ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

3078 2-70

9/vm-76 P4 - 9873

С.В.Акулиничев, Л.А.Малов

.......

.......

A-441

田田田

ПОЛУМИКРОСКОПИЧЕСКОЕ ОПИСАНИЕ ГИГАНТСКИХ ДИПОЛЬНЫХ РЕЗОНАНСОВ В ДЕФОРМИРОВАННЫХ ЯДРАХ

P4 - 9873

С.В.Акулиничев, Л.А.Малов

ПОЛУМИКРОСКОПИЧЕСКОЕ ОПИСАНИЕ ГИГАНТСКИХ ДИПОЛЬНЫХ РЕЗОНАНСОВ В ДЕФОРМИРОВАННЫХ ЯДРАХ

Направлено в "Journal of Physics. G: Nuclear Physics".

I. <u>Введение</u>

В исследованиях свойств атомных ядер одно из центральных мест отволится гигантским резонансам. Гигантский ципольный резонанс наиболее ярко проявляется на эксперименте и дает большое количество информации для анализа /1/. Среди работ, посвященных теоретическому описанию дипольного резоканса, наибольший интерес представляют те, которые основываются на микроскопическом полхоле. Микроскопическое описание гигантских резонансов нозволяет наиболее полно иссленовать их свойства. В ряне работ использовалась оболочечная молель иля описания свойств пипольного резонанса /2-4/. В них рассматривались легкие и некоторые средние сферические ядра и получено описание отцельных интегральных свойств резонанса. Выл выполнен ряд работ, основанных на теории конечных ферми-систем 5,6/. Результатом атих работ также является описание некоторых интегральных свойств дипольного резонанса. Применялись и некоторые другие варианты микроскопического полхода (см. ссылки в работах $^{(2,7)}$). Однако микросмолическое описание гигантского дипольного резонанса в средних и тяжелых деформированных япрах почти не провопилось, а получениие ранее результаты не являются достаточно полными (см., например. работу /8/).

В настоящей работе используется полумикроскопическая мо-

дель, развитая в расотах^(9,10). В качестве среднего поля используется потенциал Саксона-Вудса. Остаточные взаимодейотвия частиц представляют собой спаривание сверхпроводящего типа и дальнодействующие диполь-дипольные силы. Для описания однофононных возбуждений используется приближение случайных фаз. В работе не учитивается взаимодействие с высшими конфитурациями.

Используется предложенная в работах^{/14,15}/методика получения усредненных характеристик возбужденных состояний без решения соответствующих секулярных уравнений и определения волновых функций. Движение центра масс исключается в довольно грубом приближении, которого, однако, вполне достаточно для описания гигантского дипольного резонанса.

Для ряда ядер редкоземельной и трансурановой областей рассчитаны характеристики резонанса: энергия, расщепление, ширина, интегральное сечение фотопоглощения и его моменты, показан энергетический ход сечения. В целом имеется корошее согласие с экспериментальными данными. Свободный параметр, характеривующий силу остаточного дипольного изовекторного взаимодействия, ваят единым для всех рассматриваемых ядер.

2. Теоретическое описание

Для описания однофононных состояний в рамках приближения случайных фаз нами используется аппарат, разработанный в работе^{/10/}.В работе^{/11/} показан способ исключения движения центра масс для среднего поля произвольного вида. Этот способ сводится к введению дополнительных изоскалярных дипольных взаимодействий, приводящих к естественному выделению "духового " состояния с нулевой энергией. Однако, как показано в работат^{/6,8},12/, "духовые" состояния, связанные с нарушением трансляционной инва-

риантности, не цают вклада в дипольный гигантский резонанс. Мы, тем не менее, приближенно исключаем цвижение центра масс, цобавляя, как и авторы работы/13/, изоскалярное ципольное взаимодействие и определяя его силу из требования выделения "духового" состояния с нулевой энергией.

Таким образом, остаточное диполь-дипольное взаимодействие имеет вид:

$$H_{ij} = -\frac{1}{2} \sum_{j=\sigma,i}^{r} \left\{ \varkappa_n \left(\zeta_{i,n}^+(n) \zeta_{i,n}(n) + \varkappa_p \zeta_{i,n}^-(p) \zeta_{i,n}(p) + \varkappa_n p \left[\zeta_{i,n}^+(n) \zeta_{i,n}(p) + \zeta_{i,n}^+(p) \zeta_{i,n}(n) \right] \right\} , \qquad (\mathbf{I})$$

где

$$\begin{split} & \mathcal{G}_{\underline{1},\underline{m}}(h) = \sum_{\boldsymbol{S},\boldsymbol{S}'} \langle \boldsymbol{S} \mid \boldsymbol{1}^{\underline{1}\underline{\mu}} \mid \boldsymbol{S}' \rangle \boldsymbol{\alpha}_{\boldsymbol{S}}^{\underline{1}} \boldsymbol{\alpha}_{\boldsymbol{S}'} \\ & \boldsymbol{1}^{\underline{1}\underline{m}} = \sum_{\boldsymbol{N},\boldsymbol{\Sigma}'} \left(\boldsymbol{Y}_{\underline{1},\underline{m}} + (\boldsymbol{1})^{\underline{m}} \boldsymbol{Y}_{\underline{1}-\underline{m}} \right); \end{split}$$

 $\mathcal{A}_{\mathcal{F}}^{f}(\mathcal{A}_{s})$ - оператор рождения (уничтожения) частицы; $\mathcal{A}_{n}=\mathcal{A}_{p}=\mathcal{A}_{c}+\mathcal{A}_{I}$, $\mathcal{A}_{np}=\mathcal{A}_{c}-\mathcal{A}_{I}$; $\mathcal{K}_{v},\mathcal{K}_{I}$ - константы, соответствэнно, изоскалярного и изовекторного ципольного взаимодействия. Кроме того, учитывается спаривание зверхпроводящего типа^{/16/}. Секулярное уравнение для энергий однофононных состояний имеет вип^{/10/}:

$$(\boldsymbol{x}_{e} + \boldsymbol{x}_{4}) (\boldsymbol{X}_{(n)}^{e} + \boldsymbol{X}_{(p)}^{e})^{-4} \boldsymbol{x}_{e} \boldsymbol{x}_{e} \boldsymbol{X}_{(n)} \boldsymbol{X}_{(p)}^{e})^{-4} \boldsymbol{x}_{e}$$
(2)

где

$$X'(n) = 2 \sum_{s,s'} \frac{\int f'(s,s') u_{s,s'} J^2 [\delta(s) + \delta(s')]}{[\ell(s) + \delta(s')]^2 - c_s^2},$$

ω. - энергия однофононного состояния,

 $\mathcal{E}(S)$ - квазичастичная энергия, $\mathcal{U}_{SS'} = \mathcal{U}_{S} \mathcal{V}_{S'} + \mathcal{U}_{S'} \mathcal{V}_{S}$,

 $\mathcal{U}_{\mathcal{S}}$, $\mathcal{E}_{\mathcal{S}}$ - коэффициенты канонического преобразования Боголюбова.

Как указывалось выше, величина Эе, определяется из условия

существования решения секулярного уравнения при нулевой энергии. Отношение ***/** является свободным параметром.

Исследование свойств каждого решения уравнения (2) в области гигантского ципольного резонанса, где плотность состояний очень высока, является весьма громоздкой задачей. Можно ввести усредненную силовую функцию электромагнитного возбущения:

$$\mathscr{E}(E1,\omega) = \sum_{i} \mathcal{B}_{i}(E1) \rho(\omega - \omega_{i}) , \qquad (3)$$

где В(ЕІ) - приведенная вероятность возбуждения однофононного состояния с энергией ω_i ;

$$p(\omega - \omega_i) = \frac{1}{2\pi} \cdot \frac{\Delta}{(\omega - \omega_i)^2 + (\Delta/2)^2}$$

Интеграл от $\mathscr{E}(\mathcal{E}_{1},\omega)$ по произвольному энергетическому интервалу в силу нормированности $\mathcal{P}(\omega \cdot \omega)$ приближенно равен приведенной вероятности возбуждения уровней в пределах этого интервала. Как показано в работах^{/14,15/}, функция (3) может быть рассчитана непосредственно, без нахождения однофононных состояний:

В лабораторной системе отсчета введены эффективные заряды

$$e_{qq}^{n} = -\frac{Z}{A}, e_{qq}^{p} = \frac{N}{A}$$
 для учета эффекта отдачи.
Аналогичным образом, используя соотноление 16/:

$$G_{n} = \frac{16 \, \overline{y}}{9 \, \hbar c} \sum_{i}^{n} \omega_{i}^{n+1} \beta_{i} \left(E1 \right) \,, \tag{5}$$

можно получить усредненные значения сечения фотопоглощения (Л =0) и его моментов (Л =-I,-2). Важно, что параметр усреднения ∆ не влияет на рассчитиваемые интегральные свойства резонансов, если выполняется условие:

$$\Delta << \int_{\mu eg}$$
. (6)

От \triangle зависит лишь плавность и высота отдельных пиков, но не соотношения между нами.

Ясно, что при выполнении условия (6) рассчитываемые ширина и сечение резонанса определяются не параметром Δ , а свойствами однофононных состояний, составляющих резонанс.

Поскольку в нашем подходе гвгантский ципольный резонанс представляет собой совокупность большого количества отдельных возбуждений, ширика резонанса является по существу шириной области локализации резонанса, определенной на полувысоте огибающей линии. В такой трактовке ширина резонанса не связана с естественной шириной отдельных состояний.

3. Детали расчетов и обсуждение результатов

В качестве среднего поля использовался потенциал Саксона-Вудса^{/17/}. В расчетах учитывалось примерно IOO нейтронных и столько же протонных одночастичных уровней среднего поля. Количество учитываемых одночастичных матричных элементов для некоторых ядер цостигает 3000. Параметр $\partial t_t / \partial t_c$ для всех ядер равен -I,2. Отметим, что в описанном подходе правило сумм для интегрального сечения вообще не зависит от этого параметра. В соответствии с условием (6) бралось $\Delta = 0.8$ Мар.

Резул. гаты расчетов представлены на рис. I, 2, 3 и в таблице.

На рис.I показано расщепление резонанса по числу K=0,I

из-за деформации ядра. Под энергиями Е₁ и Е₂ в дальнейшем мы почимаем центры тяжести резонансов соответственно с K=O.I.

Из рис.2 следует, что использованный базис является достаточно полным для описания гигантского дипольного резонянса. Можно также заключить, что положение резонанса не связано с распределением плотности отдельных двухквазичастичных состояний. Это показывает важность введенных диполь-ципольных взаимодействий для определения положения резонанса.

Гигантские резонансь мало взменяются при собавлении одного нуклона и четно-четному влоу/15,18/, Поэтому мы в некоторых случаях сопоставляем экспериментальные данные для дипольного резонанса в нечетных япрах с соответствуншими расчетами в соселних четно-четлых ядрах. Как видно из рис.3. качественно имеется **УПОВЛЕТВОДИТЕЛЬНОЕ ОНИСАНИЕ ЭНЕОГЕТИЧЕСКОГО ХОНА СЕЧЕНИЯ В СДАВ**нении с экспериментом. В отдельных случаях (для ядер def Fr. 112 Hi) имеется даже соответствие микроструктуры резонанса, хотя об этом. говорить пока трудно в силу большой погрешности и противоречивости экспериментальных данных. Следует отметить. что во всех случаях наблодается некоторое завышение сечения в максимуме и непостаточность в высокоэнергетической части (напомним, что это не зависит от величины Δ , которая не меняет соотновения между отдельными пиками). Как показано иля "Ег. учет изовекторного квалрупольного резонанса частично улучшает согласие с экспериментом в высокоэнергетической части сечения. Однако полнее устранить указанные отклонения, по-вилимому, позволит лишь учет высших конфигураций/24/.

При расчете сечения фотопоглощения и его моментов производилось интегрирование примерко по той же области энергий, что и на эксперименте. Из таблиць видно, что имеется вполне удов-

<u>Рис.2</u>. Плотность двухявазичастичных состояний в ядре ¹⁶⁶ Ега) λ_{M} =I0, в) λ_{M} =II. В произвольных единицах показано положение срответствущих резонансов (заштрихованные области).

...

<u>Рис.3</u>. Интегральное сечение ЕІ-фотопоглощения (непрерывная линия). Экспериментальные данные взяты из работ: а) – /23/, в) – /19/, с) – /22/, d) кривая Лоренца (показана пунктиром) – /1/. Для ¹⁶⁶ Г г пунктиром показано сечение с учетом изовекторного Е2-резонанса.

летворительное описание интегральных свойств ципольного резонанса. "Включение" спаривания увеличивает сечение примерно на 10% (б), изменяется меньше, в б. не изменяется вообще). Такого же порядка результат получался у авторов других работ для сферических ядер/6,25/. Однеко причиной этого является, по-видимому, не только увеличение количества участвующих матричных элементов^{/25/}. но и приближения, сцеланные при переходе к квазичастичному представлению /10/ (это является недостатком практически всех работ, выполненных с учетом спаривания частиц). Подтверждением этому служит хорошее согласие безмодельного презила сумм (ТКК) с рассчитанными сечениями без спаривания, если учесть ограничение области интегрирования. Некоторое превышение правила сумм на эксперименте говорит о наличии обменных или зависящих от скорости сил. которые не учитываются в нашем рассмотрении. Однако следует отметить, что практически во всех случаях отличие рассчитанных величин от экспериментальных не превышает 10-15% (Ескоторые тклонения сечений в япрах 232 Th и 238 22 объясняются ограниченностыр области интегрирования).

Таким образом, полумикроскопический подход, успешно применявшийся для описания низколежащих неротационных состояний (см., например, /10,17/), позволяет качественно и даже количественно описывать гигантские дигольные резонансы в средних и тяжелых цеформированных ядрах. Дальнейшим развитием этого подхода явится, по-видимому, учет ангармоничности при рассмотрении гигантских резонансов.

В заключение выражаем благодарность В.Г.Соловьеву за внимание к работе и многочисленные полезные обсуждения. Благодарим также Л.Е.Лазареву и Р.А.Эрамжина за полезные дискуссии, Г.Кырчева за помощь при проведении численных расчетов, Д.И.Саламова за ряд полезных замечаний.

Ядро	б, бара. Мэв				б_4 мбарн			б ₋₂ мэв		Е _І ,Мэв		Е2,Мэв		E ^{max}
	Эксп.	Teop. G≠0 [±]	*)G=0	TRK	Элсп	. Teo G≠0	p. C=0	Эксп.	Teop.	Эксп.	Teop.	Эксп. Т	eop.	Мэв
¹⁵² Sm ^{/21}	2.05 ±,1	2,25	I,98	2,22	144 <u>+</u> 10	I63	156	10,6 ±0,7	11,5	12,45	12,8	I5 , 85	16,3	20,0
160./I/	2,53	2,47	2,23	2,30	169	17 8	166	12,1	12,5	12,23	12,5	15,96	15,8	29,5
Nat _{Er} 719/ *)	2,70 ±0,19	2,49	2,25	2,42	186 ± ¹⁵	I85	173	13,6 ± ^I	13,4	12,0	12,2	15,45	15,7	25,0
¹⁷⁵ Lu ^{/19} *)	2,65 <u>+</u> 0,18	2,63	2,40	2,53	182 + ¹⁵	197	181	12,9 ±1	14,5	12 ,3 5	12,3	15,52	15,6	23,0
¹⁸⁶ W /1/	3,00	2,88	2,59	2,67	203	218	201	14,5	16,I	12,59	12,2	14,98	15,4	28,6
232 _{Th} /20/	2,50 ±0,25	3,00	2,84	3,31	198 120	260	240	16, +2	2I , 0	11,08	11,5	14,07	13,8	16,3
235 /I/ %	3,71 20,4	3,30	3,05	3,34	293	291	279	24,I	24,0	10,58	11,3	13,84	13,7	18,5
238 _U /20	2,98 0,15	3,36	3,09	3,39	235 ±15	290	273	19. -1,5	23,4	10,96	10,6	14,04	13,6	18,3
^{*)}] ²³⁴ U.	цанные д. , ^{жж.)} G	ля ядер - конса	^{at} Er,	и, ²³⁵	и сра взаим	шниве юцейс	отся твия,	c pace	тетами,	COOTBET	CTBERR	76. Ю, ЦЛЯ	Er, 1	*У <i>в</i> ,

Таблица. Интегральные характеристики гигантского дипольного резонанса.

Литература

- I. B.L.Berman, S.C.Fultz. Rev. Mod. Phys., 47, 713 (1975).
- В.В.Балашов. Трудн международной конференции по электромагнит. ным взаимодействиям. Москва, 1967, т.З., стр. 307.
- Г.У. Егер, Г.Р.Киссенер, Р.А.Эрамжян. Трудь семинара по электромагнитным взаимодействиям ядер при малых и средних энергиях, Москва, 1972, стр.63.
- 4. V.Gillet, A.M.Green, E.A.Sanderson. Nucl. Phys. 88, 321 (1966).
- 5. Г.Г.Бунатян. ЯФ, 4, 920 (1966).
- 6. С.П.Камерджиев. ЯФ, <u>15</u>, 676 (1972).
- G.A.Bartholomew, F.C.Khanna. Proc.Second Int.Simp.on Neutron Capture Gamma-kay Spectroscopy, Petten, 1973, p.119; Proc.Int.Conference on Chotonuclear Reactions and Applicat, ed. by B.L.Lerman, Oak Ridge, 1973.
- V.Feifrlik, J.Rizek, P.Vogel.Hucl.Phys. <u>A119</u>, 1 (1969).
- 9. V.G.Soloviev. Atomic therey Keview, 2, v.2, 117 (1965).
- 10. В.Г.Соловьев. Теория сложных ядер, М., Наука, 1971.
- Н.И.Пятов. Материалы XI зимней школы ЛИЯФ по физике ядра и элементарных частиц. Ленинград, 1976, стр. 151.
- 12. В.В.Балашов и др. ЖЭТФ, <u>41</u>, 1929 (1961).
- 13. D.F. Petersen, C.J.Veje. Phys.Lett. 24b, 44) (1)-7).
- 14. Г.Кырчев, Л.А.Малов, В.О.Нестеренко, В.Р.Соловьев. Препринт ОИЯИ Р4-9652. Дубна, 1976.
- 15. С.В.Акулиничев, Л.А.Малов. Препринт ОИЯМ Е4-9758, Дубна, 1976.
- 16. Дж. Левинджер, Фотоядерные реакции, М., 1962.

17. С.П.Иванова, А.Л. Комов, Л.А.Малов, В.Г.Соловьев. ЭЧАЯ, <u>7</u>, 450 (1976);

- I8. M. Danos, u. Greiner, C. E. Kohr. Phys. Rev. 138, E1055 (1065).
- I9. R.Lergere, H.Leil, P.Carlos, A.Veyssiere, Hucl. Phys. A133, 417 (1969).
- 20. A.Veyssiere et al. Nucl. Phys. A199, 45 (1973).
- 2I. P.Carlos et al. Nucl. Phys. A225, 171 (1974).
- Г.М.Гуревич, Л.Е.Лазарена, В.М.Мазур, Г.В.Солодухов. Письма в ЖЭТФ, 20, 741 (1974).
- 23. Б.И.Горячев и др. Письма в ЖЭТФ, 19, 65 (1974).
- Ф.А.Шивописцев, А.В.Лукашев, К.В.Шитикова. Изв. АН СССР, <u>37</u>, 2634 (1973).
- 25. Р.М.Осокина, Е.Л.Ядровский. Изв. АН СССР 34, 182 (1970).

Рукопись поступила в издательский отдел 14 июня 1976 года.

Ф.А.Гареев, С.П.Иванова, В.Г.Соловьев, С.И.Федотов, ЭЧАЯ, 4, 357 (1973).