ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ **ДУБНА**

3080 2-70

9/111-76 P4 - 9879

Л.А.Малов, В.О.Нестеренко, В.Г.Соловьев

M-197

.......

ПОЛУМИКРОСКОПИЧЕСКОЕ ОПИСАНИЕ ГИГАНТСКИХ ОКТУПОЛЬНЫХ РЕЗОНАНСОВ В ДЕФОРМИРОВАННЫХ ЯДРАХ

P4 - 9879

Л.А.Малов, В.О.Нестеренко, В.Г.Соловьев

ПОЛУМИКРОСКОПИЧЕСКОЕ ОПИСАНИЕ ГИГАНТСКИХ ОКТУПОЛЬНЫХ РЕЗОНАНСОВ В ДЕФОРМИРОВАННЫХ ЯДРАХ

Направлено в "Physics Letters"

Обления настичи вларных пескедования Гогоностска Малов Л.А., Нестеренко В.О., Соловьев В.Г.

P4 - 9879

Полумикроскопическое описание гигантских октупольных резонансов в деформированных ядрах

В рамках сверхтекучей модели ядра исследованы октупольные резонансы в деформированных ядрах. Приведены положения, ширины изоскалярных и изовекторных резонансов для ряда ядер.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований Дубна 1976

Malov L.A., Nesterenko V.O., Soloviev V.G. P4 - 9879

Semimicroscopic Description of Giant Octupole Resonances in Deformed Nuclei

The strength functions $b(E3,\omega)$ are calculated, and the positions and widths of giant octupole resonances in deformed nuclei are found. It is shown that the giant octupole isoscalar resonances have energies (19-20) MeV for the rare-earth nuclei and (17-18) MeV for the actinides and the widths (5-7) MeV. The energies of the giant octupole isovector resonances are defined by the value of the isovector constant $\kappa(3)$.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research

Dubna 1976

За последние годы увеличился интерес к проблеме гигантских мультипольных резонансов в ядрах в связи с экспериментальным обнаружением /см. /1-4/ / гигантских резонансов, отличающихся от электрического дипольного. Теоретическое рассмотрение этой проблемы в рамках нефеноменологических подходов в большинстве работ ограничено сферическими ядрами /1-3,5/. При описании гигантских резонансов в деформированных ядрах имеются дополнительные трудности, связанные, в частности, с необходимостью работать с большим конфигурационным пространством. Для деформированных ядер в⁷⁶⁷ рассматривался изоскалярный гигантский квадрупольный резонанс, а в /7/ впервые в рамках единого полумикроскопического подхода рассчитаны характеристики изоскалярного (T =0) и изовекторного (T=1) гигантских квадрупольных резонансов.

Недавно в сферических ядрах обнаружен изоскалярный гигантский октупольный резонанс /см. ^{/1/} /, в деформированных ядрах нет определенных указаний на существование гигантских октупольных резонансов.

В настоящей работе в гармоническом приближении рассчитаны энергии и другие характеристики гигантских октупольных изоскалярных и изовекторных резонансов в деформированных ядрах.

Секулярное уравнение для описания однофононных октупольных состояний с использованием изоскалярной $\kappa^{(3)}_{0}$ и изовекторной $\kappa^{(3)}_{1}$ констант взаимодействия запишем в виде^{/7,8/}:

$$(\kappa_0^{(3)} + \kappa_1^{(3)})(X_n^i + X_p^i) - 4\kappa_0^{(3)}\kappa_1^{(3)}X_n^i X_p^i = 1, /1/$$

где, например, для нейтронов

$$X_{n}^{i} = 2 \sum_{ss} \frac{\left[f(ss')u_{ss'}\right]^{2} \left[\epsilon(s) + \epsilon(s')\right]}{\left[\epsilon(s) + \epsilon(s')\right]^{2} - \omega_{i}^{2}} \cdot \frac{(2/2)^{2}}{\left[\epsilon(s) + \epsilon(s')\right]^{2} - \omega_{i}^{2}}$$

~

Здесь ω_i - энергия однофононного состояния, остальные обозначения те же, что и в^{7,8}. Эффекты, связанные с движением центра тяжести, не учитываются, поскольку их влиянием на свойства гигантских резонансов в тяжелых ядрах можно пренебречь.

Используя метод вычисления усредненных характеристик $^{/9/}$, для силовой функции приведенной вероятности E3 -перехода в зависимости от энергии возбуждения ω получим следующее выражение $^{/7/}$:

$$\mathbf{b}(\mathbf{E}3,\omega) = (00\lambda\mu | \mathbf{I}\mathbf{K}) \frac{2-\delta_{\mathbf{K}\mathbf{0}}}{\pi} \mathbf{e}^2 \times /3/$$

$$\times \operatorname{Im} \{ \left[\frac{(1+\epsilon_{p}^{(3)})^{2} X_{p} + (\epsilon_{n}^{(3)})^{2} X_{n} - X_{n} X_{p} F_{0}^{(3)} (1+\epsilon_{p}^{(3)} - \epsilon_{n}^{(3)})^{2} + \kappa_{1}^{(3)} (1+\epsilon_{p}^{(3)} + \epsilon_{n}^{(3)})^{2} }{1 - (\kappa_{0}^{(3)} + \kappa_{1}^{(3)}) (X_{n} + X_{p}) + 4\kappa_{0}^{(3)} \kappa_{1}^{(3)} X_{n} X_{p}} \right] \}, \omega \rightarrow \omega + i\Delta/2$$

где $e_n^{(3)}$, $e_n^{(3)}$ - эффективные заряды, которые в данных расчетах взяты равными нулю, Δ - параметр усреднения. В численных расчетах параметры потенциала Саксона-Вудса брались из^{/10/}, учитывалась все квазистационарные уровни. Константа $\kappa_0^{(3)}$ фиксирована правильным описанием низколежащих октупольных состояний.

Результаты наших расчетов приведены на рис. 1,2 и в табл. 1.

На рис. 1 приведены силовые функции b(E3, ω) для E3-переходов на состояния с I⁷⁷ = 3⁻⁷ и K=0,1,2,3 в ²³⁸U. Значение $\kappa_1^{(3)}$ выбрано равным – 4,5 $\kappa_0^{(3)}$ /2/. В нижней части рисунка дана полная силовая функция для переходов на состояния I⁷⁷ = 3⁻⁷ со всеми возможными значениями К.Пунктиром дана эта величина, рассчитанная с $\kappa_1^{(3)}=0$. Видно, что ширина октупольного резонанса, определенная в таком приближении, была бы сильно завышена. Исследования показали, что изменения $\kappa_1^{(3)}$ не

Рис. 1. Силовые функции $b(E3,\omega)_{B}^{238}U$ для E3-переходов из основного состояния 0^{+} на состояния $I^{T}K$ и суммарная величина. Пунктиром показано полное значение $b(E3,\omega)$, рассчитанное с $\kappa_{1}^{(3)} = 0$.

5

Рис. 2. Зависимость от А энергий гигантских октупольных резонансов (T=0,1) для деформированных ядер / точки - результаты расчета/.

Характеристики гигантских октупольных резонансов в дерормированных ядрах

Таблица I

	Изоскалярный резонанс, Т=О				Изовекторный резонанс, T=I			
о Ф	E,	Г,	S b(E3,w) du	Swb(ex,w)dw,	Ε,	Γ,	∫b(E3,w)da	, Sw bies, w)dw,
Яд	мэВ	мэВ	ogn, eg .	ogh.eg.xH9B (% or EWSR)	МэВ	МэВ	одн. ед.	Ogn. eg x M3B (% or EWSR)
150 _{Nd}	21,0	8,0	11	230(27%)	33,0	6,0	8	260(31%)
154 _{Sm}	21,0	7,5	11	220(26%)	33,5	6,5	9	300(35%)
154 _{Gð}	21	7.5	10	220(26%)	33,0	7,0	9	310(34%)
162 _{Dy}	19,5	7,0	13	280(27%)	31,0	8,0	15	460(45%)
166 _{Er}	20,0	7,0	13	280(27%)	31,0	в,о	15	460(45%)
172 _{Yb}	19,5	6,0	11	220(21%)	30,5	8,0	15	450(43%)
176 _{Hf}	20,0	6,0	11	220(21%)	30,5	в,о	15	450(4 <i>3</i> %)
230 _{Th}	17,5	5,0	14	250(24%)	28,5	7,0	15	440(41%)
232 _{Tb}	17,5	5,0	14	250(24%)	28,5	7,0	16	440(42%)
234 _U	17,5	5,0	15	270(25%)	28,0	7,0	17	470(43%)
238 _U	17,5	5,0	14	250(23%)	28,0	6,5	16	440(41%)
244 _{Cm}	17,0	5,0	14	240(22%)	27,5	7,0	19	510(46%)
246 _{Ca}	17,0	5,0	14	240(22%)	27,5	7,0	19	510(47%)

очень сильно влияют на низкоэнергетическую часть силовой функции и на энергию октупольного изоскалярного резонанса. Поэтому наши расчеты дают однозначно положение гигантских изоскалярных октупольных резонансов в деформированных ядрах при энергии~17-20 *МэВ*, величина которой уменьшается с увеличением А. Введение единственного свободного параметра $\kappa_1^{(3)} \neq 0$ приводит к возникновению изовекторного резонанса, положение которого сильно зависит от $\kappa_1^{(3)}$ и менее определенно из-за неизвестности этого параметра. Если воспользоваться оценкой ${}^{/2/} \kappa_1^{(3)} \simeq -4,5 \kappa_0^{(3)}$, то по нашим расчетам изовекторный резонанс будет при 36-42 *МэВ*.

7

Если же принять $\kappa_{1}^{(3)} = -1.5\kappa_{0}^{(3)}$, то верна гидродинамическая оценка его положения, Е $\simeq 172 \cdot A^{-1/3}$. На *рис. 2* показаны рассчитанные для ряда ядер энергии гигантских октупольных резонансов в зависимости от А. Сплошными линиями показаны различные феноменологические оценки энергий резонансов.

Ширина гигантского октупольного резонанса в деформированных ядрах в значительной степени определяется расщеплением резонансов с различными значениями К, последовательность которых сохраняется во всех рассчитанных ядрах. Это ясно продемонстрировано на рис. 1. Рассчитанные гигантские октупольные резонансы в деформированных ядрах оказываются шире квадрупольных резонансов. При обсуждении ширины гигантских резонансов нужно иметь в виду, что нами не учитывается естественная ширина уровней и взаимодействие с высшими конфигурациями. Учет взаимодействия квазичастиц с фононами позволит подойти к выяснению роли высших конфигураций. Из рис. 1 видно, что форма резонанса заметно отличается от кривой Лоренца, поэтому **удобнее** говорить об энергетическом интервале локализации резонанса /полная ширина Г / и энергии его центра тяжести (Е), чем о полуширине и положении пика, как это обычно делается для дипольных резонансов. Края этого интервала для определенности мы фиксируем на уровне 20% полной высоты соответствующего пика, отсчитываемой от фона. На рисунке показаны эти величины на примере изоскалярного резонанса. Подчеркнем, что определенная таким образом полная ширина резонанса Г при $\Delta < \Gamma$ /в наших расчетах бралась $\Lambda = 1$ МэВ/ практически не зависит от величины Δ .

В расчетах выбиралось достаточно широкое конфигурационное пространство /учитывалось до 160 одночастичных нейтронных и до 185 протонных уровней/. В результате рассчитанная величина энергетически взвешенной суммы для разных ядер исчерпывает на 80-90% безмодельную оценку энергетически взвешенного правила сумм (EWSR). При этом в область гигантских резонансов попадает большое число однофононных состояний. Например, для ²³⁸ U в области изоскалярного резонанса находится ~ 1700, а в области изовекторного ~ 2400 двухквазичастичных полюсов. Вклад в EWSR состояний с кажлым значением К=0,1,2,3 оказывается значи-238 U тельным, например, для он составляет 16%. 33%, 28%, 23%, соответственно.

Экспериментальное обнаружение гигантского октупольного резонанса в реакции фотопоглощения представит большие трудности, поскольку его вклад в полное сечение этой реакции относительно мал /пля изоскалярного резонанса - /0,5-0,8/ мбн МэВ, для изовекторного -/4-10/мбн•МэВ/.

В табл. 1 дана сводная информация о гигантских октупольных резонансах рассчитанных ядер с $\kappa_1^{(3)} = -1.5 \kappa_0^{(3)}$. Приводится для T = 0,1 положение, полная ширина, приведенная вероятность Е3-переходов на все состояния с $\mathbf{I}^{\pi} = 3^{-}$ в область резонанса $\sum_{i} \mathbf{B}(\mathbf{E}3, \omega_{i}) \simeq \int \mathbf{b}(\mathbf{E}3, \omega) d\omega$,

энергетически взвешенная сумма приведенных вероятностей $\sum_{i} \omega_{i} B(E3, \omega_{i}) \approx \int_{\Gamma} \omega \dot{b}(E3, \omega) d\omega$ /в скобках

дается в процентах доля ее от EWSR /.

Предварительные исследования Е4-переходов показывают, что, по-видимому, изоскалярный гексадекапольный резонанс выделен слабо и распределен по широкой энергетической области. Изовекторный резонанс локализован в более узкой области, однако его положение сильно зависит от $\kappa^{(4)}$ При $\kappa^{(4)}_{1} = -2 \kappa^{(4)}_{0}$ он расположен в районе 40-45 *М*эВ.¹

В заключение благодарим Г.Кырчева, Л.Е.Лазареву, Б.А.Тулупова, К.В.Шитикову, Р.А.Эрамжяна, М.А.Киселева за интересные обсуждения.

Литература

- G.R.Satchler. Phys.Rep., 14C, 97 /1974/.
 D.R.Bes, R.A.Broglia and B.S.Nilsson. Phys. Rep., 16C, 1 /1975/.
- 3. И.Н.Борзов, С.П.Камерджиев. Препринт ФЭИ-580 /1975/.

- M.B.Lewis and D.J.Horen. Phys. Rev., C10, 1099 /1974/; A.Schwierczinski et al. Phys. Lett., 55B, 171 /1975/.
- 5. S.Krewald and J.Speth. Phys. Lett., 52B, 295 /1974/; S.Krewald, J.Birkholz, A.Faessler and J.Speth. Phys.Rev.Lett., 33, 1386 /1974/; С.Ф.Семенко. Изв. АН СССР /сер. физ./, 40, 836 /1976/.
- 6. Т.Каттигі and S.Kusuno. Nucl. Phys., A215, 178 /1973/;
 А.А.Кулиев, Н.И.Пятов. ЯФ, 20, 297 /1974/;
 Т.Kishimoto, J.M.Moss, D.H.Young blood et al. Phys. Rev. Lett., 35, 552 /1975/; D.Zawischa, J.Speth. Phys. Rev.Lett., 36, 843 /1976/.
- 7. Г.Кырчев, Л.А.Малов, В.О.Нестеренко, В.Г.Соловьев. Препринт ОИЯИ, Р4-9697, Дубна, 1976.
- 8. В.Г.Соловьев. Теория сложных ядер. М., Наука, 1971.
- 9. Л.А.Малов, В.Г.Соловьев. Препринт ОИЯИ, P4-9652, Дубна, 1976.
- 10. Ф.А.Гареев, С.П.Иванова, В.Г.Соловьев, С.И.Федотов. ЭЧАЯ, 4, 357 /1973/; С.П.Иванова, А.Л.Комов, Л.А.Малов, В.Г.Соловьев. ЭЧАЯ, 7, 450 /1976/.

Рукопись поступила в издательский отдел 16 июня 1976 года.