ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

26/12-77

P6 - 10759

Д.Д.Богданов, И.Воборжил, А.В.Демьянов, Л.А.Петров

новые данные по эмиссии запаздывающих частиц при *в*⁺ -распаде изотопов 116,118 Сs

P6 - 10759

Д.Д.Богданов, И.Воборжил, А.В.Демьянов, Л.А.Петров

новыя данные по эмиссии запаздывающих частиц при *β*⁺ -распаде изотопов ^{116,118}Сs

Направлено в "Physics Letters"

Богданов Д.Д. и др.

Новые данные по эмиссии запаздывающих частиц при бета-распаде изотопов цезия-116,118

Установлено, что эмиссия запаздывающих частиц при β^+ -распаде 116 Св связана с распадом двух метастабильных состояний, периоды полураспада которых (0,65±0,1) с и (3,9±0,4)с. Долгоживущая компонента доминирует в спектре запаздывающих протонов, в то время как эмиссия запаздывающих *а*-частиц связана с β^+ -распадом короткоживущего состояния. Измерены энергии (β^+ -*а*)-распада изотопов 116. 118 Св.

Работа выполнена в Лаборатории ядерных реакций ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1977

Bogdanov D.D. et al.

P6 - 10759

.

æ

New Data on the Delayed Particle Emission at β^+ -Decay of ^{116, 118} Cs Isotopes

It is found that the delayed particles observed following the β^+ -decay of ¹¹⁶Cs are due to the β^+ -decay of two metastable states with half-lives of (0.65 ± 0.10) s and (3.9 ± 0.4) s. The long-lived component dominates in the delayed proton spectrum, while the delayed α -particle emission is associated with the β^+ -decay of the short-lived state. The total $(\beta^+-\alpha)$ -decay energies of the isotopes ¹¹⁶, ¹¹⁸Cs have been measured.

The investigation has been performed at the Laboratory of Nuclear Reactions, JINR.

Preprint of the Joint Institute for Nuclear Research, Dubna 1977

В области нейтронодефицитных ядер с Z > 50 *а*-частица не связана в основных состояниях большинства ядер. Энергия *а*-распада сравнительно невелика, так что доминирующим каналом распада основных состояний ядер с N < 84 остается β^+ -распад. Тем не менее указанное обстоятельство приводит к тому, что наряду с уже привычной эмиссией запаздывающих протонов заметную роль в отдельных случаях может играть и эмиссия запаздывающих *а*-частиц.

Известным примером подобного рода являются изотопы ¹¹⁶, ¹¹⁸ Сs. Наиболее полная сводка имеющихся экспериментальных данных по эмиссии запаздывающих протонов и α -частиц при β^+ -распаде этих изотопов содержится в обзорной работе^{/1/}. Предыдущие публикации ^{/2},^{3/} нашей группы касались только эмиссии запаздывающих протонов при β^+ -распаде ¹¹⁶ Cs.Естественным продолжением этих исследований является настоящая работа, в которой акцент сделан на другой запаздывающий процесс - эмиссию α -частиц.

В экспериментах использовался масс-сепаратор БЭМС-2 на пучке циклотрона тяжелых ионов У-ЗОО ОИЯИ. Описание конструкции и особенностей работы используемого здесь высокотемпературного ионного источника с поверхностной ионизацией содержится в работах 74,57 . Исследуемые изотопы цезия получались при облучении металлической мишени толщиной 2 *мг/см*² из обогащенного /90%/ 92 Мо ионами 32 S⁺⁵ с энергией 190 *МэВ*. В фокальной плоскости масс-сепаратора изобары с фиксированным А выделялись щелевым коллиматором 2х10 *мм* и попадали на сборник из алюминиевой

С 1977 Объединенный инспинут ядерных исследований Дубна

фольги /0.8 мкм/, наклеенной на жесткий каркас в виде диска ϕ = 200 мм. Непосредственно за сборником размешался поверхностно-барьерный Si(Au) - детектор протонов и а -частиц. Энергетические диапазоны спектров $2^{+}6.5$ МэВ и α -частиц протонов запаздывающих 8-12.5 МэВне перекрываются, поэтому никакие специальные методы разделения этих частиц не нужны. Активность на сборнике накапливалась в течение времени экспозиции Δt , после чего диск поворачивался на угол 126° и исследуемая активность помещалась между вторым Si(Au) - детектором и сцинтилляционным β - счетчиком с пластмассовым сцинтиллятором толщиной 1 мм. Этот набор детекторов предназначался для измерения спектров протонов и а -частиц в совпадении с позитронами и кривых распада Р.а. В -активностей.

Основные результаты, полученные в настоящей работе, содержатся в *таблице* и могут быть прокомментированы следующим образом:

	II8 Cs	II6 CS	
T _{I/2} ,c	I6,4 <u>+</u> I,2 <i>[</i> I <i>]</i>	0,65 <u>+</u> 0,I0	3,9 <u>+</u> 0,4
WР экспер.	(4,2±0,6).10 ⁻⁴ [1]	(2,8 <u>+</u> 0,7).10 ⁻³	(6,6 <u>+</u> 1,3).10 ⁻³
PL	17,2 <u>+</u> 0,3 [1]	50±1 [1]	
экспер.	17,3 <u>+</u> 0,4	4,7 <u>+</u> 1,8	≥ 200
<i>₩</i> ∠ экспер.	(2,4 <u>+</u> 0,3).10 ⁻⁵ [1]	(4,9 <u>+</u> 2,5).10 ⁻⁴	≤ 3.3.1 0 ⁻⁵
WZ Teop.	8,7.10 ⁻⁶ (1 ⁺) 3,3.10 ⁻⁶ (3 ⁺)	$\begin{array}{c} I_{\bullet}8.10^{-4} & (I^{+}) \\ 6,7.10^{-5} & (3^{+}) \\ I_{\bullet}6.10^{-6} & (8^{+}) \end{array}$	
(QA-B.), МЭН экспер.	10,6 <u>+</u> 0,2	12,3 <u>+</u> 0,4	
(<i>Qp-д)</i> , мэв	10,89 [10]	12,76 / 10]	
reop.	10,62 [11]	12,35 /II]	

Таблица

0

1. Из измерения кривой распада a -активности изобар с A = 116 был установлен период полураспада $T_{\frac{1}{2}a} = -/O,65\pm O,1O/c$. Это неожиданный результат, поскольку он явно не согласуется с надежно установленным периодом полураспада 116 Cs $T_{\frac{1}{2}} = /3,9\pm O,4/c$, измеренным по запаздывающим протонам в нашей работе $^{\frac{12}{2}}$, и $T_{\frac{1}{2}} = -/3,6\pm O,2/c$ по данным 11 группы ISOLDE.

2. Детальный анализ кривых распада протонной активности, измеренных с различными временами экспозиции, позволил выделить две компоненты: уже знакомую долгоживущую с Т_{1/2} = 3,9 с и короткоживущую, период полураспада которой совпадает в пределах ошибок с измеренным для а -частиц. Из разложения протонных кривых распада на две экспоненты, отвечающие двум указанным периодам полураспада с учетом их ошибок, получено отношение $Y_p(0.65)/Y_p(3.9) = O,2O+O,O6$ наблюдае мых выходов протонов. Термин "наблюдаемый выход" означает выход соответствующей активности из источника масс-сепаратора, т.е. $Y_p = Y_\beta \cdot w_p$, где Y_β - число β активных атомов, приходящих на сборник из источника в единицу времени, ^w p - протонная вилка, дающая вероятность эмиссии протона в единичном акте β^+ распала.

3. Аналогичные по периодам полураспада компоненты были выделены в кривых распада β^+ -активности. В этом случае разложение на две компоненты с учетом постоянного фона дает отношение наблюдаемых выходов β^+ -активности $Y_{\beta}(0.65)/Y_{\beta}(3.9) = 0.7+0.3$. Вместе с тем установлено, что в реакции ⁹² Мо+ ³² S основной вклад в наблюдаемую β^+ -активность в диапазоне масс от A = 121 до A = 116 дают соответствующие изотопы цезия. Выходы изотопов бария, лантана и церия, реакции образования которых требуют меньшего числа испаряющихся из компаунд-ядра (¹²⁴Ce) протонов, резко падают по мере уменьшения А, что является характерной особенностью поведения сечений реакций вобласти нейтронодефицитных ядер. В исследуемой реакции не удалось выделить β^+ активность, связанную с распадом изотопов лантана и церия /легчайшие из известных сейчас изотопов ¹²³ La $(T_{\frac{1}{2}} = 17\pm3 c)$ н ¹²⁴ Ce $(T_{\frac{1}{2}} = 6\pm2 c)$ были получены недавно⁶ в реакциях

5

⁹⁶
$$\operatorname{Ru}({}^{32}_{\cdot}\operatorname{S}, 2p2n)^{124}$$
 Ce μ ⁹⁶ $\operatorname{Ru}({}^{32}_{\cdot}\operatorname{S}, 3p2n)^{123}$ La/.

Слабая β^+ -компонента¹²¹ Ва была еще выделена на фоне 121 Сs, в то время как ¹⁹Ва был идентифицирован только по

17

съ, в то время как Ва был идентифицирован только по запаздывающим протонам ^{/2/}. Оценка отношения наблю-даемых выходов ¹¹⁶ Ва н ¹¹⁶ Сs $\frac{Y\beta(^{116} Ba)}{Y_\beta(^{116} Cs)} \le \frac{Y\beta(^{117} Ba)}{Y_\beta(^{117} Cs)} = \frac{Y_p(^{117} Ba)}{Y_\beta(^{117} Cs)} = 0.01$ может быть сделана из сравнения наблюдаемых выходов запаздывающих протонов ¹¹⁷ Ва($T_{1/2} = 1.9 c$)^{/7/} и β^+ -активности ¹¹⁷ Cs с учетом расчетной протонной вилки $w_p = 3.7 \cdot 10^{-2}$.

4. Результаты, приведенные в п.п. 1,2,3, дают основание утверждать, что эмиссия запаздывающих частиц в случае ¹¹⁶Сs связана с распалом не одного, как предполагалось ранее, а двух метастабильных состояний. периоды полураспада которых равны /0,65+0,1/с и /3,9+0,4/с. Причем, долгоживущая компонента доминирует в спектре запаздывающих протонов, в то время как слектр a -частиц связан с β^+ - распадом короткоживущего состояния.

5. Приведенные в таблице величины протонной и ачастичной вилок получены в предположении отсутствия изомерного γ -перехода. В этом случае $w_p = I_p/I_\beta$ И $w_a = I_a / I_B$, интенсивности I_p , I_a , I_B взяты из разложения соответствующих кривых распада на две экспоненты и отнормированы на эффективности регистрации детекторов /для Т 1/2 = 3,9 с определена только верхняя граница І_а /. Если вкладом изомерного у -перехода пренебречь нельзя, то приведенные выше соотношения справедливы только для распада основного состояния. Для изомерного состояния связь между w p / или w / и определенными указанным способом интенсивностями I_n /или I_{α} / и I_{β} несколько сложнее:

$$w_{p1} = \frac{I_{p1}}{I_{\beta 1}} (1-k) + k w_{p2}$$

$$\mathbf{k} = \frac{\lambda_{\gamma}}{\lambda_{\beta}} \frac{\lambda_{2}}{\lambda_{1} - \lambda_{2}} , \quad \mathbf{w}_{p2} = \frac{\mathbf{I}_{p2}}{\mathbf{I}_{\beta 2}}$$

гле индексы 1,2 относятся соответственно к изомерному и основному состояниям, $\lambda_1 = \lambda_v + \lambda_\beta$, λ_2 - постоянные распада этих состояний. Отметим, что в І_В должен быть учтен возможный вклад от электронов конверсии. Таким образом, в этом случае для получения w_{p1} , w_{a1} необходимо прямое измерение $\lambda_{\gamma}/\lambda_{\beta}$.

6. В таблице приведены расчетные значения ^w для различных значений Iⁿ распадающегося состояния цезня. Расчеты выполнены на основе статистической модели процесса, которая обычно используется в аналогичных расчетах для запаздывающих протонов ^{1,3}. Резкое падение w с ростом спина исходного состояния ¹¹⁶ Cs является очевидным следствием того, что высокоспиновые состояния в конечном четно-четном ядре ¹¹² Те расположены высоко по энергии /энергии уровней 112 Те с $I^{\pi} = 2^{+}, 4^{+}, 6^{+}, 8^{+}$ были приняты соответственно 800, 1600, 2500, 3500 кэВ на основе экстраполяции имеющихся экспериментальных данных для четно-четных изотопов теллура вплоть до ¹¹⁴Те /. Для запаздывающих протонов столь резкой зависимости w_р от спина распадающегося состояния может не быть, т.к. для конечного в этом случае ядра ¹¹⁵ I характерна сравнительно большая плотность низколежащих состояний, спины которых могут меняться в широком диапазоне. Возможность расчета ^w р осложняется незнанием детальной энергетической схемы и спинов низколежащих уровней ¹¹⁵ I. Тем не менее предположение о том, что основное и изомерное состояния ¹¹⁶ Cs имеют существенно отличающиеся спины, причем низкоспиновое состояние - короткоживу-щее /нечто похожее известно⁷⁸⁷ для ¹²² Cs /, является возможным вариантом интерпретации полученных данных. На рисунке экспериментальные спектры запаздывающих а -частиц ^{116, 118}Cs сравниваются с рассчитанными по статистической модели. Любопытно, что в случае ¹¹⁶ Cs отклонение расчетного спектра от экспериментального не противоречит предположению о резонансной зависимости силовой функции β^+ - распада от энергии возбуждения дочернего ядра, сделанному в $^{/3/}$ на основе аналогичного анализа спектра запаздывающих протонов. 7. Для изотопов ^{116, 118}Cs измерены полные энергии $(\beta^{\dagger} - \alpha)$ - распада, равные $Q_{\beta} - B_{\alpha}$, где Q_{β} - энергия элект-

Сравнение экспериментальных спектров запаздывающих a-частиц ¹¹⁶, ¹¹⁸ Сs /гистограммы/ с рассчитанными по статистической модели в предположении $I^{\pi} = 1^+$ для исходных состояний цезия.

ронного захвата материнского ядра, B_a - энергия связи a-частицы в дочернем ядре. Использовался метод (β^+ -a)совпадений, аналогичный методу (β^+ -p)-совпадений, впервые предложенному в работе ⁽⁹⁾ для измерения Q_{β} - B_p . В этом методе Q_{β} - B_a излучателя определяется из сравнения с расчетом экспериментально измеренного отношения выхода a-частиц в совпадении с позитронами к полному их выходу. Подобные измерения сейчас общеприняты для запаздывающих протонов, для запаздывающих a-частиц это первая попытка такого рода. Полученные значения Q_{β} - B_a изотопов ¹¹⁶, ¹¹⁸Cs, каки измеренные ранее ^(1,3) Q_{β} - B_p , хорошо согласуются с предсказанными на основе массовых формул Гарви-Кельсона и Зельдеса ^{(10,11/}). Авторы благодарны академику Г.Н.Флерову за поддержку этой работы, В.И.Фурману за проведенные им расчеты коэффициентов трансмиссии α -частиц, В.А.Карнаухову за полезные обсуждения, а также группе эксплуатации циклотрона за обеспечение облучений.

Литература

- 1. Jonson B. e.a. In: Proc. of the 3rd Int. Conf. on Nucl. far from Stability, Cargese, Corsica (France), 1976, p.277.
- 2. Богданов Д.Д. и др. ЯФ, 1975, 21, с.233.
- 3. Богданов Д.Д. и др. ЯФ, 1976, 24, с.9.
- 4. Karnaukhov V.A. e.a. Nucl. Instr. and Meth., 1974,
- 120, p.69.
 Bogdanov D.D. e.a. Nucl. Instr. and Meth., 1976, 136, p.433.
- 6. Богданов Д.Д. и др. ОИЯИ, Р6-10443, Дубна, 1977.
- 7. Bogdanov D.D. e.a. Nucl. Phys., 1977, A275, p.229.
- 8. Ekström C. e.a. In: Proc. of the Int. Conf. on Nucl. far from Stability, Cargese, Corsica (France), 1976, p.193.
- 9. Бачо И. и др. ЯФ, 1968, 7, с.1153.
- 10. Garvey G.I. e.a. Rev. Mod. Phys., 1969, 41, no. 4.
- 11. Zeldes N., Grill A., Simevic A. Mat. Fys. Skr. Dan. Vid. Selsk., 1967, 3, no. 5.

Рукопись поступила в издательский отдел 15 июня 1977 года.