

СООБЩЕНИЯ Объединенного института ядерных исследований

Дубна

P4-95-117

В.К.Хеннер, Т.С.Белозерова¹

ПРОБЛЕМЫ СПЕКТРА ВОЗБУЖДЕНИЙ ЛЕГКИХ ВЕКТОРНЫХ МЕЗОНОВ И УНИТАРНОСТЬ S-МАТРИЦЫ ДЛЯ ПЕРЕКРЫВАЮЩИХСЯ НЕУПРУГИХ РЕЗОНАНСОВ

¹ Пермский государственный университет

1 Введение

Анализ мезонных состояний, рождаемых в электрон-позитронной аннигиляции, может дать важную информацию о возбуждениях векторных мезонов. Спектр таких возбуждений важен сам по себе, а его свойства также могут позволить критически оценить предположение, что набор векторных мезонов образует идеально смешанный нонет $q\bar{q}$ -состояний, являющихся радиальными или орбитальными возбуждениями ρ , ω и т.д. мезонов. Анализ изовекторных состояний $J^{PC} = 1^{--}$, $I^G = 1^+$ дает несколько ρ' -мезоных состояний. Существование по меньшей двух из них ρ'_1 и ρ'_2 с массами примерно 1.45 ГэВ и 1.70 ГэВ можно считать твердо установленным [1]. Анализ [2] с помощью корректной процедуры унитаризации, необходимой в случае широких перекрывающихся резонансов [3,4], позволяет снять одно из возражений против существования еще одного ρ' -состояния - $\rho'(1250)$ -мезона, состоящее в его слишком малой константой связи с состояние e^-e^+ - в [4] показано, что лептонные ширины всех трех ρ' -состояний достаточно близки и $q\bar{q}$ -интерпретация $\rho'(1250)$ -возбуждения возможна.

Существование ρ' -состояний естественно приводит к ожиданию соответствующих изоскалярных $J^{PC} = 1^{--}$, $I^G = 0^- \omega'$ -состояний. Анализы, проведенные А.Б.Говорковым [5] и Доннаки и Клеггом [6], указывают на соответствующие широкие резонансы ω'_1 и ω'_2 с массами, близкими к массам ρ'_1 и ρ'_2 -мезонов. В пользу существования низшего по массе состояния ω'_3 - партнера ρ'_3 -мезона ($\rho'(1250)$), также указывается [1] на наблюдение [7] двух $J^{PC} = 1^{--}$ состояний с массами примерно 1.1 и 1.3 ГъВ. Свойства ω' -мезонов не так хорошо изучены, как свойства ρ' -состояний, т.к. сечения состветствующих процессов в e^-e^+ - аннигиляции заметно меньше и статистика существенно хуже. Изучение ω' -мезонов показывает, что основными модами их распадов являются $\rho\pi$ и $\omega\pi^+\pi^-$ -состояния (состояния, включающие странные частицы, практически отсутствуют [1]) - в рамках этого приближения мы проводим корректное, сохраняющее унитарность описание процессов $e^-e^+ \to \pi^+\pi^-\pi^0$ и $e^-e^+ \to \omega\pi^+\pi^-$, идущих через два ω'_1 и ω'_2 или три ω'_1 , ω'_2 и

ω3 - резонанса.

CORCLASSING & STATET CREANNEY ECCHERDREN библиотека

2 Анализ и результаты

Приведем для последующего обсуждения и сравнения с нашими результатами массы и ширины ω' -состояний, полученные в работах Доннаки и Клегга (таблица 1).

		ω_1'	ω_2'
$m_{\omega'}$	ГәВ	1.44 ± 0.07	1.606 ± 0.009
$\Gamma_{\omega'}$	ГәВ	0.24 ± 0.07	0.113 ± 0.020
$\Gamma_{\omega' \to e^+e^-}$	кэВ	0.15 ± 0.0375	0.14 ± 0.035
$\Gamma_{\omega' \to \rho \pi}$	MəB	240 ± 60	84 ± 21
$\Gamma_{\omega' \to \omega \pi \pi}$	MəB	~ 0	29 ± 7.25

Таблица 1. Параметры ω'_1 и ω'_2 -мезонов [1].

Метод анализа, основанного на использовании унитаризованных амплитуд Брейт-Вигнеровского (БВ) типа, которые нужно использовать вместо обычных формул БВ в случае перекрывающихся резонансов, таких, что $|E_{R_1} - E_{R_2}| \sim \Gamma_{R_1} + \Gamma_{R_2}$, изложен в работе [3].

Парциальные амплитуды f_{ij} имеют вид:

$$f_{ij} = \sum_{R=1}^{N} \frac{m_R \Gamma_R A_{Ri} A_{Rj}}{s - m_R^2 + im_R \Gamma_R} = \sum_{R=1}^{N} e^{i(\varphi_{Ri} + \varphi_{Rj})} \frac{m_R \Gamma_R |A_{Ri}| |A_{Rj}|}{s - m_R^2 + im_R \Gamma_R} , \qquad (1)$$

где \vec{A}_R - комплексные векторы парциальных ширин резонансов. Способ построения этих векторов [3] обеспечивает унитарность матрицы рассеяния S. В амплитуде f_{1j} индекс 1 отвечает начальному состоянию e^+e^- (или промежуточному γ кванту), а индекс j = 2,3 отвечает, соответственно, конечным состояниям $\rho\pi$ и $\omega\pi\pi$. Некоторые подробности вычислений приведены в нашей предыдущей работе [4].

Вклад $\omega - \phi$ "хвоста" достаточно велик, но т.к. эти мезоны не перекрываются с ω' -состояниями, процедура унитаризации для них не существенна и их можно описать простыми БВ -слагаемыми.

Мы делаем два фита - с двумя и тремя ω' -мезонами. Результаты этих фитов представлены в табл.2 - табл.12 и на рис.1 - рис.4. На рис.1 и рис.2 приведены сечения $\sigma_{e^+e^-\to\pi^+\pi^-\pi^0}$ для случаев двух и трех ω' -мезонов, на рис.3 и рис.4 - соответствующие

сечения $\sigma_{e^+e^-\to\omega\pi^+\pi^-}$. Результаты не отличаются качественно друг от друга и мы не можем делать категорических утверждений о существовании или отсутствии ω'_3 мезона и лишь обсудим возможность его включения в схему $q\bar{q}$ -возбуждений.

Важно подчеркнуть необходимость унитаризационной процедуры, связанной с перекрыванием ω' -резонансов, т.к. использование обычного БВ приближения для перекрывающихся резонансов приводит к большому (до 100 %) нарушению условия унитарности. В этой связи также отметим произвольный выбор фаз для отдельных БВ членов в традиционных описаниях ρ' и ω' -мезонов, так, например, в [6] приводится два существенно отличающиеся результата для параметров ω' -состояний при разном выборе фаз + - + и + - -. Наша унитаризационная процедура делает математичесую схему жесткой.

Заметим, что парциальная ширина $\Gamma_{\omega'_1 \to \omega \pi \pi}$ достаточно велика, тогда как неожиданным для авторов работ [1,6] результатом, который сложно интерпретировать, была близость к нулю вероятности распада ω'_1 -резонанса в состояние $\omega \pi \pi$.

Найденные массы и ширины резонансов для двух и трех ω' -мезонов приведены в табл.2 и табл.7. Массы ω' состояний блиэки к массам соответствующих ρ' мезонов, что естественно при интерпретации тех и других состояний, как радиальных и орбитальных $q\bar{q}$ -возбуждений.

Критическим для интерпретации является соотношение парциальных ширин ω' и ρ' -состояний. В случае перекрывающихся многоканальных резонансов векторы парциальных ширин комплексны и парциальными ширинами можно называть :

$$B_{Ri} = \frac{A_{Ri}A_{Ri}^{*}}{|\vec{A}_{R}|^{2}} \cdot 100 \ (\%) = \frac{|A_{Ri}|^{2}}{\sum_{i=1}^{M} |A_{Ri}|^{2}} \cdot 100 \ (\%)^{\cdot}.$$
(2)

В случае, когда резонансы хорошо разнесены, векторы парциальных ширин становятся действительными и равенство (2) превращается в хорошо известную формулу $B_{Ri} = \Gamma_{Ri}/\Gamma_R$. Поэтому можно использовать величины $B_{Ri} \cdot \Gamma_R$, как аналоги значений обычных парциальных ширин Γ_{Ri} .

Полученные в результате фитирования комплексные векторы парциальных ширин $\vec{A}_{\rho'}$, соответственно для двух и трех ω' -мезонов, приведены в табл.3-табл.4 и табл.8табл.10, в табл.5 и табл.11 представлены соответствующие брэнчинги распадов. В кварковых моделях ожидаемые SU(4) -соотношения для парциальных ширин

3

лептонных распадов р' и ω' -состояний следующие:

$$\rightarrow e^+e^- : \omega'_i \rightarrow e^+e^- = 9 : 1.$$
 (3)

Сответсвенно для адронных распадов ожидаемые соотношения:

$$\lambda'_i \to \omega \pi : \omega'_i \to \rho \pi = 1 : 3.$$
 (4)

Наши результаты (парциальные ширины ρ' -мезонов см. в [4]) находятся в очень хорошем согласии с этими предсказаниями. Важно, что мы не пытались хоть скольконибудь "удерживать" соотношения (3) и (4) и неожиданным для нас результатом была степень их выполнения. Большое отклонение от этих соотношений в анализе [1] было важным аргументом против включения всех ρ' и ω' -состояний в $q\bar{q}$ -схему.

Однако вопрос об интерпретации результатов не так прост. Ситуацию с ρ' мезонами мы уже обсуждали в [4]. В нерелятивистском пределе лептонные ширины для орбитальных возбужденных $q\bar{q}$ -состояний равны нулю, однако с учетом релятивистских поправок это отношение всего лишь меньше 1 (в работе Годфри и Изгура [8] оно, примерно, 0.25). Наши вычисления дают значения близкие к 1.

Расхождение не так уж и велико и, с учетом модельной зависимости кварковых схем и больших экспериментальных ошибок, в принципе, наши вычисления, выполненные с помощью унитарной S -матрицы, показывают, что нет чрезвычайно весомых аргументов против интерпретации ρ' и ω' -мезонов как $q\bar{q}$ -возбуждений.

Однако, отмеченное выше расхождение и довольно плотное расположение этих резонансов по массе дает и основание считать, что некоторые из них "лишние" среди $q\bar{q}$ -состояний [1]. Природа таких возможных состояний не вполне ясна т.к. схемы смешивания $q\bar{q}$ -состояний с гибридными или четырех-кварковыми состояниями очень модельно зависимы [9].

Дальнейший прогресс в этой области связан, прежде всего, с улучшением экспериментальных данных и их корректным анализом, необходимостью достаточно точного определения лептонных и адронных ширин ρ' и ω' -резонансов и совершенствованием кварковых моделей, включающих смешивание состояний $q\bar{q}$ с более сложными состояниями. Таблица 2. Параметры ω' -возбуждений для системы двух ω' -мезонов

(массы и ширины приведены в ГэВ)

	Мезон	Macca	Ширина
	ω'1	1.4500	0.2000
λ.	ω'_2	1.6161	0.1987

Таблица 3. Вектор парциальных ширин $\vec{A}_{\omega_1'}$ ($m_{\omega_1'}=1.4500,~\Gamma_{\omega_1'}=0.2000$)

•	Канал	Состояние	$\mathrm{Re}A_{\omega_1'i}$	${ m Im} A_{\omega_1'i}$	$ A_{\omega_1'i} $	$arphi_{\omega_1'i}({ m град})$
	1	e+e-	0.00153891	0.00088521	0.00177535	29.909
	2	ρπ	0.94204838	0.26821675	0.97948730	15.893
•	3 .	$\omega\pi\pi$	0.55792103	0.43263051	0.70600640	37.792

Таблица 4. Вектор парциальных ширин $\vec{A}_{\omega_2'}$ $(m_{\omega_2'} = 1.6161, \ \Gamma_{\omega_2'} = 0.1987)$

			n			
	Канал	Состояние	${ m Re} A_{\omega'_2 i}$	$\mathrm{Im}A_{\omega_2'i}$	$ A_{\omega'_2 i} $	$arphi_{\omega_2'i}($ град $)$
. •	1	e+e-	0.00194909	-0.00063119	0.00204875	-17.944
	2	ρπ	0.59056868	-0.38638530	0.705737.18	-33.196
	3	$\omega\pi\pi$	0.95258044	-0.22883377	0.97968076	-13.508

Таблица 5. Брэнчинги распада для системы двух ω' -мезонов

Канал	Состояние	ω'_1	ω_2'
• 1	e+e-	0.00022	0.00029
^{1, 1} , 2	ρπ	65.809	34.165
3	$\omega\pi\pi$	34.191	65.835

Таблица 6. Коэффициенты БВ членов для системы двух ω' -мезонов

$$h_{ij} = \sum_{R=1}^{3} e^{i\psi_{ij}^{(R)}} \frac{m_R \Gamma_R C_{ij}^{(R)}}{s - m_R^2 + im_R \Gamma_R}$$

. .

где

$C_{ij}^{(R)} = A_{Ri} A$	\mathbf{i}_{Rj} ,	$\psi_{ij}^{(R)} =$	$\varphi_{Ri} + \varphi_{Rj}$.
------------------------------	---------------------	---------------------	---------------------------------

	Каналы		ω_1'		ω_2'
ij	Состояние	$C_{ij}^{(\omega_1')}\cdot 10^2$	$\psi_{ij}^{(\omega_1')}(ext{rpag})$	$C^{(\omega_2')}_{ij}\cdot 10^2$	$\psi_{ij}^{(\omega_2')}($ град $)$
1,2	$e^+e^- ightarrow ho\pi$	0.1739	45.802	0.1446	-51.140
1,3	$e^+e^- ightarrow \omega\pi\pi$	0.1253	67.701	0.2007	-31.452

6

Таблица 7. Параметры ω' -возбуждений для системы трех ω' -мезонов

(массы и ширины приведены в ГэВ)

Мезон	Macca	Ширина
ω'_1	1.4398	0.3482
ω_2'	1.6019	0.1887
ω'_3	1.2400	0.3490

Таблица 8. Вектор парциальных ширин $\vec{A}_{\omega_1'}$ ($m_{\omega_1'}=1.4398,~\Gamma_{\omega_1'}=0.3482$)

Ka	нал	Состояние	. $\operatorname{Re}A_{\omega_1'i}$	$\mathrm{Im}A_{\omega_1'i}$	$ A_{\omega_1'i} $	$\varphi_{\omega_1'i}(\mathrm{rpag})$
	1	e+e-	0.00134920	0.00095774	0.00165457	35.370
	2	ρπ	1.10504644	-0.02966749	1.10544461	-1.538
•	3	$\omega\pi\pi$	0.45858666	0.56638412	0.72876107	51.005

Таблица 9. Вектор парциальных ширин $\vec{A}_{\omega_2'}$ ($m_{\omega_2'}=1.6019,\ \Gamma_{\omega_2'}=0.1887$)

Канал	Состояние	$\mathrm{Re}A_{\rho'_{2}i}$	$\mathrm{Im}A_{\rho_2'i}$	$ A_{\rho'_2 i} $	$\varphi_{\rho'_2 i}(\mathrm{rpag})$
- 1	e ⁺ e ⁻	0.00187002	-0.00093578	0.00209109	-26.584
2	ρπ	0.38616967	-0.53786129	0.66213426	-54.324
3	$\omega\pi\pi$	0.99587692	-0.38176093	1.06654220	-20.974

Таблица 10. Вектор парциальных ширин $\vec{A}_{\omega'_3}$ ($m_{\omega'_3}=1.2400,~\Gamma_{\omega'_3}=0.3490$)

Канал	Состояние	${ m Re} A_{\omega'_3 i}$	${ m Im} A_{\omega'_3 i}$	$ A_{\omega'_3 i} $	$\varphi_{\omega'_3 i}(\mathrm{rpag})$
1	· e+e-	0.00124149	-0.00022121	0.00126104	-10.103
2	ρπ	-0.62580342	-0.29251919	0.69079476	25.053
3	$\omega\pi\pi$	0.87968652	-0.04017247	0.88060332	-2.615

7

Таблица 11. Брэнчинги распада для системы трех ω' -мезонов

Канал	Состояние	ω'_1	ω_2'	ω'_3
11	e+e-	0.00016	0.00028	0.00013
2	ρπ	69.705	27.820	38.095
3	ωππ	30.294	72.180	61.905

Таблица 12. Коэффициенты БВ членов для системы трех ω' -мезонов

$$h_{ij} = \sum_{R=1}^{3} e^{i\psi_{ij}^{(R)}} \frac{m_R \Gamma_R C_{ij}^{(R)}}{s - m_R^2 + im_R \Gamma_R}$$

где

$C_{ii}^{(R)} =$	$ A_{Ri} $	$ A_{R_i} $	١,	$\psi_{ij}^{(R)} =$	$\varphi_{Ri} + \varphi_{Rj}$	(град)	,
17 .				1.11		· · · · ·	

Каналы		ω'		ω_2'		ω'_3	
ij	Состояние	$C_{ij}^{(\omega_1')}\cdot 10^2$	$\psi_{ij}^{(\omega_1')})$	$C_{ij}^{(\omega_2')}\cdot 10^2$	$\psi_{ij}^{(\omega_2')}$	$C_{ij}^{(\omega_3')}\cdot 10^2$	$\psi_{ij}^{(\omega_3')}$
1,2	$e^+e^- ightarrow ho\pi$	0.1829	33.832	0.1385	-80.908	0.0871	14.950
1,3	$e^+e^- \rightarrow \omega \pi \pi$	0.1206	86.375	0.2230	-47.559	0.1110	-12.718

8

Рис.1 Сечение процесса $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ для случая двух ω' -мезонов. Штриховая кривая - вклад ω и ϕ -мезонов.

Экспериментальные данные из работ [11] - • , [12] - • .

Рис.2 Сечение процесса $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ для случая трех ω' -мезонов. Штриховая кривая - вклад ω и ϕ -мезонов. Экспериментальные данные из работ [11] - •, [12] - •.

9

Рис.3 Сечение процесса $e^+e^- \to \omega \pi \pi$ для случая двух ω' -мезонов. Экспериментальные данные из работы [13] для реакции $e^+e^- \to \omega \pi^+\pi^-$ были умножены на коэффициент 1.5 для учета ненаблюдаемого состояния $\omega \pi^0 \pi^0$.

Рис.4 Сечение процесса $e^+e^- \to \omega\pi\pi$ для случая трех ω' -мезонов. Экспериментальные данные из работы [13] для реакции $e^+e^- \to \omega\pi^+\pi^-$ были умножены на коэффициент 1.5 для учета ненаблюдаемого состояния $\omega\pi^0\pi^0$.

Литература

1. A.B.Clegg and A.Donnachie, Preprint Univ. of Manchester, M/C-TH 93/21.

2. В.К.Хеннер, Т.С.Белозерова, Сообщение ОИЯИ, Р4-95-114, Дубна 1995.

3. В.К.Хеннер, Т.С.Белозерова, Сообщение ОИЯИ, Р4-95-115, Дубна 1995.

4. В.К.Хеннер, Т.С.Белозерова, Сообщение ОИЯИ, Р4-95-116, Дубна 1995.

5. А.Б.Говорков, ЯФ, 55, 1035, 1991.

6. A.Donnachie and A.B.Clegg, Preprint CERN -TH 5210/88.

7. S.Bardalucci et al. Nuovo Cim. 49A, 207, 1979.

8. S.Godfrey and N.Isgur, Phys. Rev D32, 189, 1985.

10. A.Donnachie and Yu.S.Kalashnikova, Preprint Univ. of Manchester, M/C-TH 93/02.

11. V.M.Aulchenko et al. Preprint INP-86-106, Novosibirsk, 1986.

12. Baldini-Ferroli - Proc. Had. Phys. at Internediate Energy, Elsevier, 1987.

13. A.Cordier et al. Phys. Lett. B106, 155, 1981.

Рукопись поступила в издательский отдел 17 марта 1995 года.