ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

25/v11-77 P6 - 10561

F- 874 2781/2-77 К.Я.Громов, Т.Крецу, В.В.Кузнецов, Г.Макарие

0 **β** -РАСПАДЕ 137 Св

......

P6 - 10561

К.Я.Громов, Т.Крецу, В.В.Кузнецов, Г.Макарие

0 **β** -РАСПАДЕ 137 Св

Направлено в "Известия АН СССР" /сер. физ./

*Политехнический институт, Бухарест

адерных вспладования БИБЛИСТЕКА Громов К.Я. и др.

О β -распаде ¹³⁷Св

При помощи безжелезного бега-спектрометра СТ-2 измерен β^{-} -спектр ¹³⁷Св. Участок β -спектра 690-1060 кэВ, принадлежащий бета-переходу второго запрещения $7/2^{+} \cdot 3/2^{+}$, аппроксимировался по программе "FUMILI" с включением фактора формы S(E) – $q^{2} + \lambda^{2}p$. Получено $\lambda^{2} = (0,013\pm0,005)$. Граничные энергии и интенсивности компонентов β^{-} -спектра ¹³⁷Св получены равными: Е $\beta_{1} = (1177\pm3)$ кэВ, $J_{\beta_{1}} = (6,4\pm0,5)$ %; Е $\beta_{2} = (513\pm2)$ кэВ к $J_{\beta_{2}} = (93,6\pm0,5)$ %. Получены значения $a_{\text{ПОЛН}} = (0,114\pm0,003)$, $a_{\text{K}} = (0,093\pm0,003)$ и $J_{\text{K}}/J_{\text{L}+\text{M}+\dots} = (43\pm0,1)$. Приведен теоретический обзор о факторе формы для бета-спектров вгорого запрешения $\Delta J = 2$, $\Delta \pi = +1$.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1977

Gromov K.Ya. et al.

P6 - 10561

On the β^- Decay of ¹³⁷Cs

The β^{-} spectrum of ¹³⁷Cs has been measured using the iron-free β spectrometer CT-2. The β -spectrum part of 690-1060 keV, ascribed to the β -transition of the second forbiddenness $7/2^{+} - 3/2^{+}$, has been approximated according to the programme "FUMILI" including the shape factor S(E)- $q^{2} + \lambda^{2}p$. The value has been obtained $\lambda^{2} -$ = (0.013 ± 0.005). The end point energies and the intensities of the components of ¹³⁷Cs β spectrum have been found to be : E β_{1} = (1177 ± 3) keV, β_{1} = (6.4 ± 0.5)%, E β_{2} = (513 ± 2)keV and $J_{\beta_{2}}$ = (93.6 ± 0.5)%. There have been obtained the values $a_{tot} = (0.114 \pm 0.003), a_{K} = (0.093 \pm 0.003)$ and $J_{K}/J_{1+M+...} =$ = (43 ± 0.1). Theoretical review of the shape factor has been made for β spectra of the second forbiddenness $M = 2, \Delta n = +1$.

Preprint of the Joint Institute for Nuclear Research, Dubna 1977

С 1977 Объединенный инспинут ядерных исследований Дубна

1. ВВЕДЕНИЕ

Исследованию бета-распада 137 Св посвящено много работ /1/. Большой период полураспада - 30,174 года /2/ и простая схема распада 137 Св /*рис.* 1/ позволяют использовать его в качестве эталона во многих спектроскопических исследованиях.

 β^{-} -спектр ¹³⁷Сs состонт из двух компонентов. Компонент β_1 соответствует бета-переходу второго запрещения / $\Delta J = 2$, $\Delta \pi = +1/$, компонент β_2 - уникальному бета-переходу первого запрещения / $\Delta J = 2$, $\Delta \pi = -1/$. Переход с энергией 661,65 кэВ, разряжающий возбужденное состояние 11/2⁻ и идущий в основное состояние 3/2⁻¹³⁷Ва, является переходом типа M4.

При обработке измеряемого бета-спектра ¹³⁷Cs необходимо вводить факторы формы S(E) для каждого составляющего бета-спектр компонента. При этом экспериментальное распределение бета-частиц аппроксимируется по формуле, приведенной, например, в работе /3/

$$\frac{N\delta}{EpF(E, Z)} = C \cdot S(E) (E_0 - E)^2 , \qquad /1/$$

где С - нормировочный коэффициент.

Граничная энергия E₀ и параметры, характеризующие фактор формы S(E), при обработке являются свободными параметрами. До сих пор в литературе /1/

имеются расхождения экспериментальных данных о факторе формы S(E) для компонента бета-спектра β_1^{137} Cs, соответствующего бета-переходу второго запрещения / $\Delta J = 2$, $\Delta \pi = +1/$.

2. О ТЕОРЕТИЧЕСКОМ ФАКТОРЕ ФОРМЫ БЕТА-СПЕКТРА S(E) ДЛЯ БЕТА-ПЕРЕХОДОВ ТИПА / ΔJ = 2, $\Delta \pi$ = +1/, И / ΔJ = 2, $\Delta \pi$ = -1/

2.1. Фактор формы бета-спектра S(E) для бета-переходов второго запрещения можно выразить через три матричных элемента $^{/4,5/}$, приведенных в *табл.* 1. При этом пренебрегается членами, содержащими матричный элемент тензора третьего ранга $C_A < S_{ijk} >$, поскольку они по существу не влияют на зависимость S(E) от энергии.

Таблица 1 Ядерные матричные элементы для бета-переходов второго запрещения

Обозначения		Ядерные матричные элементы
$\eta \mathbf{x}$	C _V <i< th=""><th>$R_{ij} > = -(\frac{8\pi}{15})^{\frac{1}{2}} (2J_{i} + 1)^{-\frac{1}{2}} < J_{f} C_{V} T_{220} r^{+} J_{j} >$</th></i<>	$R_{ij} > = -(\frac{8\pi}{15})^{\frac{1}{2}} (2J_{i} + 1)^{-\frac{1}{2}} < J_{f} C_{V} T_{220} r^{+} J_{j} >$
ηu	C _A <i< th=""><th>$T_{ij} \ge -(-\frac{16\pi}{5})^{\frac{1}{2}} (2J_{i}+1)^{-\frac{1}{2}} < J_{f} C_{A}T_{221}\tau^{+} J_{i} > 0$</th></i<>	$T_{ij} \ge -(-\frac{16\pi}{5})^{\frac{1}{2}} (2J_{i}+1)^{-\frac{1}{2}} < J_{f} C_{A}T_{221}\tau^{+} J_{i} > 0$
ηу	C <i< th=""><th>$A_{ij} \ge -(\frac{16\pi}{3})^{\frac{1}{2}} (2J_{i}+1)^{-\frac{1}{2}} < J_{f} C_{V}\gamma_{5}T_{211}r^{+} J_{i} > -\frac{1}{2}$</th></i<>	$A_{ij} \ge -(\frac{16\pi}{3})^{\frac{1}{2}} (2J_{i}+1)^{-\frac{1}{2}} < J_{f} C_{V}\gamma_{5}T_{211}r^{+} J_{i} > -\frac{1}{2}$

Фактор формы бета-спектра для такого типа бетапереходов можно получить в результате преобразования общих формул, например ^{/6/}.

$$S(E) \sim q^{2}L_{0} + 9\lambda^{2}L_{1} = q^{2} + \lambda^{2}p^{2}, \qquad /2/$$

где

$$\lambda^{2} = \left[((\Lambda - 1)x + u/2) / ((\Lambda - 2)x + u) \right] .$$
 /3/

На основе гипотезы сохранения векторного тока $^{/7/}$ получается отношение релятивистского матричного элемента С _V<iA _{ii} > и нерелятивистского С _V<R _{ii} >

$$\Lambda = -\frac{y}{\xi x} = \frac{C_V < iA_{ij} >}{\xi C_V < R_{ij} >} = \lambda_0 + (E_0 - 2, 5)/\xi, \qquad /4/$$

где ${
m E}_0$ - максимальная энергия бета-частиц спектра, и

$$\xi = \alpha Z/2R$$
 /5/

4

5

a - постоянная тонкой структуры, Z и R - атомный номер и радиус ядра, соответственно. Для λ_0 существуют два теоретических выражения:

$$λ_0 = \begin{cases}
2,40 \text{ независимо от ядерного потенциала}^{/8/} \\
3 - ε_2, где ε_2 = < r^4 > / R^2 < r^2 > \frac{/9/}{}.
\end{cases}$$

По модели оболочек с учетом j-j - взаимодействия ядер с нечетным массовым числом А получаются довольно простые формулы для нерелятивистских матричных элементов С $_V \le R_{ij} \ge \mu C_A \le iT_{ij} >$, из которых можно получить отношение:

$$\frac{u}{x} = \frac{C_{A} < iT_{ij}}{C_{V} R_{ij}} = \frac{C_{A}}{C_{V}} [j_{n}(j_{n}+1) - l_{n}(l_{n}+1) + l_{p}(l_{p}+1) - j_{p}(j_{p}+1)] / 7 / 2$$

Так как параметр λ^2 /формула /2// зависит от отношения последних двух матричных элементов к первому, приведенных в *табл.* 1, то можно положить для упрощения x = 1, и тогда из формулы /2/ получаем

$$\lambda^{2} = \left[(\Lambda - 1 + u/2) / (\Lambda - 2 + u) \right]^{2}.$$
 /8/

В этом случае

$$\eta = C_{V} < R_{ij} > .$$
 (9/

Значение η можно определить по экспериментальным данным о периоде полураспада T_{1_2} , граничной энергии E_0 и факторе формы бета-спектра S(E) по формуле

$$\eta^2 = \frac{6289}{T_{\frac{1}{2}} f_{C}}, \qquad /10/$$

где

$$f_{C} = \int_{1}^{E} S(E)pE(E_{0}-E)^{2} F(E, Z)dE.$$
 /11/

В случае бета-перехода β_1 нейтрон состояния $2d_{3/2}$ 137 Cs переходит в протон состояния $1g_{7/2}$ 137 Ba и тогда из формулы /7/ получается

$$u = 2 \frac{C_A}{C_V} . \qquad (12/$$

В работе $^{/11/}$ даны результаты расчетов параметра ϵ_2 /формула /6//

$$\epsilon_{2} = \frac{\langle 1g_{7/2} | \mathbf{r}^{4} | 2d_{3/2} \rangle}{\mathbf{R}^{2} \langle 1g_{7/2} | \mathbf{r}^{2} | 2d_{3/2} \rangle} .$$
 /13/

Расчеты выполнены при использовании волновых функций как для потенциала гармонического осциллятора /ГО/, так и для потенциала Саксона-Вудса /С-В/:

$$\epsilon_2(\Gamma.0.) = 1,12$$
 $\Lambda(\Gamma.0.) = 1,94$ /14/
 $\epsilon_2(C.-B.) = 1,14$ $\Lambda(C.-B) = 1,92$.

Для определения параметра λ^2 /формула /8// необходимо дополнительно знать отношение коэффициентов С_A и С_V, определяющее долю аксиально-векторного и векторного взаимодействия при бета-распаде.

В работе /11/ при расчетах принято С_A/С_V=-1,24, а в работе /12/ по большому числу существующих экспериментальных данных это соотношение получено равным - /1,262±0,008/.

Используя вышеуказанные значения Λ /формулы /4/, /6/, /14// и С_A/С_V, получаем значения для λ^2 / табл.2/ по формуле /8/.

Экспериментальное определение параметра λ^2 имеет большое значение для проверки вышеизложенных теоретических представлений.

По экспериментальному значению λ^2 методом минимизации χ^2 можно определить оптимальные значения

6

7

 $Tаблица \ 2$ Расчетные значения параметра λ^2

Α	C _A /C _V	u	λ^2
2,46	-1,24	-2,48	0,0118
1,94	-1,24	-2,48	0,0139
1,92	-1,24	-2,48	0,0156
2,46	-1,262	-2,524	0,0092
1,94	-1,262	-2,524	0,0155
1,92	-1,262	-2,524	0,0172

параметров Λ и $u^{/11/}$ и по формулам /10/ и /11/ - получить экспериментальные значения матричных элементов / maбл. 1/.

2.2. Для уникальных бета-переходов первого запрещения / $\Lambda J = 2$, $\Lambda \pi = -1/$ фактор формы бета-спектра S(E) определяется однозначно, так как в нем содержится в основном только один матричный элемент. Теоретическое выражение фактора формы бета-спектра S(E) для уникальных бета-переходов первого запрещения записывается следующим образом $\frac{16}{7}$

$$S(E) = q^2 + 9L_1/L_0$$
 /15/

Функции L_0 и L_1 рассчитаны и сведены в таблицах работы $^{/3/}$. Так как $L_1 \approx p^2/(3!!)^2$ и $L_0 = 1$, то выражение /15/ записывается обычно в виде

$$S(E) = q^2 + p^2$$
 . (16)

Исследования бета-спектров для ряда уникальных бета-переходов первого запрещения ^{/13/}показали, что не наблюдается заметного отклонения экспериментального фактора формы от теоретического /формула /15//.

3. УСЛОВИЯ ЭКСПЕРИМЕНТА И РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ

1

3.1. Метод измерений и обработка бета-спектра

Источник ¹³⁷Сs был приготовлен при помощи электромагнитного масс-сепаратора /14/ - ионы ¹³⁷Сs внедрялись в алюминиевую фольгу толщиной 4,86 *мг/см*². Глубина внедрения при ускоряющем напряжении 20 кВ составила не более 15 мкг/см^{2/15/}Размеры полученного таким образом источника составляли 3 x 2 мм². Бета-спектр ¹³⁷Cs исследовался при помощи безжелезного бетаспектра с тороидальным магнитным полем /16/ при максимальной трансмиссии $T \cong 20\%$ и разрешающей способности R = 1,1%. При исследовании формы бета-спектров важно обращать внимание на факторы, которые могут привести к искажению измеренного спектра /17,18/. Из проведенных нами методических исследований /19/следует, что искажения могут быть обусловлены в основном фоновыми условиями и функцией отклика спектрометра. Поэтому при обработке β_1 компонента нами взят участок бета-спектра в области энергий 69О-1060 кэВ, чтобы обеспечить соотношение чисел счета импульсов к фону >5. /Интенсивность источника была ~ 20 µ Ci /. Фоновое распределение под спектром учитывалось согласно работе 719/.

Поправки на форму линии - $C_0(E)^{/20/}$ зависят как от реальной функции отклика спектрометра, так и от фактора формы спектра S(E). На рис. 2 показаны рассчитанные нами поправки Со(Е) для двух крайних экспериментальных значений параметра λ^2 . Как видно из рис. 2, для выбранного нами участка спектра, принадлежащего бета-переходу β_1 , зависимости поправок Со (Е) от энергии одинаковы. Используемый метод обработки бета-спектров описан нами в работе /21/. В случае обработки спектра, соответствующего бета-переходу β_1 , экспериментальное распределение аппроксимировалось с помощью подпрограммы: "FUMILI" / 22/ формуле /1/, при этом параметр λ^2 /формула /2// и значение граничной энергии Е 01 принимались свободными. После вычитания компонента β_1 из измеренного

экспериментального спектра определялись интенсивность J_{β_2} и граничная энергия E_{02} компонента β_2 , при этом в формулу /1/ вводился фактор формы S(E), имеющий вид /15/. По полученной интенсивности J_{β_2} бета-перехода β_2 и интенсивности конверсионных электронов $J_{K+L+M+...}$ перехода с энергией 661 кэВ определялось значение коэф-фициента внутренней конверсии $a_{\rm HOЛH}$.

Из экспериментального отношения $J_{K/L+M+...}$ и значения $a_{\text{полн.}}$ определена величина a_{K} .

3.2. Экспериментальные результаты

Полученное нами значение параметра λ^2 и литературные данные приведены в *табл. 3.* На *рис. 3а* показан график Ферми-Кюри для β_1 компонента бета-спектра, получаемый при S(E)=const.

Таблица З Значение параметра λ^2 λ^2 Работа Год /23/ 1951 0.0085 1958 0.0030 /24//25/ 1964 0.0150+0,0040 0,0040+0,0020 /26/ 1966 0,0034+0,0006 /27/ 1969 **U,0042+0,000**6 0,0130+0,0050 наст. работа

После аппроксимирования экспериментального распределения по формулам /1/ и /2/ получено значение параметра λ^2 и значение граничной энергии E_{01} . На *рис. Зб* показан график Ферми-Кюри, полученный с учетом фактора формы S(E). В *табл.* 4 сведены полученные значения граничных энергий E_{01} , E_{02} и интенсивности J_{β_1} , J_{β_2} бета-переходов β_1 и β_2 при распаде 137 Cs.

Таблица 4 Значения граничных энергий составляющих компонентов бета-спектра E_{01}, E_{02} и интенсивности J_{β_1}, J_{β_2} бетапереходов при распаде 137 Cs

$\beta_1(7/2^+ 3/2^+)$		$\beta_2(7/2 \xrightarrow{+} 11/2)$		рабо т а
Е ₀₁ , кэВ	$J_{\beta_1}^{\%}$	Е ₀₂ ,кэВ	$^{\mathrm{J}}\beta_{2}$ %	
1176 <u>+</u> 1	6,0 <u>+</u> 0,5	514 <u>+</u> 1	94,0 <u>+</u> 0,5	/26/
. –	-	511,63 <u>+</u> <u>+</u> 0,84	-	/28/
-	5,4 <u>+</u> 0,3	-	-	/29/
1177 <u>+</u> 3	6,4 <u>+</u> 0,5	513 <u>+</u> 2	93,6 <u>+</u> 0,5	настоящая работа

Таблица 5 Экспериментальные значения $J_K/J_{1,+M+...}, a_{10,0,11}, a_K$

J _K /J _{L+M+}	а ПОЛН.	^a K	Ραбοτα
4,5	0,123 <u>+</u> 0,009*	0,101 <u>+</u> 0,007	/26/
4,41 <u>+</u> 0,04 _ 4,3 <u>+</u> 0,1	0,113 <u>+</u> 0,009 * 0,1124 <u>+</u> 0,0006 0,1100 <u>+</u> 0,0011 0,114 <u>+</u> 0,003	0,093 <u>+</u> 0,007 * 0,0916 <u>+</u> 0,0004 0,0894 <u>+</u> 0,0010 0,093 <u>+</u> 0,003	/29/ /30/ наст. работа

*Значения, раассчитанные нами по α_K и $J_K/J_{1,+M+...}$ из соответствующих работ.

Определенные значения коэффициентов внутренней конверсии $a_{\rm HOJH}$, и $a_{\rm K}$ и отношение $J_{\rm K}/J_{\rm L+M+N+...}$ показаны в *табл.* 5, где приведены результаты работ /26, 29, 30/.

4. ЗАКЛЮЧЕНИЕ

Определенные нами значения граничных энергий и интенсивности бета-переходов при распаде ¹³⁷Cs⁻ хорошо согласуются с литературными данными /25, 26, 28/.

Наблюдается также согласие значений $a_{\text{ПОЛН}}$. и ${}^{\alpha}$ к в пределах экспериментальных ошибок с данными работ /26,29,30/ и с величиной ${}^{\alpha}$ к теор. = 0,0915 для М4 перехода 661 кэВ в 137 Ва /31/.

Следует заметить, что полученное нами значение λ^2 в пределах ошибок согласуется только с двумя из шести известных экспериментальных λ^2 . Однако полученное нами значение λ^2 хорошо согласуется с рассчитанными λ^2 / *табл.* 2/ на основе соответствующих теоретических представлений, как по значениям Λ на основе гипотезы сохранения векторного тока /формулы /4/, /6//, так и по отношению нерелятивистских матричных элементов на основе одночастичной модели /формула /7//.

Анализ по изложенным в п. 2.1 формулам с использованием полученного нами значения λ^2 приводит к тем же выводам, что и в работе /10/, в которой исходное значение λ^2 взято из работы /25/. Анализ, проведенный в работе /11/с использованием λ^2 из работы /27//*табл. 3*/, не приводит к полному согласню по Λ и u.

Авторы приносят искреннюю благодарность Н.А.Лебедеву и И.И.Громовой за изготовление источника ¹³⁷ Сs, Ц.Вылову и В.Г.Калинникову - за интерес к работе.

ЛИТЕРАТУРА

- 1. Bunting R.L. Nucl. Data Sheets, 1975, v. 15, No. 3, p. 335.
- 2. Dietz L.A., Pachucki C.F. J.Inorg. Nucl. Chem., 1973, 35, p. 1769.
- 3. Джелепов Б.С., Зырянова Л.Н., Суслов Ю.П. В кн.: "Бета-процессы", Л., "Наука", 1972.
- 4. Behrens H., Janecke J. Landolt Bernstein. Numerical Data and Functional Relationships in Science and Technology, New Series, Group I, v. 4, Numerical Tables for β -Decay and Electron Capture (Springer Verlag, Berlin), 1969.
- 5. Behrens H., Buhring W. Nucl. Phys., 1971, A162, p.111.
- 6. Конопинский Е., Роуз М. В кн.: "Альфа-, бета- и гамма-спектроскопия", под редакцией К.Зигбана. М., Атомиздат, 1969, вып. 4, гл.23.
- 7. Feynman R.P., Gell-Mann M. Phys. Rev., 1958, 109, p. 193.
- 8. Fujita J.-I. Progr. Theor. Phys., 1962, 28, p. 328.
- 9. Hocquenghem J.C., Berthier J. Nucl. Phys., 1968, A115, p.661.
- 10. Lipnik P., Sunier J.W. Phys. Rev., 1966, 145, p.746.
- 11. Szybisz L. Z. Phys., 1974, 269, p.139.
- 12. Paul H. Nucl. Phys., 1970, A154, p.160.
- 13. Narasimba Rao C., Mallikharjuna Rao B., Mallikharjuna Rao P., Venkata Reddy K. Phys. Rev., 1975, C11, p.1735.
- 14. Афанасьев В.П. и др. ОИЯИ, 13-4763, Дубна, 1969.
- 15. Жук В. и др. ОИЯИ, 6-10058, Дубна, 1976.
- 16. Гасиор М. и др. ОИЯИ, Дб-7094, Дубна, 1973, с.167.
- 17. Paul. H. Nucl. Instr. and Meth., 1965, 37, p.109.

- 18. Nagarajan T., Venkata Reddy K. Nucl.Instr. and Meth., 1970, 80, p.217.
- 19. Громов К.Я. и др. ОИЯИ, Р13-10611, Дубна, 1977.
- 20. Горожанкин В.М. и др. ОИЯИ, Р6-10239, Дубна, 1976.
- 21. Крецу Т. и др. ОИЯИ, Р6-10183, Дубна, 1976.
- 22. Силин И.Н. ОИЯИ, 11-3362, Дубна, 1967.
- 23. Langer L.M., Moffat R.D. Phys. Rev., 1951, 82, p.635.
- 24. Yamazaki T., Ikegami H., Sakai M. J. Phys. Soc. Jap., 1958, 13, p.1080.
- 25. Daniel H., Schmitt H. Z. Phys., 1964, 168, p.292.
- 26. Hsue S.T., Langer L.M., Tang S.M. Nucl. Phys., 1966, 86, p.47.
- 27. Schneuwly H., Schellenberg L., Huber O., Lindt W. Helv. Phys. Acta, 1969, 42, p.743.
- Wolfson J.L., Collier A.J. Nucl. Phys., 1968, A112, p.156.
- Hansen H.H., Lowenthal G., Spernol A., van der Eijk W., Vaninbroukx R. Z.Phys., 1969, 218, p.25.
- 30. Merrit J.S., Taylor J.G.V. Anal. Chem., 1965, 37, p.351.
- 31. Hamilton J.H. In: The Electromagnetic Interaction in Nuclear Spectroscopy. Ed. W.D.Hamilton, North-Holland Publishing Company. Amsterdam-Oxford (American Elsevier Publishing Company Inc., New York, Chapter II, 1975).

Рукопись поступила в издательский отдел 1 апреля 1977 года.