

СООбЩЕНИЯ Объединенного института ядерных исследований дубна

P4-94-427

Э.Бошитц¹, В.А.Кузьмин, А.А.Овчинникова², Т.В.Тетерева²

РАСЧЕТ КОЭФФИЦИЕНТОВ УГЛОВОЙ КОРРЕЛЯЦИИ ПРИ ЗАХВАТЕ МЮОНОВ ЯДРОМ ²⁸Si В РАМКАХ СОВРЕМЕННОЙ ОБОЛОЧЕЧНОЙ МОДЕЛИ

¹Институт экспериментальной физики Университета Карлсруэ, Германия ²Научно-исследовательский институт ядерной физики Московского

государственного университета

1. Введение

Исследование захвата мюонов атомными ядрами является одним из перспективных направлений в решении проблемы проверки структуры гамильтониана слабого лептон-нуклонного взаимодействия, и в частности, определения величины константы индуцированного псевдоскалярного взаимодействия, g_P , в ядерной среде. При этом наибольший интерес представляют эксперименты по захвату мюонов ядрами с ненулевым спином из различных состояний тонкой структуры мезоатома, а также эксперименты по исследованию функции угловой (γ - ν)-корреляции, возникающей при захвате поляризованного мюона. Именно в этих экспериментах можно определить характеристики, наиболее чувствительные к величине g_P . Такие эксперименты сейчас планируются и проводятся, причем в настоящее время удалось значительно повысить их точность.

Измерения функции угловой корреляции проводят на ядре ²⁸Si. В данной работе мы рассматриваем процесс

$$\mu + {}^{28}Si(0^+_{g.s.}) \rightarrow {}^{28}Al^*(1^+, 2.201 \text{M} \mathfrak{sB})$$

$${}^{28}Al(J^+_0) + \gamma \qquad (1)$$

Теоретический анализ этой реакции был выполнен в ряде работ, например в [1, 2].

Вычисление ядерных матричных элементов проводилось в рамках имеющихся в то время вариантов оболочечной модели: в [1] – оболочечная модель [3], в которой только сравнительно небольшому числу валентных нуклонов позволялось менять свое состояние; в [2] – частичнодырочная модель внутри $2\hbar\omega$ -пространства с остаточным взаимодействием в форме Сербера–Юкавы [4]. Современная оболочечная модель и вычислительные возможности позволяют выполнять более последовательный анализ волновых функций средних ядер и проводить расчеты в полном *sd*-пространстве, что особенно, важно для изучения переходов между возбужденными состояниями. В результате удалось описать многие спектроскопические характеристики ядер *sd*-оболочки, в том числе и ²⁸Si, и ²⁸Al.

В работе [2] было показано, что коэффициенты угловой корреляции оказываются чувствительными к выбору ядерных моделей. Поэтому для обработки новых экспериментальных данных представлется целесообразным провести расчеты коэффициентов угловой корреляции в © Объединенный институт ядерных исследований. Дубиа, 1994 рамках современной оболочечной модели и оценить их чувствительность к выбору параметров взаимодействия.

2. Ядерные волновые функции

Для описания ядерных волновых функций мы использовали следующие варианты оболочечной модели:

- модель W описана в [5], где в рамках полного sd-пространства на основе фитирования 447 значений энергий связи и энергий возбужденных состояний ядер sd-оболочки определены значения энергии одночастичных состояний $(0d_{5/2}, 1s_{1/2} u 0d_{3/2} ypoвни)$ и 63 двухчастичных матричных элементов взаимодействия между валентными нуклонами. Матричные элементы взаимодействия между валентными нуклонами. Матричные элементы взаимодействия м одночастичные энергии предполагаются не зависящими от массового числа. Эта модель недавно была использована в [6] для расчета характеристик ядер с A = 28, 30 и позволила удовлетворительно описать свойства большого числа состояний положительной четности с изоспином, равным нулю и единице (энергии уровней, время жизни, спектроскопические факторы, отношение вероятностей электромагнитных переходов и т.д.);
- модель X, которая отличается от модели W тем, что в нее в включена зависимость энергий одночастичных состояний от массового числа;
- в модели *H* двухчастичные матричные элементы вычислялись на основе 14-параметрического потенциала взаимодействия между валентными нуклонами ([7], вариант *SDPOTA*). В итоге модель имеет 17 параметров в отличие от 66 в модели *W*.
- модель *I* набор параметров *SDPOTB* из той же работы [7]; отличается от модели *H* большим числом параметров потенциала взаимодействия.

Указанные выше модели можно считать феноменологическими, поскольку в их основе лежит фитирование ядерных энергетических спектров путем подбора большого числа параметров оболочечного гамильтониана.

> Объстьечный венатой измик иссяедования БИБЛИОТЕКА

- 2

Кроме такого феноменологического подхода существует и более теоретический, при котором матричные элементы двухчастичного взаимодействия вычисляются, исходя из какого-либо нуклон-нуклонного потенциала, так

- в модели K используется G-матричное взаимодействие, постро-
- енное в работе [8] из потенциала Хамады-Джонсона. В этой модели варьируются только значения одночастичных энергий.

Указанные модели хорошо воспроизводят энергетические спектры ядер ²⁸Si и ²⁸Al.

Как и в [6], для расчетов электромагнитных переходов были использованы эффективные заряды: 1.35 - для протона и 0.35 - для нейтрона; и свободные значения нуклонных g-факторов: $g_s = 5.586$, $q_l = 1.0$ для протона и $g_s = -3.826, g_l = 0.0$ для нейтрона.

Ядерные волновые функции и одночастичные переходные плотности вычислялись с помощью программы многочастичной модели оболочек [9]

3. Коэффициенты угловой корреляции

В реакции (1) нас интересует разрешенный переход $0^+ \rightarrow 1^+$, который описывается двумя независимыми амплитудами $M_1(2)$ и $M_1(-1)$ [10]. Для коэффициентов функции угловой корреляции W в разных работах вводятся разные обозначения. Мы приведем определения из работ [2] и [10], которыми пользуются при интерпретации экспериментальных данных [11, 12]. В работе [2] :

 $W = I(0)\{1 + \beta_2^P(\vec{p}\vec{\gamma})(\vec{\gamma}\vec{\nu}) + [\alpha^P + \beta_2^P(\vec{p}\vec{\gamma})(\vec{\gamma}\vec{\nu})]P_2(\vec{\gamma}\vec{\nu})\}.$ (2)

B pafore [10]

$$W^{0} = 1 + (\alpha^{0} + \frac{2}{3}c_{1}^{(0)})(\vec{p}\vec{\gamma})(\vec{\gamma}\vec{\nu}) + [a_{2}^{0} + b_{2}^{0}(\vec{p}\vec{\gamma})(\vec{\gamma}\vec{\nu})]P_{2}(\vec{\gamma}\vec{\nu}). \quad (3)$$

Таким образом, между коэффициентами из [2] и [10] имеется следуюшее соответствие:

$$\begin{aligned}
\alpha^{P} &= a_{2}^{(0)}, \\
\beta_{1}^{P} &= b_{2}^{(0)}, \\
\beta_{2}^{P} &= \alpha^{(0)} + \frac{2}{3}c_{1}^{(0)}. \end{aligned}$$
(4)

В (2) и (3) $ec{\gamma}, ec{
u}$ – направления вылета γ -кванта и нейтрино, $ec{p}$ – вектор поляризации мюона. В (3) коэффициент $\alpha^{(0)}$ характеризует асимметрию углового распределения ядра отдачи, связанную с поляризацией мюона. Коэффициент $c_1^{(0)}$ отражает эффективное изменение асимметрии при регистрации у-кванта. Также рассматривают коэффициент eta, характеризующий поляризацию ядра отдачи, возникающую при захвате поляризованного мюона .

$$<\vec{I}>=\vec{p}\beta.$$
 (5)

Здесь $<ec{I}>$ – среднее значение спина ядра отдачи.

Для переходов $1^+ \rightarrow 2^+$ и $1^+ \rightarrow 0^+$ рассмотренные коэффициенты зависят от отношения независимых амплитуд, $x = M_1(2)/M_1(-1)$, следующим образом:

$$\alpha^{(0)} = \frac{1}{3} \frac{1 + 4\sqrt{2x - x^2}}{1 + x^2},
\beta = \frac{2 - x^2}{3(1 + x^2)},
c_1^{(0)} = Q_2(L) \frac{1 - x^2 - x/\sqrt{2}}{1 + x^2},
a_2^{(0)} = Q_2(L) \frac{\sqrt{2x - x^2/2}}{1 + x^2},
b_2^{(0)} = Q_2(L) \frac{3}{2} \frac{x^2}{1 + x^2}.$$
(6)

Величина $Q_2(L)$ определяется мультипольностью электромагнитного перехода. В случае чистого M1-перехода $Q_2(M1) = 1$. Для перехода $1^+ \to 2^+,$ который идет за счет M1- и E2-мультиполей,

$$Q_2(L) = \frac{1}{10} \frac{1 - 6\sqrt{5\delta} + 5\delta^2}{1 + \delta^2}$$

где коффициент смешивания δ есть отношение амплитуд E2- и M1переходов.

При расчетах независимых амплитуд использовались следующие значения слабых формфакторов: $g_V = 0.98, g_A = -1.24$ и $g_M = 3.60$.

4. Обсуждение результатов

На рис. 1–3 приведены результаты наших вычислений отношения независимых амплитуд x, коэффициентов α и β . На рис. 4 приведены результаты для коэффициентов угловой корреляции в случае чистого M1-перехода: $(1^+, 2.201) \rightarrow (0^+, 0.972)$ ($Q_2(L) = 1$).

Как видно из рис. 1-4, для рассматриваемых характеристик используемые нами "феменологические" модели дают практически одни и те же результаты. Интересно отметить, что результаты, полученные с "вычисленным" взаимодействием (модель K), незначительно отличаются от феменологических, причем в области положительных значений g_P/g_A это отличие меньше 10% и резко падает с ростом g_P/g_A . Кроме наших расчетов приведены также приведены, полученные в приближении Фуджи-Примакова (FPA), т.е. в [101]-приближении, и в работе [2]. FPA-кривые сильно отличаются, как от наших результатов, так и от результатов [2], что свидетельствует о явной недостаточности [101]-приближения, о необходимости учета всех матричных элементов и указывает на неправомерность использования этого приближения для обработки экспериментальных данных.

Расхождение между нашими результатами и результатами [2] свидетельствует о том, что переходные ядерные плотности весьма чувствительны к выбору базисного пространства. Переход к более полному пространству при построении волновых функций приводит к сильному изменению результатов, в то время как вариация параметров взаимодействия внутри заданного пространства сказывается на них значительно меньше.

Интересно, что использование более полных и "реалистических" ядерных волновых функций приводит к росту численных значений всех рассмотренных характеристик, и, следовательно, при сравнении с экспериментальными данными отношение g_P/g_A смещается в область отрицательных значений. Так экспериментальные данные для x [11] показывают, что $-6 \leq g_P/g_A \leq +1.5$.

Попутно отметим, что введенный в [2] коэффициент β_2^P является малоинформативным, поскольку форма его зависимости от g_P/g_A такова, что сравнение с экспериментальными данными [13] не позволяет определить даже знак отношения g_P/g_A .

При рассмотрении перехода $(1^+, 2.201) \rightarrow (2^+, 0.031)$ картина теоретического анализа резко ухудшается, т.к. этот переход является смешанным и содержит смесь M1- и E2-мультиполей. Определение коэффициента смешивания δ оказывается весьма деликатной задачей. В рассмотренных моделях не удается получить согласованного результата для δ . В табл. 1 для сравнения рассмотрены переходы

 $1_2^+, 1.620 \rightarrow 2^+, 0.031$ M $1_3^+, 2.201 \rightarrow 2^+, 0.031$ $0^+, 0.972$ O $0^+, 0.972$

и приведены результаты вычислений времени жизни, δ и отношения вероятностей этих переходов. Кроме перечисленных выше моделей в таблицу занесены результаты, полученные в моделях W и X при замене свободных g-факторов эффективными [14]: $g_s = 4.760$ и $g_l = 1.127$ для протона и $g_s = -3.250$ и $g_l = -0.089$ для нейтрона (строки W_{pr} и X_{pr} , соответственно). Из таблицы видно, что все модели дают качественно одинаковое отношение для вероятностей конкурирующих переходов; при этом для переходов с уровня 1^+_2 их отношение согласуется с экспериментальным значением. Для переходов с уровня 13 все модели дают большую вероятность перехода на уровень 0_1^+ , что противоречит имеющимся экспериментальным данным [15]. Коэффициенты смешивания δ оказываются чувствительными к малейшим изменениям в параметрах модели: к введению зависимости от массового числа в энергиях одночастичных состояний, к изменению g-факторов, не говоря уже о переходе к новой модели. Большой разброс в величине δ приводит к тому, что хотя зависимость корреляционных коэффициентов от x остается прежней, изменение нормировочного множителя $Q_2(L)$ приводит к такому разбросу результатов, что интерпретация экспериментальных данных становится невозможной.

5. Заключение

Таким образом, в данной работе в рамках современных вариантов оболочечной модели проведен расчет независимых амплитуд и коэффициентов угловой корреляции для захвата поляризованных мюонов ядром ^{28}Si с возбуждением 1_3^+ -состояния в ^{28}Al . Показано, что теоретические модели дают хорошо согласующиеся между собой результаты для отношения независимых амплитуд x, коэффициента асимметрии $\alpha^{(0)}$ и коэффициента остаточной поляризации ядра отдачи β .

В том случае, когда возбуждение остаточного ядра снимается посредством чистого M1-перехода, например, $(1^+_3, 2.201 \rightarrow 0^+_1, 0.972)$, коэффициенты угловой корреляции определяются только величиной x. Результаты расчетов в разных моделях практически совпадают и могут быть использованы при интерпретации экспериментальных данных. Из имеющихся экспериментальных данных следует, что отношение g_P/g_A значительно отличается от стандартного.

В случае, когда возбуждение снимается за счет смешанного (M1 + E2)-перехода $(1_3^+, 2.201 \rightarrow 2_1^+, 0.031)$, коэффициенты угловой корреляции зависят не только от x, но и от параметра смешивания мультинолей δ . Рассмотренные модели не позволяют получить согласованной оценки для δ . Соответственно, теоретические оценки не могут быть использованы для обработки экспериментальных данных. Необходимо значительное уточнение ядерных моделей.

Данная работа выполнена благодаря поддержке со стороны программы сотрудничества Гейзенберг–Ландау между немецкими институтами и ЛТФ ОИЯИ и при поддержке Международного научного фонда Copoca (International Science Foundation).

Численные расчеты частично были выполнены в вычислительном центре Института Пауля Шеррера (Швейцария).

8

Рис. 1. Зависимость $x = M_1(2)/M_1(-2)$ от величины отношения g_P/g_A для указанных в тексте ядерных моделей. Заштрихованная область соответствует экспериментальным данным [11].

Рис. 3. Зависимость коэффициента асимметрии $\alpha^{(0)}$ от величины g_P/g_A .

Рис.	4.	Зависимость	корре	ляционных ко	оэффициентов	(6) от	вели-
чины	ap/	ал. Звездочка	ми от	мечены резул	ьтаты работы [2	2] (звез)	дочки
больш	его	размера соотв	етству	ют модели II	указанной рабо	оты). Э	кспе-
римен	тал	ьные данные и	13 [13]	заштрихован	ы с наклоном в	лево.	

- 1			Branching ratio	8	- fa	
	Бирол	1 690 0.021		0 10(0)	1, 18	
	Lxper.	$1.020 \rightarrow 0.031$	92	-0.18(8)	120(60)	
		0.972	2	1		
	W	$1.620 \rightarrow 0.031$	80.7	0.44	484	
		0.972	18.8			
	$W_{p\tau}$	1.620 ightarrow 0.031	67.1	0.63	702	
	distant.	0.972	•31.9	en la tra	1. j. t. 10. m	
	X	1.620 ightarrow 0.031	85.0	0.37	319	
	19 1 - 1	0.972	14.8	18 Mar (#177		
	$X_{p\tau}$	$1.620 \rightarrow 0.031$	73.2	0.53	492	
		0.972	26.3			
	H_{1}	1.620 ightarrow 0.031	98.2	0.28	377	
		0.972	0.2			
1.5	I	$1.620 \rightarrow 0.031$	98.9	0.20	234	
		0.972		1、私部長 - 4	st mu	
	K	1.620 ightarrow 0.031	95.2	0.18	34	
		0.972	4.4			
	Exper.	$2.201 \rightarrow 0.031$	79(3)	1	65(35)	
		0.972	16(2)			
	W	2.201 ightarrow 0.031	2.1	-0.87	67	
		0.972	80.6			
	W_{pr}	$2.201 \rightarrow 0.031$	11.6	-0.30	70	
		0.972	76.0		ere ere	
	X	2.201 ightarrow 0.031	0.6	-1.90	111	
		0.972	65.7			
	$X_{p\tau}$	$2.201 \rightarrow 0.031$	11.6	-0.21	118	
		0.972	61.7			
•	H	$2.201 \rightarrow 0.031$	2.0	0.24	244	
		0.972	45.6			
	Ι	2.201 ightarrow 0.031	1.3	0.09	236	
		0.972	51.1			
	K	2.201 ightarrow 0.031	20.0	-0.24	31	
		0.972	63.4			
			•			

Список литературы

- 1. S. Ciechanowicz, Nucl. Phys. A267, 472 (1976)
- R. Parthasarthy, V.N. Sridhar, Phys. Rev. C, 18, 1796 (1978), Phys. Rev. C, 23, 861 (1981)
- 3. B.H. Wildenthal and J.B. McGrory, Phys. Rev. C, 7, 714 (1974)
- 4. T.W Donnelly and G.E. Walker, Ann. Phys. 60, 209 (1970)
- 5. B.H. Wildenthal, Progr. Part. Nucl. Phys., 11, 5 (1984)
- 6. P.M. Endt and J.G.L. Booten, Nucl. Phys. A555, 499 (1993)
- B.A. Brown, W.A. Richter, R.E. Julies and B.H. Wildenthal, Ann. Phys., 182, 191 (1988)
- 8. T.T.S. Kuo, Nucl. Phys., A103, 71 (1967)
- 9. B.A. Brown et al, MSUCL Report 524, Michigan, 1984
- В.В. Балашов, Г.Я. Коренман и Р.А. Эрамжян, "Поглощение мезонов атомными ядрами", М., Атомиздат, 1978
- 11. V.B. Brudanin et al, preprint JINR, E6-94-392, 1994, Dubna, напрвлено в Nucl. Phys. A
- 12. D.S. Armstrong et al, TRIUMF Progress Report 570, June 1991
- 13. G.H. Miller et al, Phys. Rev. Lett. 29, 1174 (1972)
- 14. B.A. Brown and B.H. Wildenthal, Nucl. Phys. A474, 290 (1987)
- 15. P.M. Endt, Nucl. Phys. A521, 1 (1990)

Рукопись поступила в издательский отдел 21 октября 1994 года.