ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

P6 - 10267

446/2-44 Д.Богдан, М.Гасиор, Т.Крецу, В.В.Кузнецов, Н.А.Лебедев, Г.И.Лизурей, Г.Макарие, Д.Г.Попеску, А.Ш.Хамидов

6-28

ПОЗИТРОННЫЙ РАСПАД 171 Ци

........

5-734

P6 - 10267

Д.Богдан, И.Гасиор, Т.Крецу, В.В.Кузнецов, Н.А.Лебедев, Г.И.Лизурей, Г.Макарие, Д.Г.Попеску, А.Ш.Хамидов²

171 позитронный распал Lu

Направлено в "Известия АН СССР" /сер. физ./

Институт атомной физики, Бухарест.
 Институт ядерной физики АН УзССР, Ташкент.

P6 - 10267

Богдан Д. и др.

Позитронный распад 171 Lu

В измерениях позитронов при распаде ¹⁷¹Lu наблюден однокомпонентный спектр с $E_0 = (362\pm3)$ кзВ. Интенсивность позитронов сославляет (8,7±1,2).10⁻³ % на распад¹⁷¹Lu. Определена разность масс¹⁷¹Lu.¹⁷¹ ув $Q_{\beta^+} = (1479\pm3)$ кзВ. Значение lgft для наблюдаемого перехода равно 8,0±0,1. Проведены теоретические расчеты соответствующих матричных элементов и значения lgft для перехода типа 7/2⁺ [404] - 7/2⁺ [633].

Работа выполнена в Лабораторин ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований Дубна 1976

Bogdan D. et al. P6 - 10267 Positron Decay of ¹⁷¹Lu

In measuring of the positrons from the decay of ^{17]} Lu there was observed one-component positron spectrum with $E_0 = (362\pm3)$ keV. The positron intensity is $(8.7\pm1.2).10^{-3}$ % per decay of ¹⁷¹ Lu. The mass difference ¹⁷¹ Lu.¹⁷¹ Yb was determined to be $Q_{\beta+} = (1479\pm3)$ keV. The value of $\lg l_{\mathfrak{f}}$ for the transition observed is equal to 8.0 ± 0.1 . The theoretical calculations were carried out for corresponding matrix elements as well as for the value of $\lg l_{\mathfrak{f}}$ for the transition of the type $7/2^{*}$ [404] $+7/2^{*}$ [633].

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research Dubna 1976

🖸 1976 Объединенный институт ядерных исследований Дубна

І. ВВЕДЕНИЕ

На основе измерения аннигиляционных у-квантов с помощью сцинтиляционного спектрометра y-y-совпадений авторы работы /1/ сделали вывод о том, что распад 1^{71} Lu сопровождается познтронным излучением с интенсивностью 10^{-4} по отношению к интенсивности y-лучей с энергией 740 кэВ. В работе /2/ при измерении познтронного спектра с помощью спектрометра с Si(Li) детектором, помещенным в однородное магнитное поле, было показано, что интенсивность позитронов составляет < 2.10^{-2} % на распад 1^{71} Lu и что значение граничной энергии позитронов E_0 находится в пределах /600± +200/ кзВ.

Существующая недостаточная информация по этому вопросу требовала более тщательного изучения β^+ -распада ¹⁷ Lu. Результаты наших экспериментальных и теоретических исследований о позитронном распаде ¹⁷¹ Lu излагаются в данной работе.

Предварительные результаты анализа измерений опублвкованы в работе /3/.

2. УСЛОВИЯ ЭКСПЕРИМЕНТА

2.1. Приготовление источников

Используемые нами источники ¹⁷¹Lu получались двумя методами:

а/ из облученной протонами с энергней 660 МэВ мишени тантала химическим путем выделялся гафиий, радноактивные изотопы которого распадаются в дочерние изотопы лютеция:

Для того чтобы исключить влияние позитронного излучателя ¹⁷⁰Lu /4/ при изучении позитронов ¹⁷¹Lu, последующее химическое выделение лютеция из гафиия проводилось спустя 20 дней. Полученный таким образом препарат лютеция /без носителя/ в виде одной капли наносился на элюминиевую подложку толщиной 0,68 мг/см² и выпаривался /источник [-]/. Преимуществом такого метода изготовления источника является возможность получения радноактивного источника с высокой удельной активностью по изотопу ¹⁷¹ Lu, что существенно при измерении слабого познтронного излучения этого изотопа. Присутствие радиоактивного 173Lu в источнике не являлось помехой при чсследовании позитронов ¹⁷¹Lu. В измеренном нами спектре конверсионных электронов с использованием источника U - 1 не обнаружены даже самые интенсивные переходы, сопровождающие распад 170 Lu

6/ Второй метод изготовления источников состоит в следующем: хроматографическим путем выделялись изотопы лютеция из облученной мишени тантала и затем с помощью электромагнитного масс-сепаратора 5,171 Lu внедрялся в алюминиевую подложку. Таким способом были изготовлены для исследования позитронов 171 Lu два источника, внедренные в алюминиевые подложки толщиной 1,8 мг/см² (U-2) и 4,85 мг/см² (U-3). При измерениях спектров позитронов и конверсионных электронов с использованием источников U – 2 и U – 3 не

обнаружено присутствия в них примесей соседних изотопов лютеция.

2.2. Методы измерения и обработки спектров позитронов

Измерения спектров позитронов и конверсионных электронов, сопровождающих распад ¹⁷¹Lu, проводились с помощью светосильного безжелезного бета-спектрометра с торондальным магнитным полем СТ-2⁷⁶ при трансмиссии Т. 20% и разрешении R = 1,1%.

Для того чтобы исключить влияние ряда аппаратурных эффектов, приводящих к искажению измеренного бета-спектра, необходимо полученное при измерении распределение $N(E) = N_{eff}(E) - / r ge N_{eff}(E) + N_{eff}(E)$ значение чисел отсчетов эффект+фон и значение фона в каждой точке спектра при определенных энергиях E бета-частиц/ исправить введением соответствующих поправочных коэффициентов $\sqrt{n-10}$. Обычно "истинное" распределение N'(E) можно записать в виде

$$N'(E) = N(F)C_{e}^{-}(F)C_{B}(E)C_{B}(E) \exp\{0,69315, \frac{C_{1}}{1}\right)_{2} = 1$$
, /1/

где C_{e} , C_{B} , C_{R} - поправочные коэффициенты на эффективность регистрации бета-частиц детектором, на обратное рассеяние бета-частиц в подложке источника, на разрешение бета-спектрометра, соответственно; t_{i} ингервал времени, прошедшего с момента определения первой точки измеренного распределения; $T_{i_{2}}$ - период полураспада исследуемого изотопа.

С целью определения величин поправочных коэффициентов в нашем случае исследования спектров позитронов проводился ряд методических измерений. Дадим краткие сведения о результатах этих измерений.

Исследования спектра позитронов 22 Na/E₀ =545 кэВ/ показали, что при использовании источника на подложке толщиной O,68 мг/см²доля обратно рассеянных бетачастиц 2% при 150 кзВ. Доля обратно рассеянных бетачастиц 2% при 150 кзВ. Доля обрагно рассеянных бетачастиц при используемых подложках источника толщиной 1,8 мг/см²и 4,85 мг/см²больше, но она оказалась в

нашем случае измерений по величине меньше статистических ошибок. Эффективность регистрации С е как для электронов, так и для позитронов в области энергий больше 130 кэВ равна единице при используемом нами уровне дискриминации регистрируемых импульсовот сцинтилляционного детектора бета-частиц. По наблюдаемой форме сректральных линий колверснонных электронов получена зависимость функции отклика /11/ от энергии электронов для нашего прибора. Это позволяет вводить более реальные поправки Со(Е) измеренного бета-спектра вместо обычных поправок (R(E), учитывающих только разрешение /12/ бета-спектрометра. Проведенные расчеты Со(Е) показали, что искажение измеренного спектра позитронов 171 Lu не превышает 2% в области энергий больше 150 кэВ. Обработка измеренных спектров позитронов ¹⁷¹ Lu проводилась по методике, описанной работе /13/, в которой изложен используемый нами в метод определения значения граничной энергии и интенсивности бета-спектра.

Позитронный спектр измерялся в течение нескольких дней, и по спаду его активности оценен период полураспада Т_{14~}8 дн.

3. РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ 3.1. Значение граничной энергии и интенсивности позитронов ¹⁷¹Lu

При всех измереннях с использованием трех источников ¹⁷¹Lu нами наблюден однокомпонентный спектр позитронов. График Ферми-Кюри является прямой линией в пределах экспериментальных ошибок, включающих в себя статистические ошибски и погрешности из-за иеопределенности энергии ^{/13/}. На *рисунке* приведены графики Ферми-Кюри, полученные при обработке измеренных спектров позитронов ¹⁷¹Lu. Графики, обозначенные цифрами 1,2,3 на *рисунке*, соответствуют измерениям с использовением источников U - 1, U-2, U-3, соответствеино. Полученные значения граничной энергии однокомпонентного спектра позитронов ¹⁷¹Lu при измерении этими тремя источниками приведены в *табл. 1*.

Графики Ферми Кюри, полученные при обработке измеренных спект ров позитронов ¹⁷¹Lu.

Источник	Е ₀ , кэ В	<Е ₀ · кэВ		
l' - 1 1 - 2	362 <u>+</u> 3 36O+3	362+3		
$\overline{U} = \overline{3}$	368 <u>+</u> 5			

Таблица I Значениь граничной энергии позитронов ¹⁷¹Lu

В этой таблице приведено средневзвешенное значение граничной энергии 1-0 позитронов 171 Lu.

Для определения доли позитронов на распад ¹⁷¹Lu нами в каждом опыте измерялись конверсионные электроны в тех же условиях, что и позитроны.

Получено среднес значение отношения интенсивности позитронов $J_{\beta}^{(-)}$ к интенсивности конверсионных электронов K759, равное

 $J_{\beta^{\pm}}/J_{k,739} = 0.074 \pm 0.006$.

Принимая, согласно работе ⁽¹¹⁷⁾, значение интенсивкости конверсионных электронов $J_{K^{-3,0}} = /0.117 \pm 0.007/\%$ на распад ¹⁷⁷Lu, получим, что интенсивность позитронного распада $J_{\beta^3}^{-174}$ Lu составляет /8.7±1.2/x10⁻³ %.

3.2. Разность масс ¹⁷¹ Lu + ¹⁷¹ Yb

Из анализа баланса интенсивностей заселения возбужденных состояний ¹⁷³ Yb, возникающих при распаде ¹⁷¹ Lu, следует, что позитроны заселяют возбужденный уровень ¹⁷⁴ Lu с энергией 95,26 кэВ 7.2 (633). На основе этого значение разности масс ¹⁷⁴ Lu \rightarrow ¹⁷⁴ Yb должно быть равным $Q_{B^+} = /1479\pm3/$ кэВ.

3.3. Экспериментальное значение logft

По полученным значениям граничной энергии E₀ и интенсивности J_B+ позитронов при распаде ⁷⁷¹Lu нами определено значение $\log ft = 8,0\pm0,1$ для разрешенного задержанного бета-перехода $7/2^+[404] \rightarrow 7/2^+[633]$.

Авторы работы $^{/14/}$ получили, что заселение возбужденного уровня с энергией 95,26 кэВ путем электронного захвата $^{171}L_{\rm u}$ составляет $/16\pm3/\%$. На основе этого и прилятого значения энергии распада Q = 1500 кэВ ими получено значения энергии распада Q = 1500 кэВ ими получено значения off = 8,0. Из теоретического значения $\epsilon/\beta^+ = /2370\pm206/^{/16/}$ для $E_0 = /362\pm3/$ кэВ н экспериментального значения J_{β+} = /8,7±1,2/.10⁻³ % на распад $^{171}L_{\rm u}$ нами определен процент заселения электронным захватом возбужденного состояння с энергией 95,26 кэВ 7/2⁺[633], который равен $\epsilon = /20,6\pm4,6/\%$ на распад $^{171}L_{\rm u}$. Это значение находится в хорошем согласии с данными работы $^{/14'}$, получеными при тщательном исследовании конверсионных электронов $^{171}L_{\rm u}$ в области малых энергий.

4. TEOPETHYECKOE 3HAYEHHE logft

Бета-переход $7/2^{+}[404] \rightarrow 7/2^{+}[633]$ является разрешенным задержанным переходом ($\Lambda N=2$). Полученное экспериментальное значение logft = $/8, O\pm O, 1/$ указывает на то, что этот бета-переход сильно заторможен и принадлежнт группе интересных случаев разрешенных бетапереходов. Увеличенное значение logft связано, повидимому, с влиянием структурных эффектов ядерных состояний, приводящих к уменьшению ядерных матричных элементов для разрешенных бета-переходов. С целью пр^верки этих предположений нами проведены расчеты матричных элементов и соответствующих значений logft. Приведем краткое описание метода и результатов расчета.

Согласно принятому формализму теорин бета-распада, описанному в работах /17,18/, значение ft можно определить следующим образом:

$$ft = \frac{2\pi^3 \ln 2}{g^2 C(E)}, \qquad /1/$$

где постоянная /19/

$$\frac{2\pi^3 \ln 2}{g^2} = (6260 \pm 60), \qquad /2/$$

('(E) - формфактор слектра, выраженный через коэффициенты формфакторов ${}^{A}F^{(N)}_{k\lambda y}$ и ${}^{V}F^{(N)}_{k\lambda y}$, где V и A обозначают векторное и аксиально векторное взаимодействия, k - ранг, λ - мультипольность и y - спин

сфернческого тензорного оператора.Козффициенты ^{А, V}F^(N) записываются в внде

$$\frac{A_{i} \nabla F_{k\lambda y}^{(N)}}{(2J_{i}^{+})} = (-1)^{\lambda - k} \sqrt{\frac{4\pi}{(2J_{i}^{+})}} f(\frac{r}{R})^{\lambda + 2N} \leq J_{f} ||(C_{V} - C_{A} \gamma_{5}) \nabla_{k\lambda y} r^{\frac{1}{2}} ||J_{i} < \sqrt{R_{\lambda}} \overline{R_{N}}|| \sqrt{R_{\lambda}} \frac{1}{\sqrt{R_{\lambda}}} || \sqrt{R_{\lambda}} \frac{1}{\sqrt{R_{\lambda}}} || \sqrt{R_{\lambda}} \frac{1}{\sqrt{R_{\lambda}}} \frac{1}{\sqrt{R_{\lambda}}}$$

И

$$\sqrt{\frac{4\pi}{2J_{i}+1}} \int \left(\frac{\mathbf{r}}{R}\right)^{\frac{\lambda+2N}{2}} \sqrt{J_{f}K_{f}} \left|\left[0\right]_{5}\right]^{\frac{N}{2}} \eta_{\mathbf{k}\lambda y} \left[r^{\frac{1}{2}}\right] J_{i}K_{i} = 0$$

$$+ (-1)^{J_{f}+K_{f}} \Pi_{\Omega_{f}} \left(\frac{J_{f}-K}{-K_{f}-K_{i}-K_{i}-K_{i}} \right) \int_{\lambda} \Omega_{f} \frac{(r-\lambda+2N)}{R} \left(\gamma_{5} \right)^{\gamma} T_{k\lambda\gamma}^{-K_{f}-K_{i}+\gamma} \chi_{\Omega_{i}}^{2} dr,$$

$$/4/$$

где $\chi_{\Omega_{[i]}}$ и $\chi_{\Omega_{[i]}}$ - внутренные собственные волновые функции конечного и пачального состояний ядер.

В представлении $|\ell|$ ј Ω^{\sim} для одночастичного состояния имеем

$$\chi_{\Omega} = i \frac{\ell m \operatorname{ax} \Sigma}{n \ell j} (-1)^{\frac{1}{2}-\ell-\Omega} C_{n\ell j}^{\Omega} R_{n\ell j}(\mathbf{r}) \sqrt{(2j+1)} (\Omega_{\Omega-\mu\mu-\Omega})^{\frac{1}{2}} Y_{\ell,\Omega-\mu} f_{\frac{1}{2} s\mu}.$$

$$/5/$$

Общее выражение для внутренних матричных элементов записывается следующим образом:

$$\int \lambda_{\Omega} \left(\frac{\mathbf{r}}{\mathbf{R}}\right)^{\lambda+2N} T_{k\lambda\gamma}^{K_{f}-K_{i}} \frac{\mathbf{r}}{\mathbf{r}}^{\pm} \chi_{\Omega_{i}} d\mathbf{r} = i^{\ell_{fmax}+\ell_{imin}+\lambda} \times \\ \times \sum_{\substack{j_{i},j_{f}\\n_{i},n_{f}}} C_{n_{i}j_{i}}^{\gamma} C_{n_{f}\ell_{f}}^{\gamma} (-1)^{j_{f}-\Omega_{f}} \frac{\mathbf{r}}{\mathbf{r}}^{\gamma} \times \\ \times \sqrt{2(3)^{\gamma}(2j_{i}+1)(2j_{i}+1)(2\ell_{i}+1)(2\ell_{f}+1)(2\ell_{f}+1)(2k+1))} \times$$

$$= \frac{k \left[j_{f} \right]_{i}}{\lambda \left[\ell_{f} \right]_{i}} \frac{j_{f} \left[k \right]_{i}}{\left(1 \right)} \frac{(\ell_{i} \lambda \ell_{j})}{(\ell_{i} \lambda \ell_{i})} \leq n_{f} \ell_{f} \left[\left(\frac{r}{R} \right)^{\lambda + 2N} \right] \left[n_{i} \ell_{j} \right]_{i}, /6/$$

где ^рі_{тах} и ^рі_{тах} - максимальные значения орбитального углового момента начального и конечного состояний ядер.

При расчете нами использовались волновые функции, полученные Гареевым и др. /20/.

Раднальная часть этих волновых функций имеет вид:

$$R_{nfj}(r) = \frac{N_n}{r} \sqrt{\frac{A}{C}} H_n [S(r)] \exp[-\frac{r}{S^2(r)}/2],$$
 (7/

где

$$S(\mathbf{r}) = \begin{cases} B \ln(\frac{\mathbf{r}}{A}) & \mathbf{r} \geq A \\ B_{1}\ln(\frac{\mathbf{r}}{A}) & \mathbf{r} \leq A, \end{cases}$$

 N_n - нормировочный множитель; $H_n[S(r)]$ - полином Эрмита; А, В, B_I , С - параметры, характеризующие волновую функцию состояния. Радиальная часть матричных элементов

$$< n_{f} \ell_{f} | (\frac{\mathbf{r}}{\mathbf{R}})^{\lambda + 2N} | n_{i} \ell_{i} >$$

рассчитывалась с томощью созданной подпрограммы, включаемой в программу численного интегрирования по методу Симпсона. В подпрограмму вводятся параметры N_n, A, B, B₁ и C, характеризующие начальные и конечные состояния ядер.

Приведенные волновые функции в работе $^{/20/}$ рассчитаны для радиуса ядра $R = 1,26 A^{1/3}$ f для нейтронных н $1,25A^{1/3}$ f – для протонных состояний при параметрах деформации $\beta_2 = 0,26$ и $\beta_4 = 0,02$.

С другой стороны, использовались также одночастнчные волновые функции, полученные нами при диагонализации ядерного гамильтониана с акснальной симметрией и центральной частью потенциала Саксона-Вудса:

$$H_{\beta} = -(\frac{h^2}{2m}) V^2 - V_0 f(r) - V_0 (\frac{h}{m_{\pi}c})^2 \frac{1}{r} - \frac{df}{dr} \vec{\ell} \vec{s} +$$

+
$$Vr_0 A^{1/3} \frac{df}{dr} (\beta_2 Y_{20} + \beta_4 Y_{40}),$$
 /8/

где f(r) - функция Саксона-Вудса $(1+x)^{-l}$, а x = exp[(r + r₀A^{1/3})/a₀].

При получении состояний протонной системы добавляется соответствующий кулоновский потенциал однородно заряженного шара радиусом г₀А^{1/3} г. Диагонализация при использовании этого потенциала осуществлялась нами так же, как и в работе ^{/21/}. Здесь применяется осцилляторный базис и раднальная часть волновой функции представляется в виде

$$N_{N\ell}(r) = (NORM)_{N\ell} V_{N\ell}(r^2) r^{\ell+1} exp[-1/2r^2],$$
 /9/

где $V_{N\ell}(r^2)$ - полином Лагера, (NORM) _N $_{\ell}$ - соответствующий нормировочный множитель. Диагонализация потенциала /8/ проводилась при $\beta_2 = 0,25$; 0,30; 0,35 и $\beta_4 = -0,04$; -0,16. При этом для протонных состояний $V_{op} = 58$ МэВ,для нейтронных состояний $V_{op} = 43$ МэВ.

Основное состояние 171Lu принято как одноквазичастичное состояние $p7/2 + 7/2^4 (404) 97\% / 20/$, а конечное

	Таблы	ца 2		
Значения коэффициентов	формфакторов	អ ft	для β^+ -переходов	$p7/2[404] \rightarrow n7/2[633],$
	171. 171.			

 $^{17.1}Lu \rightarrow ^{1.71}Yb$

A.V (~) f y	Использованные волновые функции							
	Из работы /20/	рассчитанные по аналогии с /21/						
	при β ₂ = C,26 и β ₄ = 0,02	<i>P</i> ₉ = −0,04				$\beta_{\dot{+}} = -0, I6$		
		в, =0,25	β₂= 0,3 0	β₂≈0 , 35	β,=C,25	µ ₂=C,30	¢2=0,35 و	
Y ((c)	+0,0035	+0,005I	0,0071	0,0094	0,0257	0,0283	+0,0389	
V F	+0,0082	+0,0106	+0,0127	+0,0151	0,0475	0,0452	0,0540	
4 F.	+0,0066	+C,CIO9	+0,0137	+C,CI68	+00443	0,0429	+0,0443	
1 F	-0,0047	-C,005I	-0,0044	-0,0030	-0,0021	-0,0054	-0,0105	
JR'	0,466	C,23C	C,247	0,455	0,455	0,401	0,437	
łt	9,94•IC ⁷	4,57·10 ⁷	2,68·I0 ⁷	I,73·10 ⁷	C,24·IC ⁷	0,24·IC ⁷	0,18·10 ⁷	
logst	7,99	7,66	7,43	7,24	6,38	6,38	6,26	
ft logft	9,940 9,940 IC ⁷ 7,99	€,235 4,57•I0 ⁷ 7,66	2,68.10 ⁷ 7,43	1,73·10 ⁷ 7,24	0,485 C,24·IC ⁷ 6,38	0,401 0,24·IC ⁷ 6,38	0,437 0,18·10 ⁷ 6,26	

состояние, уровень с энергией 95,26 кэВ ^{17 ј}Уb - как смесь одноквазичастичных состояний из-за кориолисова взаимодействия /^{22/}

$$7/2$$
 [95,26 $\kappa \Rightarrow B$] > = 0,0034 $1/2$ [660] > + 0,0243 $3/2$ [651] > +

+ 0.1520[5/2]642] > + 0.9881[7/2]633] > . /10/

Большая амплитуда состояния 7/2[633] приводит к тому, что расчет значених ft дает одинаковые величины как с учетом, так и без учета первых трех одноквазичастичных компонентов в формуле /10/. Конкретные расчеты с использованием вышеуказанных волновых функций проводились так же, как и в работах $^{/23/}$.Рассчитанные коэффициенты формфахторов A,V F $^{(N)}_{k\lambda y}$ и соответствующие значения ft и logft приведены в *табл. 2.* Так как в случае распада 17 Lu-, 171 Yb числа пар в нейтронной и протонной системах остаются неизменными,

то, согласно работе $^{/24/}$, $\sqrt{R_Z} = \sqrt{U_Z^2}$ н $\sqrt{R_N} = \sqrt{U_N^2}$. Значения $\sqrt{R} \sim \sqrt{R_Z} \sqrt{R_N}$ приведены также в *табл. 2*.

5. ЗАКЛЮЧЕНИЕ

По систематике, приведенной в работе $^{/15/}$, экспериментальные значения $(logft)_{\cdot_1}$ для резрешенных задержанных бета-переходов $(\Lambda N = 2)$, происходящих между одноквазичастичными состояниями деформированных ядер редкоземельных элементов, лежат в пределах от 6,0 до 8,5.

В табл. З приведены значения (log ft) , для разрешенных задержанных бета-переходов типа $7/2^+[404] \rightarrow 7/2^+[633]$, взятые из работы $^{/15/}$ и полученные нами (log ft) , для такого же типа бета-перехода в случае распада 171 Lu.

Таблица З

β-переход	(logft).	Е*, кэ В	
165 Ho $\leftarrow 165$ Dy	7,8	715	
169Tm ← 169Yb	8.6	315	
173 Ta $\rightarrow ^{173}$ Hf	× 8,3	198	
¹⁷⁵ Ta → ¹⁷⁵ Hf	6,7	207	
177 Ta $\rightarrow 177$ Hf	8,1	746	
$171Lu \rightarrow 171Yb$	8,0+0,1	95	

Разрешенные задержанные бета-переходы ($\Lambda N = 2$) типа 7/2⁺[404] \rightarrow 7/2⁺[633]

*Энергия уровня конечных состояний ядер.

Как видно из *табл. 3*, полученное значение $(\log ft)$, для бета-перехода ^{17 1}Lu \rightarrow ^{17 1}Yb хорошо согласуется с экспериментальными значениями $\log ft$ для такого же типа бета-перехода в других ядрах.

Кроме этого, из проведенных расчетов / табл. 2/ следует, что при использовании волновых функций из работы /20/ получается очень хорошее согласие теоретического и экспериментального значения logft, тогда как при использовании волновых функций, полученных при диагонализации гамильтоннана /8/ согласно работе /21/ получается удовлетворительное согласие только при $\beta_2 = 0.25$ и $\beta_4 = -0.04$ / табл. 2/.

Определенные нами и существующие данные о разности масс 171 Lu \rightarrow 171 Yb приведены в *табл.* 4.

Авторы считают своим приятным долгом выразить благодариссть проф. К.Я.Громову за полезную дискуссию и постоянный интерес к работе.

Виола (1974) [¥] .	Разности изсс, полученные при расчете по полуэмпирическим формулам						Экспериментальные цанные		
	Камерон (1957) [#]	Хилман (1964) ^ж	Makenc (1965)*	Зигер (1970)*	Винг (1964)¥	Гар <u>рей</u> (1969)#	Зельце <u>с</u> (1967)	Padoru ^{/2/}	Наст.работы
1361	884	1309	643	1718	894	1520	1435	1700 <u>+</u> 200	I479 <u>+</u> 3

 +) Год публикации соотретствующей работы. Ссылки на работы авторов, результаты которых приведены в столоцах I-8, даны в работе К.Я Громова и пр. /I5/. ЛИТЕРАТУРА

- I. В.Д.Витман, Б.С.Джелепов, В.Я.Ефремова. ЯФ. I, вып. 5, 937 /1965/.
- 2. Н.А.Бонч-Осмоловская, Ц.Вылов, К.Я.Громов, А.Ш.Хамидов. Известия АН СССР, сер. физ., т. 38, 2516 /1974/.
- 3. Т.Крецу, В.В.Кузнецов, Г.И.Лизурей, Г.Макарие, М.Фингер. ОИЯИ, Р6-9711, Дубна, 1976.
- 4. Н.А.Бонч-Осмоловская, Я.Коничек, М.Фингер. И.Ференцеи, А.Ф. Щусь. ОИЯИ, Р6-8846, Дубна, 1975, cmp. 134.
- 5. В.П.Афанасьев, А.Т.Василенко, И.И.Громова, Ж.Т.Желев, В.В.Кузнецов, М.Я.Кузнецова, Д.Мончка, Ю.П.Поморски, В.И.Райко, А.В.Ревенко. В. М. Содоко, В. А. Уткин. ОИЯИ, 13-4763. Дубна, 1969.
- 6. М.Гасиор, К.Я.Громов, В.В.Кузнецов, Г.И.Лизурей, А.В.Потемпа, Б.Дец, Б.Корецки, Е.Стажевски, М.Яницки. ОИЯЙ, Дб-7094, 167, Дубна, 1973.
- 7. T. Nagarajan, K. Venkata Reddy. Nucl. Instr. and Meth., 80, 217 /1970/.
- 8. T.Nagarajan, M.Ravindranath, K.Venkata Reddy, Nucl.Instr. and Meth., 67, 77 / 1969/. 9. T.Nagarajan, M.Ravindranath, K.Venkata Reddy,
- Swami Jnananada. Phys. Rev., 178, 1968 /1969/.
- IO. H. Paul. Nucl.Instr. and Meth., 37, 109 /1965/. II. В.М.Горожанкин К.Я.Громов, Т.Крецу, В.В.Кузнеиов, Г.И.Лизурей, Г.Макарие. ОИЯИ. Р6-10239. Лубна, 1976.
- 12. H. Paul. Nucl.Instr. and Meth., 31, 307 /1964/.
- 13. Т.Крецу, В.В.Кузнецов, Г.Макарие, ОИЯИ, Р6-10183. Дубна, 1976.
- 14. К.П.Артамонова, Е.П.Григорьев, А.В.Золотавин, В.О.Сергеев. Изв. АН СССР, сер. физ., 39, 522 /1975/.
- 15. К.Я.Громов, Х.-У.Зиберт, В.Г.Калинников, Г.Музиоль, Х.Штрусный. ЭЧАЯ, том 6, вып. 4, 971 /1975/.
- 16. Б.С.Джелепов, Л.Н.Зырянова, Ю.П.Суслов. "Бетапроцессы", Наука, Л., 1972.
- 17. H.Behrens, J.Janecke, Landolt Bornstein, Numerical Data and Functional Relatioships in Science and Technology, New Series, group I, v. 4, Numerical Tables for β -Décay and Electron Capture (Springer Verlag, Berlin), 1969.
- 18. H.Behrens, W.Buhring. Nucl. Phys., A162, 111 /1971/.
- 19. О.Бор, Б.Моттельсон. В кн. "Структура атомного ядра", т. 1, изд. "Мир", М., 1971.

- 20. Ф.А.Гареев, С.П.Иванова, В.Г.Соловьев, С.И.Фе-дотов. ЭЧАЯ, том 4, вып. 2, 357 /1973/. 21. В. Hird. Comp. Phys. Commun., 6, 30 /1973/.
- 22. T.Lindblad, H.Ryde, B. Barnoud Nucl. Phys., A193,
- 155 / 1972/.
 23. D.Bogdan, T.Cretu, G.Macarie. Z.Phys., 263, 121 / 1973/; Z.Phys., 265, 385 / 1973/.
 24. В.Г.Соловьев. "Теория сложных ядер", Наука,
- M., 1971, cmp. 260.

Рукопись постунила в издательский отдел 1 декабря 1976 года.