ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

3746/277

......

C 341.26

M-19

11 11 11

......

19/12-77

P6 - 10693

М.М.Маликов, Т.М.Муминов. Р.Р.Усманов

О СТРУКТУРЕ НИЖНИХ УРОВНЕЙ ¹⁴⁹ ТЬ

P6 - 10693

М.М.Маликов, Т.М.Муминов, P.P.Усманов²

О СТРУКТУРЕ НИЖНИХ УРОВНЕЙ ¹⁴⁹ Ть

Направлено в ЯФ

¹Институт ядерной физики АН УзССР, Ташкент. ²Самаркандский государственный университет. Маликов М.М., Муминов Т.М., Усманов Р.Р. P6 - 10693 О структуре нижних уровней ¹⁴⁹ ¹⁴⁹ Tb

Методом е-у-задержанных совпадений измерены периоды полураспада возбужденных состояний ¹⁴⁹Tb с энергиями 101,0 и 207,6 кэВ Т у = = 0,45±0,05 нс и Т у ≤ 0,2 нс, соответственно. Определено, что мультипольность переходов 101,0 и 106,6 кэВ, разряжающих рассматриваемые состояния, - типа M1+E2.

На основе полученных результатов проводится обсуждение природы нижних уровней ¹⁴⁹Ть и предлагается рассматривать основное и возбужденные состояния 101,0 и 207,6 кэВ как деформированные - 5/2⁺/402/, 7/2⁺/404/ и 5/2⁺/413/.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1977

P6 - 10693

Malikov M.M., Muminov T.M., Usmanov R.R.

On the ¹⁴⁹ThLower Level Structure

By the e-y-delayed coincidence method there were measured the half-lives of excited states of ¹⁴⁹ Tb with the energies of 101.0 and 207.6 keV: $T_{M} = 0.45 \pm 0.05$ nsec and $T_{M} \leq 0.2$ nsec, respectively. It was determined that the multipole orders of 101.0 and 106.6 keV transitions, discharging the states considered, are of the M1+E2 type.

Basing on the results obtained the nature of the 149 Tb lower levels is discussed. The ground and excited states 101.0 and 207.6 keV are suggested to be considered as deformed ones $5/2^+/402/$, $7/2^+/404/$, $5/2^+/413/$.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research, Dubna 1977

Распад ¹⁴⁹ Dy \rightarrow ¹⁴⁹ Tb ($T_{\frac{1}{2}} = 4,6 \text{ мин}$ слабо изучен. Схема распада¹⁴⁹ Dy построена на основе исследования спектров у -лучей и у-у -совпадений в работе Зубера и др. ^{/1/}. Из *a* -распада ¹⁵³ Ho ,¹⁴⁹ ^g Tb и¹⁴⁹ ^m Tb и β распада ¹⁴⁹ g Tb и ^{149m} Tb основное и изомерное состояния ¹⁴⁹ Tb интерпретируются как состояния d_{5/2} и h_{11/2}, соответственно ^{/2-6/}. Сведения о мультипольностях переходов и о квантовых характеристиках возбужденных состояний ¹⁴⁹ Tb в литературе отсутствуют.

В настоящей работе были измерены времена жизни возбужденных состояний ¹⁴⁹ ТЬ с энергиями 101,0 и 207,6 кэВ и определены мультипольности переходов 101,0 и 106,6 кэВ.

ЭКСПЕРИМЕНТАЛЪНЫЕ РЕЗУЛЬТАТЫ

Исследования проводились с радиоактивными источниками изобар с A=149. Эти изобары получались в реакции глубокого расщепления тантала протонами с энергией 660 *МэВ* на синхроциклотроне ОИЯИ. При помощи электромагнитного масс-сепаратора непосредственно из облученных мишеней выделялись изотопы с A=149. После разделения основная активность источников была обусловлена распадом ¹⁴⁹ Dy / $T_{1/2}^{1} = 4,6$ *мин*/ μ^{149m} Tb / $T_{1/2}^{1} =$ = 4.3 *мин*/.

Измерения проводились на многоканальном времениом анализаторе $^{/7/}$, созданном на базе магнитнолинзового β -спектрометра типа Герхольма и сцинтилляционного γ -спектрометра с детектором, состоящим из пластического сцинтиллятора типа NE104/\$25\$25 мм/

С 1977 Объединенный инспинут ядерных исследований Дубна

и фотоумножителя типа XP1O2O. Временное разрешение установки в условиях эксперимента составляло $2r_0 = 0.8 \ Hc.$

Измерялись временные распределения совпадений К -конверсионных электронов переходов 101 и 106 кэВ с комптоновским распределением у -лучей с энергией выше 100 кэВ / использовано ~ 10 источников/. Результаты этих измерений позволили определить периоды полураспада возбужденных состояний ¹⁴⁹ Tb с энергией 101 и 207 кэВ как $T_{1/2} = /0,45\pm0,05/$ ис и $T_{1/2} = 0,2$ ис, соответственно. Измеренные временные распределения совпадений у - К101 и у- К106 кэВ, фрагмент схемы распада и участок спектра конверсионных электронов ¹⁴⁹ Dy приведены на *рисунке*.

Спектры конверсионных электронов ¹⁴⁹ Dy измерялись с помощью вышеуказанного линзового /3-спектрометра при разрешении Δ Hp/Hp \approx 3%. Из отношений интенсивностей K и L конверсионных электронов и получеиной оценки $a_{\rm K}$ и $a_{\rm L}$ /по известной мультипольности MI + + 40% E2 перехода 165 кэВ в дочернем ¹⁴⁹Gd / для переходов 101 и 106 кэВ в ¹⁴⁹Tb следует заключить, что их мультипольности - типа MI+E2. Полученные отношения K/L для переходов 101 кэВ /K/L = 5,5±1,5/ и 106 кэВ /K/L = 5±2/ позволяют оценить значения δ^2 = = E2/MI как \leq 0,2 и \leq 0,5, соответственно.

ОБСУЖДЕНИЕ

По определенным значениям периодов полураспада возбужденных состояний 1О1 и 2О7 кэВ в 149 Ть были оценены значения приведенных вероятностей переходов B(M1), разряжающих эти уровни, и их факторы запрета относительно теоретических оценок по Мошковскому F^M(M1)и Нильссону F^N(M1). Эти значения приведены в *maблице*.

Значение фактора торможения M1 - перехода 101 кэВ B^{149} Tb хорошо согласуется с соответствующими величинами для M1 переходов $(7/2^+ \rightarrow 5/2^+)$ связывающими первые возбужденные и основные состояния в соседних ядрах 147,149,151 Eu и 153 Tb.⁸ На основе этого можно заключить, что основное и возбужденное состояния с

adpe ¹⁴⁹ Tb	$\frac{1}{3} \beta = 0,1$		free g _s =g s	0,09	(0,07)	≤ 1,5	(< 0, 1)	
	Ē	(F ^N	g _s =0,6g	0,18	(0,15)	2 √	(≤ 2,3)	
	F ^M (M1)			75				
реходов в	B(M 1)	(я. м.)2		2.2.10-2		≥3,7•10 ⁻²		
Вероятности М1-пе	μ	K [Nn _z A]	КОН.	5/2+	5/2/402/	7/2+	7/2/404/	
			нач.	7/2+	7/2/404/	5/2+	5/2/413/	
	Ë,	$^{\mathrm{K} \ni \mathrm{B}}_{(\delta^2)}$	•	101,0	(<u> </u>	106,6	(<u> </u>	
	E _{yp} ,	кэВ (Т _{1/2} , нс)	-	101,0	(0,45+0,05)	207,6	(≤ 0,2)	

энергией 101 кэВ в ¹⁴⁹ Ть имеют такую же или близкую природу, как и указанные состояния $5/2^+$ и $7/2^+$ в ядрах 147, 149. 151 Е и 153 Ть.

До недавнего времени эти уровни рассматривались как сферические $d_{5/2}$ и $g_{7/2}$ состояния. Однако результаты последних исследований структуры состояний ^{149.151} Еu и ¹⁵³ Тb в ядерных реакциях ^{/9,10/} показали, что на состояниях $5/2^+$ и $7/2^+$ наблюдаются полосы со специфическими свойствами, и их можно интерпретировать как ротационные полосы, основанные на слабо деформированных / $\beta \approx 0,1/$ одночастичных состояниях $5/2^+$ [402] и $7/2^+$ [404]. В одночастичной схеме ближайшая орбиталь - $5/2^+$ [413], поэтому можно предположить, что уровень 207 кэВ определяется этой орбиталью. Значения факторов торможения по Нильссону для М1-переходов IOI и IO6 кэВ близки к 1. Учет парных корреляций приводит к уменьшению факторов торможения.

Неопределенность в значениях $\delta^2 = E2/MI$ рассматриваемых переходов не позволила нам проанализировать вероятности E2-компонент переходов. По-видимому, основное и возбужденные состояния IOI и 2O7 кэВ в ядре ¹⁴⁹ Ть следует рассматривать как деформированные состояния 5/2⁺[402], 7/2⁺[404] и 5/2⁺[413].

Авторы благодарны доктору К.Зуберу за полезные обсуждения.

ЛИТЕРАТУРА

- 1. Зубер К. и др. Прогр. и тезисы докл. XXIV Совещания по ядерн. спектр. и структ. ат. ядра, Харьков, 1974, с. 105.
- 2. Macfarlane R.D. Phys. Rev., 1962, 126, 274.
- 3. Macfarlane R.D. Phys. Rev., 1963, 130, 1491.
- 4. Головков Н.А. и др. Изв. АН СССР, сер.физ., 1967, 31, 1618.
- 5. Арлыт Р. и др. Изв. АН СССР, сер.физ., 1971, 35, 1612.
- 6. Вылов Ц. и др. ОИЯИ, Р6-6511, Дубна, 1972.

6

Габлица

7

.

- 7. Аликов Б.А. и др. Прогр. и тезисы докл. XXVII Совещ. по ядерн. спектр. и структ. атомного ядра, Гашкент, 1977, с. 511.
- 8. Марупов Н.З., Морозов В.А., Муминов Т.М. ОИЯИ, P6-9005, Дубна, 1975.
- 9. Leigh J.R. e.a. ANU-P/655 Canberra (1976). 10. Devons M.D., Sugihara T., Sr., Phys. Rev., 1977, C15, 740.

Рукопись поступила в издательский отдел 25 мая 1977 года.