ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

C341,1e B-123

29/111-74

P6 - 10703

3367 /2-77

.....

Я.Ваврыщук, И.И.Громова, В.Жук, Р.Ион-Михай, Э.Крупа, Г.И.Лизурей, М.М.Маликов, Т.М.Муминов, В.Таньска-Крупа, И.Холбаев

ИССЛЕДОВАНИЯ

ВОЗМУЩЕННЫХ УГЛОВЫХ **ү** - **ү** КОРРЕЛЯЦИЙ В НЕЧЕТНЫХ ЯДРАХ ГАДОЛИНИЯ С **А** = 149-155

P6 - 10703

Я.Ваврыщук,¹ И.И.Громова, В.Жук,¹ Р.Ион-Михай,² Э.Крупа,¹ Г.И.Лизурей, М.М.Маликов,³ Т.М.Муминов,⁴ В.Таньска-Крупа,¹ И.Холбаев⁴

ИССЛЕДОВАНИЯ ВОЗМУЩЕННЫХ УГЛОВЫХ **?** - **?** КОРРЕЛЯЦИЙ В НЕЧЕТНЫХ ЯДРАХ ГАДОЛИНИЯ С **A** = 149-155

Направлено в "Acta Physica Polonica"

Институт физики Люблинского университета им. М.Кюри-Склодовской, Польша.

- ²Институт атомной физики, Бухарест.
- ЗИнститут ядерной физики АН УзССР, Ташкент.
- 4Самаркандский государственный университет.

объединевый последуя першах встановыны БИБЛИСТЕНА Ваврыщук Я. и др.

Исследования возмущенных угловых у-у корреляций в нечетных ядрах гадолиния с A = 149+155

Исследовались интегральные и дифференциальные возмущенные угловые корреляции y - y каскадов при распаде ядер Tb с A =149, 151, 153 и 155, внедренных с помощью электромагнитного масс-сепаратора в матрицы Fc и Ni. Результаты исследований позволили уточнить значения сверхтонких полей H_{Cd} (Fe) и H_{Cd} (Ni) и определить значения 8 -факторов и магнитных моментов для состояний 165 кэВ в 108 и 395 кэВ в 151 Gd , 109 и 129 кэВ в 153 Gd.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубиа 1977

Wawryszczuk J. et al.

P6 - 10703

Investigation of Perturbed Gamma-Gamma Angular Correlations in Odd Gadolinium Nuclei with $A\,{\approx}149{-}155$

The integral and differential perturbed angular correlations of gamma-gamma cascades in the decay of nuclei with A = 149, 151, 153 and 155 implanted with an electromagnetic mass-separator in Fe and Ni matrices were investigated. The results of investigations have allowed to improve the values of hyperfine magnetic fields H_{(d}(Fe) and H_{Gd}(Ni) and determined the values of g-factors and magnetic momenta for 165 keV levels in ¹¹⁹ Gd, 108 and 395 keV in ¹⁵¹ Gd, 109 and 129 keV in ¹⁵³ Gd.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1977

© 1977 Объединенный инспинут ядерных исследований Дубна

ВВЕДЕНИЕ

Исследовались интегральные /ИВУК/ и дифференциальные /ДВУК/ возмущенные угловые корреляции гамма-лучей при радиоактивном распаде ядер Ть с A = 149, 151, 153 и 155, внедренных с помощью электромагнитного масс-сепаратора в ферромагнитные матрицы железа и никеля. Результаты этих исследований позволили определить значения эффективных сверхтонких магнитных полей на ядрах Gd в матрицах Fe и Ni, отработать методику измерения g-факторов короткоживущих возбужденных ядерных состояний и определить g-факторы для уровней 165 κ эB в ¹⁴⁹Gd, 108 и 395 κ эB в ¹⁵¹Gd, 109 и 129 κ эB в ¹⁵³Gd.

1. ПРИГОТОВЛЕНИЕ РАДИОАКТИВНЫХ ИСТОЧНИКОВ

Радиоактивные изотопы Ть получались в реакции глубокого расщепления Та протонами с энергией 660 $M \Rightarrow B$ на синхроциклотроне ОИЯИ. Радиохимическими методами из облученных мишеней Та выделялся элемент Ть, который затем разделялся по массам на электромагнитном масс-сепараторе /1/. При этом ионы Ть внедрялись в железные или никелевые фольги /производство "Johnson Matthey Chemical Ltd " / толщиной 12 мкм при ускоряющих потенциалах 70 или 25 кВ. Доза имплантированных ионов в каждом случае не превышала $10^{11}uoh/cm^2$.

2. АППАРАТУРА

Измерения ДВУК проводились на многоканальном временном спектрометре с двумя NaJ(Tl) - детекторами размером Ø40х40 мм и фотоумножителями типа XP 1021. Блок-схема установки приведена на *рис. 1.* Анализ временных распределений совпадений производился с помощью время-амплитудного конвертора типа "Стартстоп" и 1024-канального анализатора импульсов. Память анализатора разбивалась на два участка, для измерений при двух противоположных направлениях внешнего поляризующего магнитного поля. Переключение направления

Рис. 1. Блок-схема временного спектрометра для измерений ДВУК. тока в обмотке электромагнита и соответствующие переключения сектора памяти анализатора производились с помощью блока автоматики /2/.Для формирования временных сигналов в обоих каналах применялись формирователи /3/, работающие в режиме "следящего порога". Временной отбор совпадающих импульсов и выбор временного диапазона установки осуществлялись мажоритарной схемой совпадений и двумя схемами пропускания, включенными в "стартовый" и "стоповый" каналы конвертора t → A.

Энергетический отбор у-квантов производился по обычному быстро-медленному принципу с помощью линейных усилителей, дифференциальных дискриминаторов и медленной схемы совпадений.

Временное разрешение установки в измерениях мгновенных совпадений между γ -лучами с энергиями 90 и 180 кэВ при десятипроцентной ширине энергетических окон, составляло $2\tau_0 = 2,5$ нс.

Измерения ИВУК проводились на автоматизированном корреляционном спектрометре с Ge(Li) и двумя сцинтилляционными NaJ(Tf) - детекторами /2/.Измерялось угловое распределение у-квантов выделенного каскада, при углах между детекторами $\theta = 90^\circ, 120^\circ, 150^\circ, 180^\circ, 210^\circ, 240^\circ, 270^\circ$ для двух противоположных направлений магнитного поля. Участки спектров совпадений регистрировались в памяти 1024-канального анализатора импульсов, разделенной на 16 секторов. Угловые положения NaJ(Tf) - детекторов менялись автоматически циклическим образом, с экспозицией 200 с, а направление тока в обмотке электромагнита - после окончания каждого цикла. На этой же установке измерялись интегральные параметры $R(135^\circ, \pm H)$ у-у -каскадов.

Измерения параметра $R(135^\circ, \pm H)$ проводились также на корреляционном спектрометре с двумя Ge(Li)-детекторами на линии с ЭВМ Минск-2, работающей в двумерном режиме с цифровыми окнами /4/.

Электромагнит. Для выстраивания доменов ферромагнитных фольг использовался электромагнит, который состоял из "С"-образного железного /"армко"/ сердечника с обмоткой, содержащей 2000 витков медного провода Ø O,41 мм. Средняя длина магнитной силовой линии составляла 210 мм, зазор между полюсами -10 мм, сечение - 10х2 мм². Исследуемые фольги /12х3 мм²/ крепились непосредственно к полюсам электромагнита. Кривые намагничивания Fe и Ni фольг приведены на *рис. 2*. Все исследования ВУК проводились при значении тока электромагнита I = 200 мА.

Методы н аппаратура, использовавшиеся для исследований ВУК изучаемых каскадов, приведены в *табл. 1*.

Рис. 2. Зависимость параметра $R(135^\circ, \pm H)$ ИВУК для каскада 180-86 кэВ в ¹⁵⁵Gd, имплантированного в Fe и Ni от тока в катушке электромагнита /кривая намагничивания/.

3. ИССЛЕДОВАНИЯ ДВУК И ИВУК В ^{151,155} Gd

а/ Измерения ДВУК для каскада /180-86/кэВ в¹⁵⁵ Gd

Положения энергетических "окон" в *у*-спектре ¹⁵⁵ Tb, с помощью которых выделялись фотопики переходов 86 и 180 кэВ, представлены на *рис.* 3. На этом же рисунке

Таблица І

Методы и аппаратура, применяемые для исследований возмущенных угловых корреляций $\gamma - \gamma$ -каскадов в ядрах Gd /A = 149, 151, 153 и 155/

Я дро	Каскад (кэВ)	Метод	Установка
¹⁴⁹ Gd	187 - 165 652 - 165	И ВУК – R И ВУК – R	} Ge(Li)-Ge(Li)
¹⁵¹ Gd	287 - 108	ДВУК И ВУК	NaJ(Tl) – NaJ(Tl) Ge(Li) – 2NaJ(Tl)
	444 - 257	И ВУК – R И ВУК – R	$\int Ge(Li) - 2NaJ(T\ell)$
¹⁵³ Gd	102 - 109 82 - 129	И ВУК - R И ВУК - R	Ge(Li)– Ge(Li)
¹⁵⁵ Gd	180 - 86	ДВУК И ВУК	NaJ(Tl)– NaJ(Tl) Ge(Li) – 2NaJ(Tl)
N	155 _{Tb} 155 _G	d B Fe	86 266 <u>5⁺</u> ∴105 ♀ ♀ ♀
10 ⁵	Υ(180-86))	кэВ 	
104	- Γ _{1/2} =(645±(Na.	0 155 _{Gd}
Eet	692 nc/k	ан	
10-	~ *		The second second second
1.2			

Рис. 3. Кривая распада уровня 86 кэВ в ¹⁵⁵Gd. Сцинтилляционный у-спектр ¹⁵⁵Tb. Фрагмент схемы уровней ¹⁵⁵Gd.

100

50

6

7

КАНАЛЫ

показан фрагмент схемы уровней 155 Gd и кривая распада уровня 86 кэВ. Полученное значение периода полураспада $T_{\frac{1}{2}} = /6,45\pm0,12/$ нс хорошо согласуется с данными работы $^{/5/}$.

Экспериментальная функция:

$$R(135^{\circ}, \pm H,t) = 2 \frac{N(135^{\circ}, + H,t) - N(135^{\circ}, -H,t)}{N(135^{\circ}, + H,t) + N(135^{\circ}, -H,t)}$$
/1/

определялась по спектрам временных распределений совпадений у 180 - у 86 кэВ, измеренных для противоположных направлений поляризующего магнитного поля. Так как в "окна" 86 и 180 кэВ попадали также у-кванты переходов 105 и /161±163/ кэВ, совпадения которых искажали кривые распада уровня 86 кэВ в области малых t / T $_{1/2}$ /105 кэВ/ ≈ 1,3 нс/, функция R(135°, ±H,t) вычислялась, начиная с t ≈ 2 нс от центра тяжести кривой мгновенных совпадений. К этой функции подбиралось выражение:

R(135°, ±H,t)=2b₂e<sup>-
$$\lambda_2 t$$</sup> sin 2($\omega_L t - \phi_0$) + Δ , /2/

где $R(135^\circ, \pm H, t)$ - число истинных совпадений, соответствующее времени задержки t при данном направлении поля H; b₂ - коэффициент функции угловой корреляции измеряемого *у* -каскада; λ_2 - релаксационный параметр; ω_L - частота ларморовской прецессии; ϕ_0 - фазовый сдвиг; Δ - нормировочный параметр величин $R(135^\circ, \pm H, t/.)$

Параметрами подбора являлись величины b_2 , λ_2 , ω_L , ϕ и Δ . Пренебрегалось влиянием разрешающего времени установки на вид функции $R(135^\circ, \pm H, t)$ так как во всех измерениях $r_{86}/2r_a > 3$.

Выполнены измерения для двух образцов Fe и двух образцов Ni с имплантированными в одинаковых условиях /V = 70 кB/ источниками ¹⁵⁵Tb. Полученные в одном из измерений кривые спиновой прецессии ядра ¹⁵⁵Gd в состоянии 86 кэB для обоих матриц приведены на рис. 4 и 5.

В случае матрицы Fe наблюдается экспоненциальное затухание амплитуды функции $R(135^\circ, \pm H, t)$, свидетельствующее о наличии в образце динамических взаимодействий. Для Ni, из-за большого периода ларморовской прецессии, трудно было сделать выводы о затухании этой функции и поэтому обработка результатов /определение ω_L / проводилась с учетом и без учета параметра λ_2 / puc. 5/.

Значения ω_L и λ_2 для обоих образцов, полученные в этих исследованиях, приведены в *табл. 2*. При вычислении величин $H_{Gd}(Fe)$ и $H_{Gd}(Ni)$ принималось значение g-фактора уровня 86 кэВ из работы /6/.

б/ Измерения ИВУК для каскада 180-86 кэВ в ¹⁵⁵Gd

Угловое распределение $N(\theta, \pm H)$ гамма-лучей с энергией 86 кэВ, выделяемых в спектрах $NaJ(T\ell)$ -детекторов с участком спектра Ge(Li)-детектора, измерялось

Рис. 5. Кривая спиновой прецессии для состояния 86 кэВ в ¹⁵⁵Gd, имплантированном в Ni.

Таблица 2

Результаты измерений ДВУК для каскада 180-86 кэВ в ¹⁵⁵Gd, имплантированном в Fe и Ni при V = 70 кВ

 $_{2} \times 10^{8} (c^{-1}) | H_{Gd}(M)^{a/(\kappa\Gamma_{c})}$ б/ $\omega_L \times 10^8 (c^{-1}$ Матрица G ₂₂(∞) 3,84(8) Fe 1,27(43)-213(15) 0,45(8)0.48(10)-29(3)0,37(16)0.74(9)Ni 0.52(2)-28(3)≡ 0

а/ Принято
$$g_{86} = -0,376\pm0,026$$
 /6/
б/ $G_{22}(\infty) = (1 + \lambda_2 r)^{-1}$

Рис. 6. Угловые распределения у-лучей каскада 180-86 кэВ в ¹⁵⁵ Gd, имплантированном в матрицу Fe / Е_{ИМПЛ.} = 25 кэВ/ для двух противоположных направлений поляризующего поля.

Рис. 7. Угловые распределения у-лучей каскада 180-86 кэВ в ¹⁵⁵ Gd, имплантированном в матрицу Fe / Е_{ИМПЛ.} = 70 кэВ/ для двух противоположных направлений поляризующего поля.

10

в днапазоне энергий /130±220/ кэВ. Использовались те же самые образцы, что и в измерениях ДВУК, и один образец, полученный при имплантации ¹⁵⁵Tb в Fe с V_{импл.} = 25 кВ.

Результаты измерений иллюстрируются на *рис. 6-8.* Из подгонки к экспериментальным точкам $N(\theta, H\pm)_{3KCII.}$ выражения

$$N(\theta, \pm H) = N_0 (1 + b_0 \cos 2(\theta + \Delta \theta))$$
 /8/

определены коэффициенты $\overline{b}_2 = b_2 G_{22} [1 + (2 \overline{\omega}_L r G_2)^2]^{-1/2}$ и углы поворота $\Delta \theta = \frac{1}{2} \arctan(2 \overline{\omega}_L r G_{22})$ исследуемой корреляционной функции каскада 180-86 кэВ для 155 Gd в Fe и Ni.

Рис. 8. Угловые распределения у-лучей каскада 180-86 кэВ в ¹⁵⁵ Gd, имплантированном в матрицу Ni / Еимпл. = 70 кэВ/ для двух противоположных направлений поляризующего поля.

Значения $\bar{\omega}_L$, вычисленные по полученным величинам b_2 и $\Delta \theta$, оказались существенно меньшими по сравнению с результатами измерений ДВУК / *табл. 3*/.

1/ При вычислении ω_L из b₂ использовалось значение коэффициента b₂ невозмущенной функции угловой корреляции каскада 180-86 кэВ, полученное в работе /6/ и исправленное на геометрию нашего эксперимента: b₂ = -0,147<u>+</u>0,006.

² 2/ Значения ω_L (G₂₂) вычислены с учетом G₂₂, полученных в измерениях ДВУК.

в/ Измерения ДВУК для каскада 287-108 кэВ в ¹⁵¹Gd

Исследования проводились с тремя источниками ¹⁵¹Tb, внедренными в железные фольги / $V_{\rm ИМПЛ.} = 70$ кB/. Измерялись временные распределения между фотопиками 287 и 108 кэВ для двух противоположных направлений поляризующего магнитного поля. Положения энергетических окон в у-спектрах, фрагмент схемы уровней ¹⁵¹Cd и кривая распада уровня 108 кэВ приведены на *рис.* 9. Величина периода полураспада уровня 108 кэВ T $\frac{1}{1/2} = /3,17\pm0,15/$ кс, полученная в наших измерениях, хорошо согласуется с данными работы /⁵/.

По результатам трех серий измерений для исследуемого каскада были определены значения релаксационного параметра и частоты ларморовской прецессии: $\lambda_2 = /1,2\pm0,8/.10^8 c^{-1}$ и $\omega_L = /0,43\pm0,04/.10^9 c^{-1}$. Кривая спиновой прецессии, полученная в одной из серий измерений, приведена на *рис. 10*, из которого видно, что, как и в случае ¹⁵⁵ Gd, в Fe для амплитуды функции R(135°, ±H,t) рассматриваемого каскада наблюдается экспоненциальное затухание.

г/ Измерения ИВУК для каскада 287-108 кэВ в ¹⁵¹Gd

Измерения проводились с такими же источниками, как и в исследованиях ДВУК. В сцинтилляционных трактах выделялись энергетические окна на фотопике 108 кэВ

и на участке комптоновского распределения за этим фотопиком, а в тракте Ge(Li)-детектора - участок спектра с энергией 260-310 *кэВ*.

Угловые распределения каскада 287-108 кэВ, измеренные для обоих направлений поляризующего поля, приведены на *рис. 11.* Как и в случае ¹⁵⁵Gd, наблюдаемые значения смещения угловых распределений $\bar{\omega}_L \tau =$ = -/0,268±0,042/ рад и коэффициента функции угловых корреляций b₂ = -0,089±0,011 существенно меньше величины $\omega_L \tau = -/1,97\pm0,21/$ рад, вытекающей из результатов ДВУК.

Рис. 11. Угловые распределения у-лучей каскада 287-108 кэВ в ¹⁵¹Gd, имплантированном в Fe, для двух противоположных направлений поляризующего поля.

4. Параметры ИВУК R(135°, ±Н) в 149,151,153 Gd

Исследования проводились с радиоактивными источниками ¹⁴⁹ Tb,, ¹⁵¹ Tb и ¹⁵³ Tb, внедренными в железные фольги при потенциале 70 кВ. Параметр ИВУК R(135°, ±Н) для каскада 187-165 кэВ в ¹⁴⁹Gd измерен в совпадениях у165 – у187 и у187-у165 кэВ /рис. 12/ с учетом совпадений от комптоновского распределения за этими фотопиками. Даже при относительно небольшой статистике в этих измерениях хорошо прослеживается изменение скорости счета совпадений для разных направлений поляризующего поля. Значения

Рис. 12. Участок у-спектра ¹⁴⁹Tb/a/; фотопики 165 кэВ /б/ и 187 кэВ /в/ в спектрах совпадений с у187 и у165 кэВ соответственно, для двух противоположных направлений поляризующего поля; разности интенсивностей фотопиков 165 кэВ /г/ и 187 кэВ /д/ в спектрах совпадений для противоположных направлений поляризующего поля. величин $R(135^\circ, \pm H) = -0,208\pm0,023$ и $R(225^\circ, \pm H) = +0,214\pm0,020$, полученные соответственно из интенсивностей фотопиков 165 и 187 кэВ, в спектрах совпадений хорошо согласуются между собой, что указывает на отсутствие заметных систематических ошибок в измерениях.

Параметр ИВУК для каскада 652-165 кэВ в 149 Gd определен в совпадениях между фотопиками 652 кэВ, выделяемыми в сцинтилляционных трактах, и у-квантами перехода 165 кэВ, реристрируемых Ge(Li) детектором как R(135°,±H) = +0,117±0,012.

Параметры ИВУК $R(135^{\circ}, \pm H)$ для каскадов 287-108 кэВ и 444-287 кэВ в 151 Gd были определены в нашей предыдущей работе 77 , как: -0,065±0,010 и -0,122±0,022, соответственно.

При исследовании каскадов 102-109 кэВ и 82-129 кэВ в 153 Gd в обоих трактах были установлены цифровые окна на фотопиках 82,102, 109 и 129 кэВ и на участках комптоновского распределения за фотопиками 109 и 129 кэВ. Результаты измерений позволили определить значения параметров ИВУК для каскада 102-109 кэВ как: R(135°, ±H) = -0,029±0,006 и R(225°, ±H) = +0,022±0,005 и для каскада 82-129 кэВкак: R(135°, ±H) = -0,067±0,022 и R(225°, ±H) = +0,054±0,019.

5. ОБСУЖДЕНИЕ

а/ Сверхтонкие поля

Впервые сверхтонкое поле на ядрах Gd в матрице Fe было измерено Гродзинсом и др. $^{/8/}$ и Боэмом и др. $^{/9/}$. В этих работах измерения проводились методом ИВУК с ядрами 156 Gd, внедренными в железные фольги в процессе их кулоновского возбуждения ионами 16 O с энергией 36 *МэВ*. Клеппер и др. $^{/10/}$ исследовали H_{Gd}(Fe) и H_{Gd}(Ni) методом ДВУК при кулоновском возбуждении ядер 156 Gd альфа-частицами с энергией 4÷10 *МэВ*.

Значение Н_{СА}(Fe), полученное в наших измере-

ниях в 155 Gd, согласуется с результатами указанных выше работ и имеет большую точность / *табл.* 4/.

Результаты наших исследований $H_{Gd}(Ni)$ и измерений Клеппера и др. /10/ резко отличаются между собой / табл. 4/. Если учесть, что условия наших измерений ДВУК были существенно лучше, чем в работе /10/, в которой измерялась частота ларморовской прецессии для состояния 89 кэВ в 156 Gd с временем жизни, почти в три раза меньшим по сравнению с временем жизни уровня 86 кэВ 155 Gd, то, по-видимому, можно отдать предпочтение нашему результату $H_{Gd}(Ni)$.

Обнаруженные в измерениях ДВУК явные релаксационные процессы в Fe и, по-видимому, в Ni-фольгах, могут свидетельствовать о существовании в этих образцах /кубическая решетка/ магнитных динамических взаимодействий, обусловленных электронной спиновой релаксацией. Такие взаимодействия в металлах с примесными ядрами ряда редкоземельных элементов ранее наблюдались в работах /11-13/.

б/ Ослабление эффекта ИВУК

Как уже отмечалось выше, измерения ИВУК приводят к средним значениям $\bar{\omega}_L$ значительно меньшим, чем это вытекает из измерений ДВУК. Расхождения остаются и после учета динамических эффектов. Ослабление $\bar{\omega}_L$ можно понять, если предположить, что на часть ядер имплантированных ионов не действует сверхтонкое поле и это приводит к сильному подавлению средней величины $\overline{\Delta \theta_2}$ и увеличению амплитуды \bar{b}_2 . В этом случае измеряемая функция ИВУК будет представлять собой суперпозицию двух функций:

 $W = fW(\theta \pm H) + (1 - f)W(\theta, H = 0),$ (4/

где f - часть ядер, на которые действует сверхтонкое поле

D EX (
00-00T		
саскада		
к для к е н Ni		
MANDS MOMBE		
змерені рованн		
таты и иланти		
Peaynb ⁵ Gd, BN		
3 15		

Tabauya 3

Матрица	И им	п. Б2	$\Delta \theta_2$	<u>ق</u> , .10 ⁸ ((c ⁻¹)	$\bar{\omega}_{L}^{(G_{22}).10}$	(c ⁻¹)
	(ĸB	~	– (мрад) -	из Б2	из $\Delta \theta$ 2	из Б2	из $\Delta \theta_2$
Fe	10	-0,050(3)	225(27)	1,42(10)	0,25(4)	0,99(16)	0,56(15)
	07 7	-0,0/0(4)	90 (24)	101,08,0	0,14/2/	1	
Ņ	70	-0,119(4)	87(12)	0,37(6)	0,13(2)	нет.реш.	0,18(8)

4	
Ταδλυψα	

Значения H_{Gd} (Fe) и H_{Gd} (Ni)

^т ур Метод Метод Н (нс) имплантации измер. (кгс) Литература	0(9) К.В. ¹⁶ 0(36 МэВ) ИВУК 180(90) Гродзинс и др. ^{/8/} ¹⁵⁶ Gd 200(50) Боэм и др. ^{/9/}	К.В.а (4+10 МэВ) ДВУК 260(30) Клеппер и др./10/	1 (10) импл. ¹⁵⁵ Тb(70 кВ) ДВУК 213(15) Настояш.работа	0(9) К.В.а (4+10 МэВ) ДВУК 175(45) Клеппер и др./ ¹⁰ /	1(12) импл. ¹⁵⁵ Тb (70кB) ДВУК 29(3) Настояш. работа
$ \begin{array}{c c} r \\ B \\ B \\ H \\ H$	3,20(9) K.F	K.F	9,71 (10) им	3,20(9) K.	9,71(12) ил
o E _{yp} (k∍E	89		86	89	1 86
Матрица Ядрс	¹⁵⁶ Gd .Fe		¹⁵⁵ Gd	156Gd	¹⁵⁵ Gd

$$\begin{split} & \mathsf{W}(\theta, \pm \mathbf{B}) = 1 + \frac{\mathbf{b}_{2}^{\prime} \cos 2(\theta + \Delta \theta)}{\sqrt{1 + (2\omega_{\mathrm{L}} \tau \mathbf{G}_{22}(\infty))^{2}}} , \\ & \mathsf{W}(\theta, \mathbf{H} = 0) = 1 + \mathbf{b}_{2} \cos 2\theta , \\ & \mathsf{b}_{2}^{\prime} = 3\mathbf{A}_{2}\mathbf{G}_{22}(\infty)/4 + \mathbf{A}_{2}\mathbf{G}_{22}(\infty) , \\ & \mathsf{b}_{2} = 3\mathbf{A}_{2}/4 + \mathbf{A}_{2} , \\ & \Delta \theta = \frac{1}{2} \operatorname{arctg}[2\omega_{\mathrm{L}} \tau \mathbf{G}_{22}(\infty)] , \\ & \mathbf{G}_{22}(\infty) = (1 + \lambda_{2} \tau^{-1}) . \end{split}$$

Сравнивая /3/ и /4/, можно получить:

$$(\bar{\omega}_{L}\tau) = \frac{fG_{22}(\omega_{L}\tau G_{22})}{fG_{22} + (1-f)[1 + (2\omega_{L}\tau G_{22})^{2}]},$$
 /5/

$$\left(\frac{\bar{\mathbf{b}}_2}{\mathbf{b}_2}\right)^2 = \frac{\mathbf{f}\mathbf{G}_{22}[\mathbf{f}\mathbf{G}_{22} + 2(1 - \mathbf{f})]}{1 + (2\omega_L^T \mathbf{G}_{22})^2} + (1 - \mathbf{f})^2.$$
 /6/

Используя эти соотношення и принимая G_{22} , вытекающие из измерений ДВУК, можно определить коэффициент f по значениям $\bar{\omega}_L$ и \bar{b}_2 / табл. 5/. В соответствии с ожидаемым значения $\bar{\omega}_L$ и \bar{b}_2 по мере увеличения Z матрицы и с понижением энергии имплантации уменьшаются.

Значения f и λ_2 , полученные в настоящей работе при исследовании ДВУК и ИВУК при распаде ¹⁵⁵Tb и ¹⁵¹Tb, имплантированных в железные фольги, согласуются между собой / *табл. 5*/. Это позволяет заключить, что для всех изотопов Tb, имплантированных в матрицы Fe в идентичных условиях, значения H_{Gd} (Fe), f и λ_2 одинаковы, т.е. полученные значения H_{Gd} (Fe), f и λ_2 могут быть использованы для оценки g -факторов короткоживущих возбужденных состояний изотопов по результатам исследований ИВУК.

Таблица 5

Значения коэффициентов f для ядер Gd, имплантированных в Fe и Ni-фольги

Матрица	Ядро	V импл. (кВ)	$\lambda_2 [10^8 \text{ c}^{-1}]$	f(b ₂)	$f(\bar{\omega}_L)$
	¹⁵⁵ Gd	25	1,27(43)	0,55(4)	0, 65(6)
Fe	¹⁵⁵ Gd	70	1,27(43)	0,71(6)	0,81(5)
	¹⁵¹ Gd	70	1,20(80)	0,57(30)	0,76(4)
Ni	¹⁵⁵ Gd	70	0,37(16)	0,51(9)	0,40(8)

в/ g - факторы состояний 108 и 395 кэВ в ¹⁵¹Gd, 165 кэВ в ¹⁴⁹Gd, 109 и 129 кэВ в ¹⁵³Gd

Из величины сверхтонкого магнитного поля H_{Gd} (Fe)= = -/213±15/ кгс и частоты ларморовской прецессии каскада 287-108 кэВ вытекает значение g-фактора для состояния 108 кэВ ¹⁵¹Gd g = -0,42±0,05.

В работе Бэдикэ и др./14/ в измерениях ИВУК с использованием внешнего магнитного поля g-фактор этого уровня был определен как g = -0,49+0,07.

Можно показать, что параметр ИВУК $R(135^\circ, \pm H)$ с учетом коэффициента f и фактора ослабления $G_{22}=(1+\lambda_2 r)^1$ определяется следующим выражением

$$R(135^{\circ}, \pm H) = -\frac{6fA_{22}}{4 + A_{22}[1 - f(1 - G_{22})]} \cdot \frac{2\omega_{L} \sigma_{22}}{1 + (2\omega_{L} \sigma_{22})^{2}} \cdot \frac{77}{1 + (2\omega_{L} \sigma_{22})^{2}}$$

Тогда, исходя из значений параметров $R(135^\circ, \pm II)$ для каскадов 287-108 кэВ и 444-287 кэВ, можно определить величины g-факторов для состояний 108 и 395 кэВ как g = -0,47±0,14 и g = -1,65±0,50 соответственно. Полученная таким образом величина g-фактора состояния 108 кэВ хорошо согласуется со значением, полученным методом ДВУК. Это свидетельствует о том, что учет коэффициента f и параметра релаксации при определении g-факторов возбужденных состояний из величины $R(135^\circ, \pm H)$ оправдан.

Аналогично определены значения g-факторов для состояний 165 кэВ в ¹⁴⁹ Gd, 109 и 129 кэВ в ¹⁵³ Gd.

Значения g-факторов и магнитных моментов, вытекающих из проведенных исследований, приведены в *табл.6*.

Таблица б

g -факторы и магнитные моменты нижних возбужденных состояний в ядрах Gd с A = 149, 151, 153

Я дро	Е _{ур} (кэВ)	I "	g	µ (я.м.)
¹⁴⁹ Gd ¹⁵¹ Gd ¹⁵³ Gd	165 108 395 109 129	5/2 5/2 3/2 5/2 3/2 3/2	-0,36(9) -0,43(5) -1,65(50) +0,16(6) +0,22(8)	-0,90(23) -1,08(13) -2,48(75) +0,40(15) +0,33(12)

6. ЗАКЛЮЧЕНИЕ

Основные результаты, полученные в этой работе, сводятся к следующему:

1. Уточнены значения сверхтонких магнитных полей, действующих на ядра Gd в железной и никелевой матрицах. 2. Определена доля имплантированных в матрицы Fe и Ni ядер, "чувствующих" сверхтонкое магнитное поле.

3. Впервые определены значения g-факторов и магнитных моментов для состояний 165 кэВ в ¹⁴⁹ Gd, 395 кэВ в ¹⁵¹ Gd, 109 и 129 кэВ в ¹⁵³ Gd.

Для состояния 108 кэВ в ¹⁵¹Gd значения этих величин уточнены по сравнению с известными результатами.

В заключение авторы выражают глубокую благодарность проф. К.Я.Громову за поддержку и постоянный интерес к работе.

ЛИТЕРАТУРА

- 1. Афанасьев В.П. и др. ОИЯИ, 13-4763, Дубна, 1969.
- 2. Аликов Б.А. и др. ОИЯИ, Р13-9607, Дубна, 1976.
- 3. Балдин Б.Ю., Крумштейн З.В., Ронжин А.И. ОИЯИ, 13-9850, Дубна, 1976.
- 4. Аликов Б.А. и др. ОИЯИ, Р13-9608, Дубна, 1976.
- 5. Берлович Э.Е., Василенко С.С., Новиков Ю.Е. Времена жизни возбужденных состояний атомных ядер. "Наука", Л., 1972.
- 6. Hrynkiewicz A.Z. e.a. Nucl. Phys., 1966, 80, p.608.
- 7. Afanasiev V.P. e.a. JINR, E6-8327, Dubna, 1974.
- 8. Grodzins L., Borchers, Hagemann G.B. Phys. Lett., 1966, 21, p.214.
- 9. Boehm F., Hagemann G.B., Winter A. Phys. Lett., 1966, 21, p.217.
- 10. Klepper O., Spehe H., Wertz N. Z. Phys., 1968, 217, p.425.
- 11. Deutch B.I., Bonde Nielson L., Bernas H. Phys. Lett., 1968, 27B, p.209.
- 12. Waddington T.C. e.a. Nucl. Reactions Induced bz Heavy Ions. N.-H. Publ. Comp., 1970, 438.
- 13. Herskind B. Hyperfine Interactions in Excited Nuclei. Rehovot 1970, 987, N.-Y.-London-Paris, 1971.
- 14. Badica T. e.a. Z. Phys., 1976, A277, p.217.

Рукопись поступила в издательский отдел 30 мая 1977 года.