ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

C341.2a

and the

26/11-77 P6 - 10748

Т.Крецу, В.В.Кузнецов, Г.Лизурей, Хан Хен Мо, В.М.Горожанкин, Г.Макарие

РАЗНОСТЪ МАСС **167 167 Тm**

P6 - 10748

Т.Крецу, В.В.Кузнецов, Г.Лизурей, Хан Хен Мо, В.М.Горожанкин, Г.Макарие²

РАЗНОСТЬ МАСС УВ- 167 Tm

Направлено в "Acta Physica Polonica"

OGNOLIAS HACTHEYT MACHINE RECORDED EL SINUTERA

Воронежский государственный университет. 2 Политехнический институт, Бухарест.

Крецу Т. и др.

Разность масс ¹⁶⁷ Yb- ¹⁶⁷ Tm

Исследовался спектр позитронов ¹⁶⁷ Yb (T½ = 18 мин) при помощи безжелезного бета-спектрометра с гороидальным магнитным полем. Получен однокомпонентный спектр поэитронов с граничной энергией 639±4 кэВ. Определено экспериментальное значение «/β⁺ для

разрешенного незадержанного бета-перехода 5/2 /523/ \rightarrow P7/2 /523/ при распаде ¹⁶⁷ Yb равным 195⁺⁵⁰ . Разность масс ¹⁶⁷ Yb \rightarrow ¹⁶⁷Tm равна 1954<u>+4</u> кэВ.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубиа 1977

Kretsu T. et al. The ¹⁶⁷Yb→¹⁶⁷Tm Mass Difference

P6 - 10748

P6 - 10748

The positron spectrum of 167 Yb (T_{1/2} = 18 min) has been carefully remeasured in iron free β^+ -ray spectrometer with toroidal magnetic field. The end-point energy has been found to be 639 ± 4 keV. The experimental ϵ/β^+ branching ratio for unhindered allowed transition n5/2 /523/ $\cdot p5/2$ /523/ in 167 Yb decay has been determined $195 + \frac{50}{-30}$. The Q value is 1954 ± 4 keV.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research, Dubna 1977

© 1977 Объединенный инспинут ядерных исследований Дубна

Разность масс ¹⁶⁷ Yb...¹⁶⁷ Tm определялась экспериментально в работах ^{/1,2/}. В работе^{/1/} были впервые обнаружены позитроны с граничной энергией $E_0 = /65O \pm 3O/\kappa_3B$ и интенсивностью /O,4±O,1/% на распад ¹⁶⁷ Yb/ T_{1/2} = = 18 мин/. Авторы работы ^{/2/} при исследовании позитронного спектра ¹⁶⁷ Lu наблюдали три компонента позитронов, в том числе компонент с $E_0 = /64O \pm 2O/\kappa_3B$ и интенсивностью /O,4±O,1/%, отнесенный ими к распаду ¹⁶⁷ Yb.

В данной работе излагаются результаты исследования позитронов ¹⁶⁷Yb, измеренных при помощи безжелезного бета-спектрометра с тороидальным магнитным полем ^{/3/}. Использован препарат лютеция, химическим путем ^{/4/} выделенный из танталовой мишени, облученной протонами с энергией 660 *МэВ* на синхроциклотроне ОИЯИ в течение О,5 ч. Источник получен путем нанесения капли, содержащей радиоактивные изотопы лютеция, на алюминизированную майларовую фольгу толщиной О,68 *мг/см*² Приготовленный таким образом источник высушивался и прокаливался. В измеряемом позитронном спектре преобладали позитроны ¹⁶⁷ Yb. Учитывался вклад позитронов ¹⁶⁷ Lu / T_{1/2} = 55 *мин*/, находящегося в равновесии с ¹⁶⁷ Yb, и позитронов долгоживущих изотопов лютеция с A = 169, 170 и 171. Полученный однокомпонентный спектр позитронов, принадлежащий распаду ¹⁶⁷Yb, хорошо описывается графиком Ферми-Кюри вплоть до 100 *кэВ / рис. 1*/.

Обработка спектра позитронов проводилась по программе "BETARZ", описанной в работе ^{/5/}.

3

Полученные значения граничной энергии E_0 , отношения $J_{\beta^+}/J_{K116,6}$ и интенсивности позитронов J_{β^+} в % на распад ¹⁶⁷Yb приведены в *табл.* 1.

	Таблица 1			
	Значения \mathbf{E}_0 , $\mathbf{J}_{\beta^+} / \mathbf{J}_{K116,6}$	и Ј _β +		
Е ₀ , кэВ	^Ј _β + ^{/ J} к 116,6	Ј _β +,% на распад		
639 <u>+</u> 4	0,36 <u>+</u> 0,04	0,5 <u>+</u> 0,1		

При расчете интенсивности позитронов в % на распад ¹⁶⁷ ур мы использовали результаты исследования схемы распада ¹⁶⁷ ур^{/6/}.

	е экспериментальные данные, кэВ	квшкотэвН втодвq	1954 <u>+</u> 4	
		Pagora ^{/2/}	1960 <u>+</u> 20	авторов,
167 Tm		VIV Brodsq	1970 <u>+</u> 30	а работы
⁶⁷ Yb- ¹	Разности масс, полученные при расчет по полуэмпирическим формулам, кэВ	3ельдес 3ельдес	1934	ылки н
acc 1		йөаqв7 *(9691)	1879	rы. Cci
HOCTR N		(1964)* Винг	1406	ň paбo:
e o pa3		Зигер (1970)*	1818	твующе
Данны		(1965) * Maйepc	1423	ответс
		немпиХ *(4861)	1822	ации со
		Камерон *(7891)	1687	публика
		, впои (1761)	1 956 <u>+</u> 20	Год

Ταблица 2

даны в работе К.Я.Громова и др. 10/ результаты которых приведены в столбцах 1-8,

Из работ /1,6/, следует, что позитронный распад происходит на возбужденное состояние с энергией 292.8 кэВ 7/2^{-/}523/ ¹⁶⁷ Тт. Принимая, что при бета-распаде ¹⁶⁷ Yb возбужденное состояние с энергией 292.8 кэВ ¹⁶⁷Tm заселяется в 98% случаев, получаем экспериментальное значение $\epsilon/\beta^+ = 195 + 50$ / $\epsilon/\beta^+_{Teop} = 210\pm 6$ для разрешенного перехода /7/ /. На основе полученных нами данных о позитронах определено экспериментальное зна-чение $\log ft$ для β -распада ¹⁶⁷ Yb на возбужденное состояние с энергией 292,8 кэВ ¹⁶⁷ Тт-4,5+О.1. Расчеты матричных элементов /для разрешенного незадержанного бета-перехода n 5/2 7/523/→р 7/27/523/ с использованием волновых функций /8/, рассчитанных для радиуса ядра $R = 1.26 A^{1/3} \Phi M$ для нейтронных и $R = 1.25 A^{1/3} \Phi M$ - для протонных состояний при параметрах деформации $\beta_{00} = 0.26$ н $\beta_{40}=0.02$, привели к значению $\log ft=4.3$. Метод расчета изложен в работе ^{/9/} В *табл. 2* полученное значение разности масс ¹⁶⁷Yb-¹⁶⁷ Tm сравнивается с более ранними экспериментальными и расчетными значениями.

В заключение авторы приносят искреннюю благодарность проф. К.Я.Громову и доктору М.Гаснору за дискуссию и постоянный интерес к настоящей работе.

ЛИТЕРАТУРА

- 1. Ван Чуань-пэн и др. Изв. АН СССР сер. физ., 1964, 28, c.252.
- 2. Агеев В.А. и др. Программа и тезимы докл. XIV ежегодного совещания по ядерной спектроскопии в Тбилиси. "Наука", М., 1964, с.63.
- 3. Гасиор М. и бр. ОИЯИ, Д6-7094, Дубна, 1973, с.167.
- 4. Молнар Ф., Халкин В., Херрманн Э. ЭЧАЯ, 1973, **ж.4, вып.4,** с. 1077.
- 5. Крецу Т., Кузнецов В.В., Макарие Г. ОИЯИ, Р6-10183, Дубна, 1976.
- 6. Arlt R. e.a. Nucl. Phys., 1971, A175, p.101.
- 7. Джелепов Б.С., Зырянова Л.Н., Суслов Ю.П. В кн.: "Бета-процессы", "Наука", Л., 1972, с. 278. 8. Гареев Ф.А. и др. ЭЧАЯ, 1973, т.4, вып. 2.
- 9. Богдан Д. и др. ОИЯИ, Рб-10267, Дубна, 1976.
- 10. Громов К.Я. идр. ЭЧАЯ, 1975, т.6, вып. 4, с.971.

Рукопись поступила в издательский отдел 13 июня 1977 года.