СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

18/11-74

P6 - 10304

А.П.Кабаченко, И.В.Кузнецов, Ли Ген Су, Н.И.Тарантин

К РАСПАДУ 52m Fe

C 341.11

K-12

1419/2-74



P6 - 10304

А.П.Кабаченко, И.В.Кузнецов, Ли Ген Су, . Н.И.Тарантин

## к распаду <sup>52m</sup> Fe



Кабаченко А.П. и др.

P6 - 10304

С помощью масс-сепаратора на пучке тяжелых нонов исследована схема распада <sup>52m</sup>Fe, полученного при облучении KCl ускоренными ионами <sup>20</sup>Ne. Приведены новые данные о<sub>у</sub> -переходах из метастабильного состояния.

52 mFe

Работа выполнена в Лаборатории ядерных реакций ОИЯИ.

К расладу

## Сообщение Объединенного института ядерных исследований Дубна 1976

Kabachenko A.P. et al.

P6 - 10304

About the Decay of <sup>52</sup>m Fe

With the help of the mass-separator on line with the heavy ion cyclotron there was investigated the decay of  $52^{m}$  Fe produced in the bombardment of KCl target with accelerated 20 Ne ions. New data about y -transitions from metastable state have been presented.

The investigation has been performed at the Laboratory of Nuclear Reactions, JINR.

## Communication of the Joint Institute for Nuclear Research

Dubna 1976

1. Исследование остаточного двухчастичного взаимодействия нуклонов типа p-p, n-n и n-p имеет весьма важное значение для понимания структуры ядер. Остаточное взаимодействие особенно проявляется в ядрах, структура которых представляет собой две замкнутые оболочки с несколькими нуклонами сверх оболочек или с несколькими недостающими нуклонами. Достаточно детальное рассмотрение этой проблемы можно найти, например, в работе<sup>/1/.</sup>

Одним из проявлений остаточного взаимодействия является существование изомеров, обусловленное большим различием спинов метастабильного уровня и уровня, расположенного непосредственно под ним. Примером этой изомерии может служить ядро  $212^{m}$  Po, в котором четырехчастичный мультиплет  $[\pi(h_{9/2})^2 \nu(i_{11/2})^2]$  имеет уровень с  $J^{\pi} = 18^+$  и энергией 2,93 МэВ, а ближайшее, более низкое по энергии состояние характеризуется  $J^{\pi} = 10^{+/2-4/.}$ 

Сравнительно недавно было обнаружено метастабильное состояние подобного типа в ядре  ${}^{52}$  Fe/ ${}^{5/}$ Было найдено, что изомерное состояние  ${}^{52m}$ Fe с энергией 6,8 *МэВ* распадается путем эмиссии позитрона с периодом полураспада 56 $\pm$ 8 с. Экспериментальные данные о у -распаде  ${}^{52m}$ Fe и у -излучении, сопровождающем его  $\beta$  -распад, а также известные данные о схеме распада возбужденных уровней  ${}^{52}$  Mn позволили авторам работы предложить схему распада  ${}^{52m}$  Fe и приписать его метастабильному состоянию  $J^{\pi} = (12^+)$ . Согласно расчетам авторов работы  ${}^{/5/}$ , ближайшее к метастабильному, более низкое по энергии состояние имеет  $J^{\pi} = 8^+$ .

2. В настоящей работе получены более полные данные о y - распаде, сопровождающем  $\beta$  - распад  $52^{m}$  Fe, и, в частности, данные, указывающие на возможность y -

3





реакций с

распада <sup>52</sup><sup>m</sup> Fe непосредственно из метастабильного состояния. Работа выполнена с помощью электромагнитного масс-сепаратора /6/ работающего на пучке ионов циклотрона У-ЗОО. Изомер <sup>52</sup> mFe получался при взаимо-<sup>20</sup>Ne<sup>+3</sup> /110 *МэВ*/ смидействии ускоренных ионов шенью из KCl /~1,5 мг/см<sup>2</sup>/, нанесенного вакуумным распылением на тонкую /~ 5 мкм/ алюминиевую фольгу. Мишень размещалась вне источника ионов /7/ масссепаратора непосредственно перед входным окном, которое закрывалось тонкой танталовой фольгой /-1,5 мкм/. Продукты реакций, выбитые из мишени, поступали через танталовую фольгу в источник ионов, ионизировались и разделялись по массам.

Сепарированные продукты ядерных реакций с определенным массовым числом собирались на приемник алюминиевую фольгу толщиной 100 мкм, непосредственно за которой размещались детекторы радиоактивных излучений.

Гамма-излучение регистрировалось с помощью Ge(Li)детектора объемом 35 см<sup>3</sup>с разрешением 3 кэВ для Е ~1200 кэВ. Энергетическая калибровка и определение эффективности  $\gamma$  -детектора проводились по известным  $\gamma$  -спектрам  $^{226}$  Ra $^{/8/}$  и  $^{52m}$ Mn $^{/9/}$ 

3. Измеренный у - спектр сепарированны продуктов реакций с массовым числом А-52 представлен на рис. 1. Спектр измерялся в течение шести часов. Как видно из рис. 1, число у -линий, обусловленных только распадом сепарированных нуклидов 52 m Mn , 52 Fe и 52 m Fe , невелико. Линий от распада других продуктов реакций нет, что говорит о достаточно высокой чистоте масссепарации.

Результаты измерений относительных интенсивностей у -линий, сопровождающих  $\beta$  -распад<sup>52m</sup>Fc, представлены в Таблиие 1.

На основании измерения относительных интенсивностей  $\gamma$  -линий, а также наблюдения новой  $\gamma$  -линии /  $E_{\nu}$  = = 2286  $\kappa 3 B/$ , с учетом новых данных о схеме распада высокоспиновых состояний  $52 \text{ Mn}^{/10/}$ , предложена схема  $\beta$ -распада возбужденных состояний 52 Mn, заселяемых при В-распаде 52 m Fe, отличающаяся от схемы, приведенной

4

5



Рис. 2. Схема распада 5<sup>2m</sup>Fe: а/результаты работы 5 б/результаты настоящей работы.

в работе<sup>/5/</sup> /см. *рис. 2а*/. Предложенная схема показана на *рис. 2б*.

4. Как отмечалось выше, изомерия <sup>52</sup> Fe обусловлена тем, что расщепление мультиплета многочастичной конфигурации [ $\pi(f_{7/2})^{-2}\nu(f_{7/2})^{-2}$ ] приводит к появлению метастабильного состояния с J<sup> $\pi$ </sup> = (12<sup>+</sup>), поскольку ближайшее, более низкое по энергии состояние имеет  $J^{\pi} = 8^{+}$ . В работе  $^{/5/}$  делается заключение о том, что должен наблюдаться  $\gamma$  -переход E4 непосредственно из метастабильного состояния  $^{52 \text{ m}}$  Fe. Однако доказательств этого положения в работе  $^{/5/}$  не приводится.

Значительное лучшие фоновые условия в нашем случае позволили наблюдать малоинтенсивную  $\gamma$  -линию с  $E_{\gamma} = 849 \ \kappa \beta B / cm. puc. 1/, которая отвечает <math>\gamma$ -переходу с первого возбужденного состояния  $52 \ Fe(J^{\pi} + 2^+)$ , имеющего энергию  $E_{\gamma} = /850\pm5/\ \kappa\beta B^{/11/}$ , в основное  $(J^{\pi} = 0^+)$ . Наблюдение  $\gamma$ -линии с  $E_{\gamma} = 849 \ \kappa\beta B$  в спектре по прошествии 1 с после образования ядра в реакции /1 с - время задержки продуктов реакции в источнике нонов  $^{7/}$  масс-сепаратора/ доказывает принадлежность этой линии к распаду относительно долгоживущего состояния, а именно к распаду метастабильного состояния  $^{52m}$  Fe. Интенсивность этой линии с составляет  $^{7m}$  от интенсивности  $\beta$ -распада. Доказательством принадлежности  $\gamma$ -линии с  $E_{\gamma} = 849 \ \kappa\beta B$  к каскаду  $\gamma$ -переходов из изомерного состояния  $^{52m}$  Fe в основное могло бы служить равенство периодов полураспада интенсивностей этой линии и других линий, возникающих при  $\beta$ -распаде  $^{52m}$  Fe.

Измеренный бета-спектр продуктов ядерных реакций с массовым числом A = 52 показан на *рис.* 3. Для всех известных излучателей с A = 52 <sup>52</sup> m Fe имеет наибольшую граничную энергию  $\beta$ -частиц. Из *рис.* 3 видно, что максимальная энергия  $\beta$ -частиц составляет  $E_{\beta(MaKC.)} = /4,27\pm0,27/$  *МэВ.* Это согласуется с граничной энергией  $\beta$ -спектра <sup>52</sup>m Fe, полученной в работе<sup>55</sup>. Отсутствие в бета-спектре частиц с энергией больше 4,3 *МэВ* означает, что  $\gamma$ -линия с  $E_{\gamma} = 849$  кэВ не происходит от возможного в нашем случае  $\beta$ -распада <sup>52</sup> Со, максимальная энергия  $\beta$ -частиц которого должна быть много больше, чем 4,3 *МэВ*/по оценкам,  $Q_{\beta} \sim 12$  *МэВ*<sup>/12/</sup>/.

Авторы благодарны академику Г.Н.Флерову за постоянное внимание к работе и Н.С.Иванову за помощь в проведении экспериментов.



Рис. 3. Спектр  $\beta$ -частиц, испускаемых сепарированными продуктами ядерных реакций с A =52 : • - полный  $\beta$ -спектр, • - спектр фона,  $\Delta$  -  $\beta$ -спектр за вычетом фона.

## Литература

- 1. L.A.Sliv and Yu.I.Kharitonov. In: Spectroscopic and Group Theoretical Methods in Physics. North-Holland Publ. Co., Amsterdam, 1968, p. 275.
- 2. I. Perlman et al. Phys. Rev., 127, 917 /1962/.
- 3. N.K.Glendening. Phys.Rev., 127, 923 /1962/.
- 4. N.Auerbach and I.Talmi. Phys. Lett., 10, 297 /1964/.
- 5. D.F. Geesaman et al. Phys. Rev. Lett., 34, 326 / 1975/.
- 6. N.I.Tarantin et al. Nucl. Instr. and Meth., 38, 103 /1965/;

Н.И. Тарантин, А.В. Демьянов. ПТЭ, 1, 41 /1966/. А.В. Демьянов и др. ПТЭ, 2, 28 /1966/.

7. Н.С.Иванов и др. Препринт ОИЯИ, Р13-9645, Дубна, 1976. А.П.Кабаченко и др. Препринт ОИЯИ, Р13-9646, Дубна, 1976.

- 8. G. Wallale and G.E. Cooto. Nucl. Instr. and Meth., 74, 353 /1969/.
- 9. C.M.Lederer' et al. Table of Isotopes. John Wiley and Sons, Inc., New York, 1967, p. 19.
- 10.A.M.Stefanini et al. Nuovo Cim., 33A, 460 /1976/.
- 11. G.Bassani et al. Phys. Rev., 136B, 1006 /1964/.
- 12. W.D.Myers and W.J.Swiatecki. Nucl. Phys., 81, 1 /1966/; Report UCRL-11980 /1965/.

Рукопись поступила в издательский отдел 15 декабря 1976 года.

8

9