

ОБЪЕДИНЕННЫЙ ИНСТИТУТ Ядерных Исследований

Дубна

P4-99-30

И.М.Матора

О ПРИРОДЕ СВЕРХВРАЩЕНИЯ ВЕРХНЕЙ АТМОСФЕРЫ ЗЕМЛИ

Направлено в журнал «Геомагнетизм и аэрономия»

Матора И.М.

О природе сверхвращения верхней атмосферы Земли

Исследованы свойства электрического дрейфа заряженных частиц ионосферы Земли в постоянных поперечных геомагнитном и электрическом приэкваториальных полях. Доказана инвариантность модуля средней скорости дрейфа и ее направления как при изменении знака и величины заряда и массы частиц, так и при вариациях направления и модуля начальной (в момент образования конкретной заряженной частицы при ионизации атомов или молекул) их скорости. Показано, что равноскоростной поток дрейфующих ионов, молекул и атомов (а также электронов) в единственно возможном направлении, с запада на восток, способен через упругое их взаимодействие с нейтральными частицами ионосферы увлечь слой всех нейтральных ее частиц на высотах, близких к h = 300 км, в сверхвращение.

Работа выполнена в Лаборатории нейтронной физики им. И.М. Франка ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна, 1999

Перевод Н.С.Журавлевой

Matora I.M. On the Nature of Superrotation of the Upper Earth Atmosphere

The properties of the electric drift of Earth ionospheric charged particles in constants of transverse geomagnetic and electric near equator fields are investigated. The invariance of the module of the mean drift velocity and its direction by changing the charge sign and module as well as particles mass and with variations of the direction and modules of their initial (at the moment of a concrete charged particle production at the time of ionization of atoms or molecules) velocity is proved. It is shown that equivelocity flux of drifting molecular and atomic ions (as well as electrons) only in the unique direction from west to east via their elastic interaction with neutral particles of the ionosphere is capable to carry away the layer of all its neutral particles at altitudes near h = 300 km into superrotation.

The investigation has been performed at the Frank Laboratory of Neutron Physics, JINR.

P4-99-30

P4-99-30

1. Введение

Почти 30 лет прошло с момента открытия в верхней атмосфере Земли на высоте от 200 до 400 км ее сверхвращения [1-2]. Азимутальная угловая скорость воздуха ω в этом слое превосходит скорость вращения самой планеты ω_{\oplus} на десятки процентов [1, 2]. Количественные данные о явлении представлены в таблице 1, составленной из фрагментов таблиц монографии [2].

т	-6		1
L	ao	пина	
-			-

								and the second
Н(км)		200	250	300	350	400		Примечания
ω _{cBepx.} /ω _Φ		1,1	1,2	1,3	1,4	1,1	[2,c	180]
N(всех частиц/см ³)		10 ^{9,86}	10 ^{9,3}	108,9	108,5	10 ^{8,1}	[2,c	. 179]
N _e (e ⁻ /см ³)		10 ^{5,4}	10 ^{5,7}	10 ^{5,9}	10 ^{5,75}	10 ^{5,6}	[2,c.	193] (дневные)
Ср. І пробега (см)	I	10 ^{4,3}	10 ^{4,7}	10 ^{5,1}	10 ^{5,45}	10 ^{5,8}	[2,c.	179]

Физическая причина явления до сих пор не выяснена.

В данной работе рассмотрена возможность увлечения упомянутого слоя ионосферы в сверхвращение всеми его заряженными частицами, всегда дрейфующими с запада на восток в поперечных геомагнитном и электрическом полях.

Теория электрического дрейфа зарядов в постоянных поперечных магнитном и электрическом полях

2.1. Уравнения движения заряженных частиц

Из таблицы 1 следует, что в ионосфере концентрация заряженных частиц достигает более 0,1%. Вместе с тем весьма значительны (~1 км) средние длины их пробега \overline{I} .

Кроме того, в атмосфере имеется хорошо измеренное вблизи поверхности планеты стабильное геомагнитное поле с напряженностью \overline{H} , в приэкваториальной области направленной с юга на север, с величиной $H \sim 0,3$ Э. Существует также и генерируемое в атмосфере космическими лучами (КЛ) [3] направленное практически на

Boss And Junior B Line The TYT URAUSHIE BECARADELUN **SUBJIKOTEKA**

центр Земли постоянное электрическое поле \overline{E} . Вблизи земной поверхности его измеренная напряженность $E \sim 1,3$ В/см.

Но экспериментальных данных о величинах H и E на высотах h ~ (200 – 400) км нет. Поэтому ниже будем в этом слое предполагать величины $H \sim 0.1$ Э и $E \sim 10^{-3}$ В/см.

Вместе с тем среди атмосферных заряженных частиц наряду с легкими электронами и протонами есть и многократно превосходящие их по массе ионы тяжелых атомов и молекулярные ионы. В связи с этим в уравнениях движения заряженных ионосферных частиц наряду с силой Лоренца учтем и силу гравитации.

Началом декартовой системы координат выберем ту точку сверхвращающегося слоя ионосферы (с $200 \le h \le 400$ км), где в начальный момент времени образовалась (ионизацией нейтрального атома или молекулы) рассматриваемая заряженная частица с массой m и зарядом е (или ne), причем $e = \pm |e|$, n – целое число. Ось Ох направим вдоль предполагаемых направленными на центр Земли обоих векторов \vec{E} и \vec{g} (вектора ускорения гравитацией с его модулем $g = M_{\oplus}G/r^2$ ($r = R_{\oplus} + h$)). А ось Oy - вдольпараллели на запад и ось $Oz - вдоль вектора <math>\vec{H}$ на север. Область рассмотрения ограничим широтами приэкваториальными. Энергии электронов, протонов, однозарядных и многозарядных ионов будем считать нерелятивистскими.

Обозначим H_z через H и E_x через E.

Тогда уравнения движения конкретной заряженной частицы будут

$$d^{2}x/dt^{2} = eE/m + g + \omega dy/dt,$$

$$d^{2}y/dt^{2} = -\omega dx/dt.$$
(1)

В (1) учитывается движение только в плоскости *хОу* вследствие равенства нулю *z*-компоненты и силы Лоренца в рассматриваемых приэкваториальных широтах и силы гравитации.

Решение (1) находится элементарно.

Необходимые начальные данные $x_0 = y_0 = 0$ и $v_{x0} = \alpha \omega$, $v_{y0} = \beta \omega$ реализуются, если $x = (eE/m\omega^2 + g/\omega^2 + \beta)(1-cos\omega t) + \alpha sin\omega t$, $y = (eE/m\omega^2 + g/\omega^2 + \beta)sin\omega t - \alpha(1-cos\omega t) - (eE/m\omega^2 + g/\omega^2)\omega t$. (2) Соответствующие решению (2) компоненты скорости частицы есть $v_x = (eE/m\omega + g/\omega + \beta \omega)sin\omega t + \alpha \omega cos\omega t$, $v_y = -eE/m\omega - g/\omega + (eE/m\omega + g/\omega + \beta \omega)cos\omega t - \alpha \omega sin\omega t$. (3)

Решение (2) содержит в себе свойства как впервые 70 лет назад рассмотренного Чепмэном т. н. дрейфотока [4, 5] заряженных частиц, реализующегося в случае отсутствия электрического поля (при E = 0) в поперечных магнитном и гравитационном полях, так и электрического дрейфа [6] в поперечных полях магнитном и электрическом. В последнем случае в (1), (2), и (3) следует положить g = 0.

2.2. Свойства электрического дрейфа зарядов в постоянных поперечных магнитном и электрическом полях

С целью упростить процедуру дальнейшего анализа примем высоту h начала координат (точки образования заряда) равной средней высоте слоя сверхвращения h = 300 км.

Сравним предполагаемые в рассматриваемом слое постоянными величины ускорений заряженных частиц электрическим полем с $E \sim 10^{-3}$ В/см и гравитацией (g₃₀₀ ~ 895 см/с²). Для ионов со средней массой m ~ 3,05 10^{-23} г оказывается $|eE/m|/g \sim 5,86 \, 10^4$. Т.е. воздействие на заряженные частицы гравитации будет пренебрежимо малым по сравнению с их ускорением в электрическом поле даже при величине E на 2 – 3 порядка меньшей, чем предположенная выше.

По этой причине далее исследуем только свойства электрического дрейфа, положив в уравнениях движения (1) и выражениях (2) и (3) g = 0. Тогда уравнения движения и их решение будут

$d^{2}x/dt^{2} = eE/m + \omega dy/dt,$	
$\frac{d^2y}{dt^2} = -\omega \frac{dx}{dt}.$	(la)
$x = (eE/m\omega^2 + \beta)(1 - cos\omega t) + \alpha sin\omega t, \qquad $	
$y = (eE/m\omega^2 + \beta)sin\omega t - \alpha(1 - cos\omega t) - (eE/m\omega^2)\omega t.$	(2a)
$v_x = (eE/m\omega + \beta\omega)sin\omega t + \alpha\omega cos\omega t,$	

$$\mathbf{v}_{\mathbf{y}} = -\mathbf{e}E/\mathbf{m}\omega + (\mathbf{e}E/\mathbf{m}\omega + \beta\omega)cos\omega t - \alpha\omega sin\omega t.$$
(3a)

Определим, прежде всего, равновесную траекторию электрического дрейфа заряженных частиц в постоянных поперечных электрическом и магнитном полях. Она, как легко понять, является прямой линией, совпадающей с осью *Oy*. Реализуется она тогда, когда начальная скорость образовавшегося иона или электрона имеет единственную компоненту, равную $v_{y0} = -cE/H$. В этом случае сила Лоренца, действующая на частицу, $\vec{F} = e \ \vec{E} + (e/c)[\ \vec{vx} \ \vec{H}]$ точно равна нулю и при вышеуказанной начальной скорости заряженная частица свободно летит на восток. Скорость частицы $v_y = -cE \ H$ на ней всегда постоянна.

3

Здесь уместно добавить, что для частицы, начальная скорость которой будет $v_y = -cE/H + \delta$ ($\delta <<|v_{y0}|, \delta>0$), прямолинейная равновесная траектория (с учетом гравитации) при адекватной величине δ превратится в окружность вокруг Земли радиуса R₀+300 км.

Очевидно, что близкие к равновесной траектории дрейфа с $\beta \omega = -cE/H$ и $|\alpha \omega| < cE/H$ траектории будут укороченными циклоидами. А при других наборах начальных скоростей заряженных частиц $\alpha \omega$ и $\beta \omega$ - циклоидами всевозможных видов [6].

Пользуясь периодичностью зависимостей v_x и v_y (3a) от аргумента ωt с периодом 2π , вычисление средних значений обеих компонент скорости $\overline{v_x}$ и $\overline{v_y}$ любой дрейфующей частицы легко выполнить через интегрирование и нормирование лишь на отрезках аргумента, равных 2π . Результат всегда оказывается одним и тем же: $\overline{v_x} = 0$, а $\overline{v_y} = -cE/H$ - постоянной скорости на равновесной траектории дрейфа. В рассматриваемых условиях величина средней скорости дрейфа $\overline{v_y} = -10^6$ см/с. Направлена она, как уже упоминалось, всегда на восток.

Как видим, средняя скорость дрейфа любой заряженной частицы удивительно инвариантна. Ее модуль и направление неизменны не только при вариации знака и модуля заряда частицы и ее массы [6]. Инвариантна она и при любых сочетаниях величин и направлений начальной (разумеется, нерелятивистской) скорости образовавшихся заряженных частиц.

Вместе с тем, как следует из таблицы 1, несмотря на значительный средний пробег ионосферных частиц, их упругие и неупругие столкновения с нейтральными частицами весьма часты. Причем после передачи части своего импульса в очередном столкновении с нейтральными частицами каждый заряд автоматически восстанавливает свой дрейф с запада на восток. Автоматическое восстановление инвариантных величины и направления среднего (перед столкновением) импульса происходит в течение короткого временного интервала $\Delta t \sim \pi/2\omega$. Даже для N⁺₂ он составляет ~ 0,046 с. Переданный нейтральным частицам импульс имеет, естественно, наиболее вероятное направление на восток.

Оценим теперь суммарную энергию дрейфа зарядов, содержащихся в 1 см³ на средней высоте сверхвращающегося слоя ионосферы h=300 км. Здесь (см. таблицу 1) плотность ионов N_e=7,94 10^{5} /см³ и плотность всех частиц N=7,94 10^{8} /см³. С учетом значения средней массы частиц $\overline{m} = 18,36 \times 1,66 \times 10^{-24}$ г =3,05 10^{-23} г [2, с. 180] и вышеупомянутой инвариантной средней скорости дрейфа $\overline{v_y} = -10^{6}$ см/с средняя

плотность энергии дрейфа E_{300} заряженных частиц на этой высоте составляет $E_{300} \sim N_e \ \bar{m} \ \bar{v}_y^2/2 \sim 1,2 \ 10^{-5} \ \text{эрг/см}^3$.

Сравним ее с плотностью энергии измеренного [1;2] сверхвращения E_{cBepx} всех локализованных в рассматриваемом см³ частиц $E_{cBepx} = N \overline{m} v_{cBepx}^2/2$ (разумеется, $v_{cBepx} = 0,3\omega_{\oplus}(R_{\oplus} + 300) \sim 1,46 \ 10^4 \ cm/c)$ на высоте 300 км, равной $E^{cBepx}_{300} \sim 5,1 \ 10^{-7}$ эрг.

Как видим, имеющаяся в 1 см³ энергия единонаправленного дрейфа только заряженных частиц на h =300 км в предположении $H_{300} = 0,1$ Э и $E_{300} = 10^{-3}$ В/см $E_{300} \sim$ 1,2 10⁻⁵ эрг/см³ более чем в 20 раз превосходит плотность энергии сверхвращения всех содержащихся в слое частиц ~5,1 10⁻⁷ эрг/см³. Кроме того, как следует из вышеизложенного, кинетическая энергия провзаимодействовавших с другими частицами заряженных частиц и величина и направление их среднего импульса практически всегда через короткий после столкновения интервал времени $\Delta t < 0,05$ с возвращают свои инвариантные значения.

Это свидетельствует о способности единоскоростного потока всегда дрейфующих заряженных частиц рассматриваемого слоя ионосферы эффективно увлекать все нейтральные его частицы в движение, направленное с запада на восток. Т. е. он, повидимому, и создает наблюденное сверхвращение верхней атмосферы [1-2].

Отметим еще одно очевидное свойство потока дрейфующих в ионосфере зарядов и всего потока сверхвращения.

Вследствие равенства объемной плотности всех положительных заряженных частиц в ионосфере плотности частиц с зарядом отрицательным, суммарный ток их азимутального дрейфа с его инвариантными скоростью и ее направлением на восток равен нулю. Поэтому вклада в геомагнитное поле поток сверхвращения, образованный электрическим дрейфом, не вносит.

Этим он принципиально отличается от дрейфотока Чепмэна [4,5]. В последнем, как легко видеть с помощью выражений (2) и (3), положив в них E = 0, а g ~ 895 см/с², положительные заряды (их m ~3,05 10⁻²³ г) имеют среднюю скорость дрейфа на восток около 17 см/с, а отрицательные (их m близка к m_e) дрейфуют (на запад) со скоростью примерно на 3 порядка меньшей. И слабый дрейфоток здесь возможен.

5

Литература

3. Заключение

Сопоставим наиболее интересные данные наблюдений и выполненных здесь расчетов. Отметим, прежде всего, точное совпадение высоты над земной поверхностью h = 300 км как единственного в атмосфере максимума плотности заряженных частиц $N_e = 7,94 \ 10^5/\text{см}^3$ (табл.1), так и середины узкого интервала высот ее сверхвращения $h_{\text{сверх}} \sim (200-400)$ км. На этих же высотах, как было видно (табл.1), пробеги частиц составляют $\overline{l} \sim 1$ км, тогда как характерная константа размерности длины $eE/\text{m}\omega^2$ решения (2a) уравнений движения (1a) для заряженных частиц со средней массой в этом слое $\overline{m} = 3,05 \ 10^{-23}$ г (18,36 а.е.) $eE/(\text{m}\omega^2) \sim 1,9 \ 10^4$ см. Т.е. длина \overline{l} примерно впятеро превосходит характерный "радиус" циклоидальной траектории их дрейфа. Это является гарантией автоматического возврата любой заряженной частицы, передавшей в очередном столкновении нейтральной частице слоя часть своего импульса (наиболее вероятно направленного на восток) в электрический дрейф с инвариантными средней энергией и величиной и направлением скорости на восток.

С учетом вышеизложенного существование сверхвращения только в слое 200 < h < 400 км естественно. Ниже 200 км электрический дрейф невозможен из-за малости \overline{l} , а выше 400 км - вследствие практически полного прекращения генерации КЛ электростатического поля из-за того, что число атмосферных частиц выше 400 км для генерации недостаточно.

Экспериментальная проверка адекватности предложенной гипотезы может быть выполнена с помощью одновременного измерения в земной атмосфере на высотах 200 < h < 400 км H(h), E(h) и $\omega_{cbepx}(h)$ (лучше всего в дневное время). Если затраты на измерения суточного хода то́лько угловой скорости сверхвращения $\omega_{cbepx}(t)$ окажутся меньшими, чем на измерения вышеупомянутые, то измеренный ход $\omega_{cbepx}(t)$, в котором в соответствии с гипотезой должны обязательно наблюдаться максимум вечером и минимум перед восходом Солнца, будет не менее надежным доказательством ее правильности. Причина особенностей хода очевидна: днем плотность N_e многократно превосходит ее ночное значение. [1] King-Hele D.G., Roy. Air Estab., TR 71171, 1971.

[2] Аллен К.У. Астрофизические величины. М., "Мир", 1977. 446 с.

[3] Матора И.М. и др., ОИЯИ, Р1-98-68, Дубна, 1998.

[4] Chapman S., Proc. Roy. Soc., A, v. 122, p. 369, 1929

[5] Яновский Б.М. Земной магнетизм. М., Гостехиздат, 1953. 592 с.

[6] Франк-Каменецкий Д.А. Плазма – четвертое состояние вещества. 2 изд. М. Госатомиздат, 1963. 160 с. Ландау Л.Д., Лифшиц Е.М. Теория поля., 6 изд. М. Наука, 1973. 504 с.

> Рукопись поступила в издательский отдел 8 февраля 1999 года.

> > 7

6