выше и более слабо заселяются. Аномалии наблюдаются и в менее возмущенных полосах отрицательной четности. Попытки одновременного описания в рамках модели с учетом взаимодействия Кориолиса как энергетики полос положительной и отрицательной четности, так и вероятностей электромагнитных переходов в ядрах этой области, в частности, для ядер с N = 89, наталкиваются на определенные трудности.

Возбужденные состояния ¹⁵⁷ Dy исследовались при β -распаде ¹⁵⁷ Ho / T_{1/2} = 12,6 мин/^{1-5/} и в ядерных реакциях ^{6-10/}.

Времена жизни уровней 161 $\kappa_3 B / I^{\pi} = 9/2^+$, $T_{1/2} = 1,3\pm 0,2 \ \text{мкс/}$ н 188 $\kappa_3 B / I^{\pi} = 5/2^+$, $T_{1/2} = 1,00\pm \pm 0,15 \ \text{нс/}$ измерялись в реакции $(a,2n)^{/11/}$, а уровня 199 $\kappa_3 B / I^{\pi} = 11/2^-$, $T_{1/2} = 19,2\pm 0,5 \ \text{мc/}$ - в реакциях (a,2n), (a,3n) и $(p,3n)^{/8/}$.

В настоящей работе установлено возбуждение в ядре 157 Dy при распаде 157 Но изомерных состояний с $I^{\pi} = 9/2^{+}$ и $11/2^{-}$ и измерены времена жизни уровней 61, 147, 188 и 341 кэВ.

2. МЕТОДИКА ЭКСПЕРИМЕНТА

2.1. Радиоактивные источники

Исследования времен жизни и e_{γ} -совпадений проводились с радиоактивными источниками изобары с A = = 157, полученными в реакции глубокого расщепления при облучении танталовых мишеней на выведенном пучке протонов синхроциклотрона ОИЯИ / E_p = 660 M3B, I_p = = 0,1 мкA/. Облученная мишень /танталовая фольга толщиной 50 мкм, весом ~0,5 г/ при помощи пневмопочты транспортировалась к электромагнитному масс-сепаратору¹² и помещалась в трубчатый ионный источник с поверхностной ионизацией. При нагревании мишени в ионном источнике ядра - продукты ядерных реакций испарялись из мишени, ионизировались и разделялись в сепараторе по массам ¹³. На коллекторе сепаратора ионы внедрялись в алюминиевые фольги толщиной 5-10 мкм.

Источники для магнитных β -спектрографов приготовлялись методом электролитического осаждения фракции изотопов Ег и Но, выделенных радиохимическим методом^{/14/} из облученной мишени на платиновую нить ϕ O,1 мм. Причем время с конца облучения до начала измерения составляло ~ 50 мин; на каждом источнике измерялись три последовательные серии с временами экспозиции 40 мин, 2 чи 8 ч соответственно.

2.2. Annapamypa

Спектры конверсионных электронов исследовались при помощи безжелезного β -спектрометра с тороидальным магнитным полем - CT2 $^{/15/}/\Delta H_{\rho}/H_{\rho} = 1,1\%$, T = = 20%/ и магнитных β -спектрографов с однородным полем / $\Delta H_{\rho}/H_{\rho} = 0,03 \div 0,07\%/^{/16/}$.

Исследования $e_{-\gamma}$ -совпадений проводились на установке^{/17/}, собранной на базе β -спектрометра СТ2 и γ -спектрометра с Ge(Li) -детектором / V= 40 см³, $\Delta E_{\gamma} = 3,5 \ \kappa \beta B$ на $E_{\gamma} = 1,330 \ M\beta B/$. Временное разрешение установки составляло $2\tau_0 = 30$ нс.

Времена жизни возбужденных состояний измерялись на многоканальном временном анализаторе^{/18/} собранном на базе магнитно-линзового β -спектрометра и сцинтилляционного у-спектрометра /сцинтиллятор -NE104 ϕ 25x25 мм, фотоумножитель - XP1O2O/. Временное разрешение установки составляло $2\tau_0 < 1$ нс.

Временные спектры обрабатывались на ЭВМ CDC 6500 по программам^{/19/}"LIFTIM" и "MOMENT".

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

При анализе экспериментальных результатов мы исходили из схемы распада ¹⁵⁷ Но, предложенной в работе^{/4/}.

3.1. Спектры е-у-совпадений

В спектре конверсионных электронов 157 Ег + 157 Но['], измеренном на β - спектрометре CT2 /вставка на *рис. 1*/, были обнаружены конверсионные электроны с энергиями Е_е = 17,4 и 18,2 *кэВ*, которые идентифицированы нами как L_{II} и L_{III} электроны Е2 - перехода с энергией 26 *кэВ*.

На рис. 1 приведен спектр совпадений L_{III} электронов перехода 26 кэВ с у-лучами. Анализ этого спектра позволяет установить, что переход 26 кэВ происходит в ядре ¹⁵⁷ Dy. Фрагмент схемы распада ¹⁵⁷ Ho.¹⁵⁷ Dy, поясняющий интерпретацию полученных экспериментальных данных, приведен на рис. 2.

Рис. 1. Спектр совпадений у-лучей ¹⁵⁷Но с электронами Ц₁₁26 кэВ.

Проявление в спектре совпадений переходов 153 и 320 кэВ, а. с другой стороны, отсутствие совпадений L_{III} 26 кэВ с переходами, разряжающими уровни 147 и 61 кэВ, позволяют разместить переход 26 кэВ между уровнем 188 кэВ / $I^{\pi} = 3/2^+$, $5/2^+/4/$ и изомерным состоянием 162 кэВ с $I^{\pi} = 9/2^+$ и $T_{1/2} = 1,3$ мкс, наблюдавшимся ранее в ядерных реакциях /11/.В соответствии с этим уровню 188 кэВ необходимо однозначно приписать $I^{\pi} = 5/2^+$.

Рис. 2. Фрагмент схемы распада 157 Ho $_{2}^{157}$ Dy.

Проявление в спектре совпадений переходов, заселяющих уровни 211 кэ $B / \gamma 130$, $\gamma 209$, $\gamma 297$ и $\gamma 685$ кэB /и 257 кэ $B / \gamma 162$, $\gamma 269$ и $\gamma 430$ / свидетельствует о том, что эти состояния связаны прямыми /или каскадными для уровня 257 кэB/ переходами с уровнем 188 кэB. Полная интенсивность перехода 26 кэВ оценена из сравнения интенсивностей его L_{II} и L_{III} электронов с интенсивностью электронов К 86 кэВ как /14±2/% от $I_{IIOЛH}$, у86 кэВ.

3.2. Спектры ЭВК

В спектре конверсионных электронов, измеренном на магнитном β -спектрографе, наблюдались электроны γ -переходов 14,2 кэВ (Е1) , 37,4 кэВ (Е1) и 51,5 кэВ (Е2) /*табл. 1*/. Эти переходы в схеме уровней ¹⁵⁷ Dy, предложенной на основе изучения ядерных реакций ¹⁵⁹ Tb(p,3n)¹⁵⁷ Dy,¹⁵⁵ Gd(a,2n) ¹⁵⁷ Dy и ¹⁵⁶ Gd(a,3n)¹⁵⁷ Dy ^{/2/}, разряжают изомерные состояния 199,2 кэВ /I^π = 11/2^{-/} и 161,9 кэВ / I^π = 9/2^{+/}. Поэтому можно заключить, что при распаде ¹⁵⁷ Ho. ¹⁵⁷ Dy возбуждаются указанные изомерные состояния 11/2⁻и 9/2⁺.

В спектре ЭВК обнаружены также электроны с $E_e = 14,27$ и $E_e = 21,27$ кэВ, которые интерпретированы нами как L_I и M_I электроны у -перехода 23,3 кэВ.

Таблица 1

Энергии и относительные интенсивности ЭВК у - переходов при распаде ¹⁵⁷ Но→ ¹⁵⁷ Dy

Еу(4Еу) кэВ	I,	L,	Î.,	I.	Ĩ _M	$E_{yp}^{i} \longrightarrow E_{yp}^{\dagger}$	Вивод о мультипольности
14,20(5)		15	10			161,9 - 147,7	EI
23,32(5		9			€4	211,2 — 188,1	-
26,09(4)			5	6		188,1 - 161,9	(E2)
37,38(5)		7	4	5		I99,I — I6I,9	EI
51,54(5)		<2	10	12		199,1 - 147,7	E2
61,14(3)	200	38	II	10		6I,I — 0	MI+(4,6 <u>+</u> 0,5)% E2
86,57(3)	84	10	I,3			147,7 — 61,1	MI+(E2)
109,85(4)	4,5	0,5				257,6 - 147,7	MI+(E2)

В соответствии с анализом результатов е-у-совпадений /см. 3.1/ этот переход размещен между уровнями 211 и 188 кэВ.

Кроме того, результаты β -спектрографических исследований позволили нам уточнить мультипольный состав у-перехода 61,1 кэВ как М1 +/ 4,6±0,5/% E2/из отношения $L_I/L_{II} = 3,45\pm0,50$ н $L_{II}/L_{III} = 1,1\pm0,1/.$ Ранее мультипольный состав этого перехода был определен как E2/M1<0,2^{/4/} и E2/M1 =/3,0±0,6/x10^{-2/3/}.

3.3. Времена жизни уровней 61,1; 147,7; 188,0 и 341,1 кэВ

Время жизни уровня 61 кэВ $T_{1/2} = 0,30\pm0,05$ нс было определено по смещению центров тяжести временного распределения совпадений у/100-200 кэВ/ L 61 кэВ в ¹⁵⁷Dy от реперной кривой у – K109 кэВ в ¹⁶⁹ Tm, измеренных в одинаковых условиях.

Время жизни уровня 188 кэВ измерялось в совпадениях L электронов внутренней конверсии перехода 26 кэВ с у-лучами. Экспоненциальный спад правого склона временной кривой γ – L26 кэВ - $T_{1/2} = 1,1\pm0,1$ ис хорошо согласуется с известным значением периода полураспада уровня 188 кэВ $T_{1/2} = 1,00\pm0,15$ ис^{/11/}. Это - еще один аргумент в пользу того, что переход 26 кэВ разряжает уровень 188 кэВ. Временные спектры этих измерений приведены на рис. 3. Периоды полураспада уровней 147 и 341 кэВ были оценены как $T_{1/2} \leq 0,3$ ис в совпадениях γ -L86 и γ = -К180 кэВ, соответственно.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Из экспериментальных значений времен жизни $T_{1/2}$ возбужденных ядерных состояний на основе данных об интенсивностях I_{γ} и I_{e} , мультипольностях σL и полных коэффициентах внутренней конверсии $a_{\text{полн}}$ определены приведенные вероятности γ -переходов $B(\sigma L)$.

Сравнение экспериментальных значений $B(\sigma L) c$ модельными расчетами по Вайскопфу^{20/} и Нильссону ^{21/}. (F^{p} - с учетом парных корреляций и без учета $F_{N} = B(\sigma L)_{TEOD}$./ $B(\sigma L)_{3KC\Pi}$) проводится в табл. 2. Уровни 61 кэВ / $I^{\pi} = 5/2^{-}$ / и 147 кэВ / $I^{\pi} = 7/2^{-}$ /

Уровни 61 кэВ / $I^{\pi} = 5/2^{-}$ / и 147 кэВ / $I^{"} = 7/2$ / являются соответственно первым и вторым возбужденными состояниями ротационной полосы основного состояния ¹⁵⁷ Dy 3/2⁻/521/^{/4/}.

Из величины приведенной вероятности E2-составляющей внутриротационного перехода 61 кэВ/5/2 - \rightarrow 3/2/ можно определить значение внутреннего квадрупольного момента и параметра квадрупольной деформации полосы 3/2[521]: Q₀ = 5,2±0,76 и β = 0,23±0,3. Верхняя граница полученного значения квадрупольного момента Q₀ ≤ 5,96 согласуется со значениями Q₀ ≈ 66 для соседних четно-четных ядер¹⁵⁶, ¹⁵⁸ Dy^{/22/}

Из приведенной вероятности М1-составляющей перехода 61 кэВ вытекает значение разности гиромагнитных отношений для рассматриваемой ротационной полосы $|g_{K}-g_{R}| = 0,50\pm0,04$.

Вероятность Е2-перехода 26 кэВ, связывающего уровни 188 кэВ /1^{π} = 5/2⁺/ и 162 кэВ /1^{π} = 9/2⁺/ в ¹⁵⁷Dy, характерна для внутриротационных переходов. Это позволяет заключить, что уровни 5/2⁺и 9/2⁺ аномальной ротационной полосы положительной четности имеют один и тот же лидирующий компонент. Это заключение находится в согласии с результатами расчетов кориолисова смешивания с учетом $\Delta N = 2$ взаимодействия полос положительной четности в ¹⁵⁷Dy/10/

Для М1-переходов 193, 280 и 341 кэВ полученные значения нижних границ приведенных вероятностей согласуются с систематикой аналогичных переходов, связывающих полосы 5/2 [523] и 3/2 [521] в соседних нечетно-нейтронных ядрах^{/23/}.

Е1-переходы, связывающие состояния 162 /9/2 ⁴/ и 188 кэВ /5/2⁺/ с уровнями ротационной полосы основного состояния 3/2^[521] заторможены относительно одночастичных оценок по Вайскопфу F (E1)_W $\approx 10^5$, в то время как переход 37 кэВ, связывающий состояния 199

11

		فريركا	-	ротац.		ротац.	ротац.	ротац.	1			ı	1	-u	٤K	1	ı	ı	<5,3-2	€3,2-I	٤I,8	
<i>Таблица 2</i> Вероятности электромагнитных переходов в ¹⁵⁷ Dy		F,		7 ,4- I			≤I,4		•		1	I	1			ı	ı	ł	45,6-2	≰3,4-I	£I,9	2 И ⁶ 4 ятности эходов.
	Dy	F.w	,025	3 , 3+I	1	5,5-3	≰4,7+I	£2,8-2	3,7+4		3,0-3	2,8+4	I,2+4	2,3+9	6,3+4	≰2,8+4	≰ 3,7+ <u>4</u>	≰I,6+4	€7,7+ 2	≰7,9+2	≰I,8+3	рмации с Ные веро Ных пере
	кодов в	B(&L)	Q== ⁴ 3	4,8-2		8,9-I	≽ 3,8-2	¢I,8-I	9,0-8	I	1,7	I,2-7	2,8-7	I,4-I2	8,0-8	23,8-8	≽8,8- 8	≵ 2,I-7	\$2,3-3	\$2,3-3	\$9,7-4	сной дефо Приведен лч магни
	х пере:	¢/25/ Фалн	0,215		I+I,I		3,7	6 , 6- I	I,2+I		I,I,3	1 . 6-I	5,8-2	8,3-I	4,0+I	2,6-I	I - 5-I	9,9-2	3 , 8-I	I-₽,I	8,2-2	т равнове 4,8х10 ⁻² (с.м.) ² д
	гнитны	7.9	جع = الم	IW	δ ² =4, 8-2	멾	IM	껊	EI		ង	EI	EI	BI	ង	EI	EI	EI	IM	IW	IM	ЗНАЧЕНИЯ Озкачает Песких и
	и электрома	Конечине состояния 2I 2K Nn J	164 0 127	3352I			5352I	3352I	5352I		$I^{a} = 9/2^{+}$	5352I	3352I	$I^{f} = 9/2^{+}$	7352I	$T^{=} 3/2, 5/2^{+}$	f = 5/2,7/2 ⁺	l' = 5/2 ⁺	7352I	5352I	3352I	. Теоретические имсь типа 4,8-2 (К. пля электрич
	ероятност	Начальн. состоян. 212КИп _а А		5352I			73521		I ¹ =9/2 ⁺		I ² =5/2 ⁺			IIII 505		55523						<u>к таблице 2</u> 16оты ^{/24} /Зап елнишах е ²
	B	Ey (K3B)		6I,I			86,6	147,7	14,2		26,2	I26,9	I88,I	37,4	5 1 ,5	I06,5	I29,9	I53,I	193 ,4	280,0	34I,I	римечание яты из ра о[)даны в
		${ m E_{yp}}{ m (rab)}$ (rab) ${ m T_{1/2}}$ (c)		61,1	3 ,0- I0		I47,7	\$ 3-10	I62,2	I,3-6	I88,I	I,I-9		I99,3	I,92-2	34I,I	€3-I0					

/11/2 / H 162 K3B $/9/2^+/$, HMEET 3HAUEHHE F(E1) = = 1,3x10¹⁰ Это свидетельствует о наличии сильного запрета для последнего перехода по квантовому числу К. Аналогично запрет по квантовому числу К имеет Е2 переход 51,5 кэ \tilde{B} 11/2 11/2^{-[505]} \rightarrow 7/2 3/2^{-[521]}; F(E2)_w= $= 6.3.10^4$

Для более точного расчета теоретических вероятностей у-переходов в ¹⁵⁷ Dy, особенно связанных с заселением или разрядкой сильносмешанных состояний положительной четности, необходимо учитывать взаимодействие Кориолиса. В настоящее время такие расчеты нами проводятся и будут опубликованы позднее.

ЛИТЕРАТУРА

- 1. Желев Ж.Т. и др. ЯФ, 1965, 2, с.956.
- 2. Lagarde P. e.a. Journ. de Phys., 1966, 27, p.116.
- 3. Вылов Ц. и др. Программа и тезисы докладов XXII совещания по ядерной спектроскопии и структуре атомного ядра. "Наука", Л., 1972, с.120.
- 4. Torres J.P., Paris P., Kilcher P. Nucl. Phys., 1972, A185, p.574.
- 5. Вылов Ц. и др. ОИЯИ, Р6-6441, Дубна, 1972.
- 6. Grotdal T., Nybo K., Elbek B. Mat.Fys.Medd. Dan. Vid. Selsk., 1970, 37, No. 12.
- 7. Borggreen J., Sletten G. Nucl. Phys., 1970, A143, *b.255*.
- 8. Klamra W. e.a. Nucl. Phys., 1973, A199, p.81.
- 9. Beuscher H. e.a. Nucl. Phys., 1975, A249, p.379.
- 10. Hjorth S.A., Klamra W. Z. Physik, 1977, A283, p.287.
- 11. Andrejtscheff W. e.a. Nucl. Phys., 1974, A225, p.300.
- 12. Музиоль Г., Райко В.И., Тыррофф Х. ОИЯИ. Р6-4487. Дубна, 1969.
- 13. Latuszynski A. e.a. JINR, E6-7780, Dubna, 1974; Nucl.Instr. and Meth., 1974, 120, p.58.
- 14. Мольнар Ф., Халкин В., Херрманн Э. ЭЧАЯ, 1973, 4, c.1077.
- 15. Громов К.Я. и др. ОИЯИ, Р13-10611, Дубна, 1977.
- 16. Абдуразаков А.А. и др. ОИЯИ, 6-4363, Дубна, 1969.
- 17. Кузнецов В.В. и др. Программа и тезисы докладов XXVIII совещания по ядерной спектроскопии и структуре атомного ядра. "Наука", Л., 1978, с.508.
- 18. Аликов Б.А. и др. ОИЯИ, Р13-10911, Дубна, 1977.
- 19. Аликов Б.А. и др. ЭЧАЯ, 1976, т.7, вып. 2, с.419.

12

2

13

- 20. Lobner K.E.G. In: The Electromagnetic Interaction in Nuclear Spectroscopy. ed. W.D.Hamilton (North-Holland, Amsterdam, 1975).
- 21. Gustafson C. e.a. Ark. Fys., 1967, 36, p.613.
- 22. Lobner K.E.G., Vetter M., Honig V. Nucl.Data Table, 1970, A7, p.495.
- 23. Andreitscheff W., Schilling K.D. Atomic Data and Nucl. Data Tables, 1975, 16, p.515.
- 24. Ekstrom C., Lamm I.-L. Phys. Scripta, 1973, 7, p.31.
- 25. Hager R.S., Seltzer E.C. Nuclear Data Tables, 1968, A4, p.1.

Рукопись поступила в издательский отдел 21 июня 1978 года.