

4-280

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

P4-94-280

В.А.Мещеряков, Г.В.Мещеряков

К ВОПРОСУ ОБ ОБЪЯСНЕНИИ РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА *PS*-170 ПО ЭЛЕКТРОМАГНИТНОМУ ФОРМФАКТОРУ ПРОТОНА ВБЛИЗИ *pp*-ПОРОГА

1 Введение

Результаты эксперимента PS - 170 по изучению аннигиляции $p\bar{p} \rightarrow e\bar{e}$ при низких энергиях [1] до сих пор не имеют общепризнанного объяснения. Они привели к неожиданному поведению электромагнитного формфактора протона вблизи $p\bar{p}$ -порога во времениподобной области при $t < 4.2 GeV^2$. Данные по $|G| = |G_{mp}| = |G_{ep}|$ указывают на большую отрицательную производную на пороге, которая быстро возрастает до нуля или даже положительных значений при $t \sim 4 GeV^2$. Величина производной на пороге определяется пороговым эначением | $G \models 0.53 \pm 0.05$. Одно из первых значений | $G \models 0.51 \pm 0.08$ не противоречит результатам [1]. Оно было получено [2] из отношения частот $p\bar{p}$ аннигиляций в покое на пары e^+e^- и $\pi^+\pi^-$ в жидком водороде. Определение | G | на пороге затрудняется необходимостью одновременно учитывать кулоновское и сильное взаимодействие в рр-системе и связано с рядом приближений. Эти приближения были проанализированы в работе [3], где предложена новая процедура определения | G |. Оценка по ней привела к эначению | G |= 1.1, которое подтверждает выводы работы [1]. Совсем недавно была предпринята новая попытка определения |G| на пороге [4]. Комбинируя данные по ширинам рр-атомов, полученные в синхротронных ловушках, и результаты по сечению аннигиляции в $p\bar{p}$ -системе при низких энергиях, авторы получили | G |= 0.39 или даже | G |= 0.30. Это приводит к выводу об отсутствии реэкого измене-

Obscheething enterny **SN**5.NNOTEKA

ния | G | на пороге. Таким образом, работы [3, 4] предлагают новый вэгляд на способ получения величины | G | на пороге из экспериментальных данных.

Перейдем теперь к работам, которые не подвергают сомнению результаты обработки эксперимента [1], а предлагают их объяснение. В работах [5] предпринята попытка реализовать идею об учете взаимодействия в конечном состоянии. Основной результат заключен в следующей формуле: $G = ce^{i\delta}$, где c слабо меняющаяся на пороге функция q^2 (q — импульс в системе центра масс $p\bar{p}$ -системы), а δ — фаза $N\bar{N}$ -рассеяния. Далее использован тот факт, что уже на пороге фаза δ комплексна, и это в свою очередь дает результат:

$$|G| = |c| \cdot |1 - Ima \cdot q|,$$

где a — комплексная длина рассеяния. Присутствие в |G| линейной по qзависимости ведет к бесконечной величине d |G|/dS на пороге. Анализ по χ^2 – критерию первых четырех точек из [1] дает следующие значения: $|c| = 0.53 \pm 0.02$, $Ima = 0.62 \pm 0.08$, $\chi^2 = 0.07$. Авторы работ [5] используют такие значения |c| = 0.52, $Ima \cong 0.8$. Они отождествляют Ima с величиной $Ima({}^3S_1)$, вычисленной из эксперимента [6]. Описание в этом случае качественное, т.к. $\chi^2 \sim 10$.

В работе [7] утверждается, что на основе новой формулировки VMD-модели и ее последующей унитаризации получено хорошее описание всех известных данных по электромагнитным формфакторам нуклонов, включая и данные работы [1]. Ниже будут использованы различные модели такого типа, поэтому остановимся на них подробней. Исходной точкой являются выражения для дираковского и паулиевского формфакторов нуклона в VMD-модели

$$F_N(S) = \sum_{v} \frac{f_{v,NN}}{f_v} \frac{m_v^2}{m_v^2 - S},$$
(1)

где m_v — масса векторного мезона, f_{vNN} — константа связи векторного мезона и нуклона, f_v — универсальная константа в так называемом тождестве тока и поля.

Накладывая на параметры формулы (1) связи, легко обеспечить экспериментальные эначения $F_N(S = 0)$, а также асимптотику, следующую из кварковых правил счета [8], которые с логарифмической точностью совпадают с *QCD*асимптотикой. Далее проводится унитаризация модели с помощью униформизирующей переменной. Как следствие последней процедуры векторным мезонам приписываются ширины, и формфакторы могут быть вычислены при всех значениях *S*.

В результате достигается возможность описания всех экспериментальных данных как в пространственноподобной (S < 0), так и во времениподобной (S > 0) областях. Опыт работы показывает, что для удовлетворительного описания свыше трехсот эначений | F_N | в формуле (1) должно присутствовать около десяти свободных параметров. Кроме описания | F_N | такой подход позволяет модельно зависимым образом восстанавливать вид ImF_N , ReF_N

я

во всей времениподобной области. Этот факт будет существенно использован ниже. Результаты анализа, выполненного по такой схеме, представлены в работе [7]. Данные эксперимента PS - 170 объясняются за счет включения в формулу (1) третьего радиального возбуждения $\rho(770)$ с массой $\sqrt{S} = 2.15 GeV$ и представлены на рис.1.

2 Постановка задачи

Легко видеть, что согласно формуле (1) формфактор нуклона имеет следующую

мнимую часть:

$$ImF_N = \sum_{v} m_v^2 \frac{f_{vNN}}{f_{\rho}} \delta(S - m_v^2).$$
⁽²⁾

à

 $\hat{\gamma}$

Формула (2) является приближенным выражением, полученным из условия унитарности и поэволяет с помощью дисперсионных соотношений для F_N восстановить уравнение (1). Исходное выражение для условия унитарности запишем в следующем виде:

$$Im < o \mid j_{\mu} \mid N\bar{N} > = \sum_{n} < o \mid j_{\mu} \mid n > < n \mid T^{+} \mid N\bar{N} > ,$$
 (3)

где j_{μ} — электромагнитный ток нуклона N, а |N> — полная система допустимых промежуточных состояний. В нашем случае она имеет вид:

$$|n\rangle = |2\pi\rangle, |3\pi\rangle, ..., |K\bar{K}\rangle, |N,\bar{N}\rangle.$$
 (4)

Фрезер и Фулко были первыми, кто вычислил вклад двухмезонного состояния и по данным F_N в пространственноподобной области предсказал существование р-мезона [9]. За счет выбора различных слагаемых в последовательности (4) можно получить многие модели типа (1). Ранее [10] была использована модель работы [11] и на ее фоне вычислен вклад промежуточного состояния $N\bar{N}$. Оно существенно по двумя причинам. Во-первых, его учет приводит к появлению в формуле (1) новой точки ветвления — порогу реакции $N\bar{N}$, которая расположена на нижнем краю энергетической области, изучаемой в работе [1]. Вовторых, наличие связанных состояний или резонансов в NN-системе вблизи порога скажется на поведении $F_N(S)$ как в ненаблюдаемой области ниже $N\bar{N}$ порога, так и в наблюдаемой области выше NN-порога, изучаемой в работе [1]. Очевидно, что $|N\bar{N}>$ состояние проявляется на фоне суммы предшествующих состояний ряда (4) и результат, наблюдаемый на эксперименте, будет модельнозависимым. Поэтому важно изучить степень этой зависимости, рас-

смотрев в качестве фона для $|N\bar{N}\rangle$ состояния какую-либо другую, отличную от использованной в [10], модель $F_N(S)$. В качестве таковой возьмем модель работы [12], которая сформулирована на языке формфакторов Сакса G, непосредственно измеряемых на эксперименте. Формулы этой модели имеют вид

$$G_{M,EP}(s) = \sum_{k=1}^{3} \frac{\epsilon_k(s), \beta_k(s)}{s - a_k - \gamma_k \sqrt{s_k - s}},$$
(5)

$$\operatorname{rge}_{k}(s) = \frac{\epsilon_{k}^{1} + \epsilon_{k}^{0}s}{s - a_{k} - \gamma_{k}\sqrt{s_{k} - s}}, \beta_{k}(s) = \frac{\beta_{k}^{1} + \beta_{k}^{0}s}{s - a_{k} - \gamma_{k}\sqrt{s_{k} - s}}$$
(6)

Энергетическое поведение электромагнитных формфакторов объясняется с помощью трех резонансов: ρ , ω , φ -мезонов, которым соответствуют индексы k = 1, 2, 3 соответственно в формуле (5). Массы, ширины и пороги a_K, γ_k, s_k взяты из эксперимента. Параметрами модели являются константы связи

$$(\beta_{1}^{1} + \epsilon_{1}^{0}s)f_{1}(s) = g_{\gamma\rho}(s)g_{\rho NN}(s) ,$$

$$(\beta_{2}^{1} + \epsilon_{2}^{0}s)f_{2}(s) = g_{\gamma\omega}(s)g_{\omega NN}(s) ,$$

$$(\beta_{3}^{1} + \epsilon_{3}^{0}s)f_{3}(s) = g_{\gamma\phi}(s)g_{\phi NN}(s) , r \mu e$$

$$f_{k}(s) = \frac{1}{s - a_{k} - \gamma_{k}\sqrt{s_{K} - s}} .$$
(7)

2

Такой необычный вид констант связи выбран по аналогии с показателем рефракции в оптике. Он не только зависит от энергии (нелокальность взаимодействия), но и содержит комплексную добавку при $s > s_k$. Константы связи выбираются так, чтобы удовлетворить известным: экспериментальным данным

6

при s = 0. После этого остаются два свободных параметра ϵ_2^0 и ϵ_3^0 ., которые определяются из условий при $S \to \infty$ На асимптотике требуется точное выполнение SU(3)- симметрии. Это условие кажется наиболее слабым, т.к. легко может быть изменено за счет учета новых векторных мезонов. Поэтому параметры ϵ_2^0 и ϵ_3^0 определены ниже согласно χ^2 -критерию по экспериментальным точкам G_p , процитированным в работах [13].

Интересная особенность модели [12] состоит в том, что и в первоначальном виде и в использованном здесь варианте она правильно описывает отношение $|G_p|/|G_n|$ вблизи $P\bar{P}$ -порога, точнее экспериментальное значение $|G_n(S=4)| =$ 0.42 ± 0.06 (см. [14]). Результат модели для G_p изображен на рис. 2. Влияние на $|G_p|$ вклада $|N\bar{N}\rangle$ состояния в условии унитарности (3) вычисляется так же, как и в работах [15, 16]. Сначала строится аналитическая модель ампли-

туды $T_{P\bar{P}}$ -упругого рассеяния вперед, которая основана на униформизирующей переменной

$$Z = \sqrt{\frac{4(s-\alpha)}{s(4-\alpha)}} - \sqrt{\frac{\alpha(s-4)}{s(4-\alpha)}} \quad , \tag{8}$$

где s — обычная мандельстамовская переменная, равная квадрату полной әнергии $P\bar{P}$ -системы в системе ц.м. в единицах M_p . Переменная Z содержит точки ветвления при S=0;4, соответствующие порогам реакций упругих $P\bar{P}$. и PP-рассеяния и эффективную точку ветвления при $S = \alpha$, учитывающую наличие ненаблюдаемой области у процесса упругого PP-рассеяния. Порог процесса $P\bar{P} o P\bar{P}$ отображается в точки $Z=\pm 1$ на Z-плоскости, а бесконечно удаленная точка S-плоскости переходит в точки $\pm Z_1, \pm 1/Z_1, Z_1 = \sqrt{\frac{2-\sqrt{\alpha}}{2+\sqrt{\alpha}}}$. Расположение всех четырех листов римановой поверхности функции Z(s) изображено на рис.3. В работе [16] было показано, что экспериментальные данные по $ho = ReT_{P\bar{P}}/ImT_{p\bar{P}}$ и σ_{tot} могут быть объяснены при наличии у $P\bar{P}$ -системы квазиядерного связанного состояния с энергией связи ${\it E}=(1.88\pm0.05)\,MeV$ и шириной $\Gamma = (1.6 \pm 0.1) \, MeV$. Амплитуда рассеяния выбиралась в следующем виде:

$$T_{P\bar{P}} = T_b + \frac{c_{\rho}}{z - (z_{\rho})_1} - \frac{c_{\rho}}{z - (z_{\rho})_2} \quad , \tag{9}$$

где $T_b(s)$ — полином по z, $(z_\rho)_{1,2} = 1 \mp \gamma \pm i \delta$ и $\alpha = 1.44$. Полюсные члены определяют вклад квазиядерного состояния, а полином — вклад нерезонансного фона S; P-и D-волн. Амплитуда (9) хорошо описывает экспериментальные данные в области до 4.4 GeV² по переменной s. Вблизи *PP*-порога вклад полюса в условии унитарности является доминирующим,и поэтому ограничимся полюсным приближением. В нем условие унитарности (3) сводится к краевой задаче Римана [17], которая может быть решена (см. приложение). В кольце, содержащем единичную окружность (рис.3), решение имеет вид

$$G_{pol} = \frac{c(z)}{\prod_{i=1}^{2} (z - (z_{\rho})_i)(z + (z_{\rho}^*)_i)} \quad , \tag{10}$$

где c(z) — целая функция, представляющая произвол решение краевой задачи. Полагая $c(z) = c_1(z) \cdot (z^2 - z_1^2)(1 - z^2 z_1^2)/(1 - z_1^2)$, можно обеспечить асимптотическое поведение G_{pol} на бесконечности как 1/s. Наконец, за счет произвола $c_1(z)$ придадим решению вид

$$G_{pol}(z)\frac{(1-z_1^2)^2}{(z^2-z_1^2)(z^2z_2^2-1)} = A_1\Big\{\Big(\frac{1}{z-(z_{\rho})_1}-\frac{1}{z-(z_{\rho})_2}\Big)-\Big(\frac{1}{z+(z_{\rho}^*)_1}-\frac{1}{z+(z_{\rho}^*)_2}\Big)\Big\} +$$

$$+A_{2}\left\{\left(\frac{1}{z-(z_{\rho})_{1}}+\frac{1}{z-(z_{\rho})_{2}}\right)-\left(\frac{1}{z+(z_{\rho}^{*})_{1}}+\frac{1}{z+(z+(z_{\rho}^{*})_{2})}\right)\right\}.$$
 (11)

В окрестности $P\bar{P}$ -порога справедливы равенства $G_{ep} = G_{mp} = G_{,u}$ анализ эксперимента в [1] проводился в этом же предположении. Поэтому положим $G_{ep} = G_{mp} = G_w$, где функции $G_{e,mp}$ определены формулами (5). Учитывая в условии унитарности (3) вклад от $|N\bar{N}\rangle$ состояния, получим для электромагнитного формфактора протона G формулу

$$G = G_w + G_{pol} aga{12}$$

Будем считать положение полюсов известным из работы [16]. Тогда формфактор G зависит от двух свободных параметров A_1 , A_2 . На верхнем берегу разреза $[\alpha, \infty)$ в окрестности $N\bar{N}$ -порога поведение G_{pol} будет определяться полюсами $(z_{\rho})_1$ и $(z_{\rho})_2$, а на нижнем берегу – полюсами $(z_{\rho}^*)_1, (z_{\rho}^*)_2$. Если привести к общему знаменателю вклады полюсов $(z_{\rho})_1$ и $(z_{\rho})_2$ в формуле (10), то перед параметром A_2 возникнет энергетический множитель (z-1), а перед параметром A_1 — постоянная. Это дает возможность говорить об аналогии между параметром A_1 и параметрами $\epsilon_k', \ \beta_k',$ а также между A_2 и $\epsilon_k^0, \ \beta_k^0$ в формуле (5). Выражение для G_{pol} следует из условия унитарности и аналитических свойств формфактора протона и амплитуцы NN-рассеяния. Поэтому формулы (6) получают обоснование, независимо от оптической аналогии, упоминавшейся выше. Отметим также, что в выражении для G_{pol} зависимость констант связи $g_{\gamma\rho}, g_{\rho nn} \cdots$ от энергии более богата, чем в формуле (6).

3 Анализ экспериментальных данных

Формула (11) подсказывает поэталное описание экспериментальных

данных. На первом этапе определяются параметры G_w , по данным ссылки [13], которые применялись ранее в работе [15] для этой же цели. Результат приведен на рис.2, а $\epsilon_2^0 = -3.41\epsilon_3^0 = 3.23$ и $\chi^2 = 10.1$. Положения полюсов в формуле (9) взяты из работы [16], где они определены по данным упругого $P\bar{P}$ -рассеяния вперед, и равны $10^2\delta = 3.46\pm0.1$, $10^2\gamma = -0.72\pm0.03$. Параметр α в формуле (7) учитывает влияние ненаблюдаемой области и может не совпадать для амплитуды упругого $P\bar{P}$ -рассеяния вперед и электромагнитного формфактора протона. Поэтому он включен в число свободных параметров, которыми являются A_1, A_2, α . Интересно выяснить в какой степени параметры G_w , определенные

		Таблица 1:			
N^0 вар	Ĩ	\mathbf{II}_{\perp}	III		
парам.		J			
$10^{2}A_{1}$	-0.364 ± 0.139	0.	0		
$10^{2}A_{2}$	0.492 ± 0.075	1.2 ± 0.01	1.03 ± 0.025		
α	0.56 ± 0.18	0.23 ± 0.04	0.63 ± 0.013		
ϵ_2^0	1	0.87 ± 0.02	-1.5 ± 0.005		
ϵ_3^0	1	1	-0.87 ± 0.0037		
χ ²	31.3	15.9	0.3		

по грубым данным [13], соответствуют новым измерениям [1]. Для этого они иногда будут варьироваться следующим образом: $\epsilon_2^0 \rightarrow -3.41\epsilon_2^0$, $\epsilon_3^0 \rightarrow 3.23\epsilon_3^0$. Результаты анализа приведены в таблицах 1,2. Вариант I показывает, что параметры фона ϵ_2^0 , ϵ_3^0 определены плохо, т.к. величины χ^2 у наиболее весомых точек велики. За счет одного из параметров фона ϵ_2^0 можно уменьшить χ^2 вдвое, но при этом параметр A_1 теряет значимость, и естественно положить $A_1 = 0$ (вариант II). Интересно отметить, что за счет варьпрования обоих параметров фона кривая для |G| может быть проведена по точкам работы [1], т.к. $\chi^2 = 0.3$. Однако они при этом столь существенно меняются, что вне рассчитываемого интервала кривая для |G| уже не описывает данных ссылки [13],

12

Таблица 2										
$S \ GeV^2$	Gerp	I .		II		III				
	•	G	χ_i^2	G	χ_i^2	G	χ_i^2			
3.523	0.53 ± 0.05	0.54	0.86	0.63	3.9	0.53	3.0 10-5			
3.553	0.39 ± 0.05	0.34	0.86	0.35	0.63	0.37	0.093			
3.57	0.34 ± 0.04	0.33	0.1	0.32	0.26	0.35	0.021			
3.59	0.31 ± 0.03	0.32	0.074	0.3	0.15	0.32	0.066			
3.76	0.26 ± 0.014	0.29	3.06	0.27	0.66	0.26	0.07			
3.83	0.25 ± 0.01	0.27	3.26	0.27	1.9	0.25	0.6 10-4			
3.94	0.247 ± 0.014	0.246	$0.7 10^{-3}$	0.254	0.23	0.25	0.07			
4.18	0.252 ± 0.011	0.20	23.9	0.221	8.1	0.25	0.54 10-2			

Вариант II изображен на рис.4. и вариант III следует отвергнуть.

4 Обсуждение результатов

Результаты предпринятого исследования показывают, что параметры A_1 и A_2 , имеющие смыся констант связи квазиядерного связанного состояния, чувствительны к виду фона в формуле (10). Величина фона задается параметрами ϵ_2^0 , ϵ_3^0 , определяющими его медленное измерение в изучаемом интервале s. Пара-

метры A_1 , A_2 , α определяют быстрое изменение G в формуле (10). За счет разделения параметров на эти две группы можно найти их статистически разумные значения (вариант II). Анализ был бы значительно облегчен, если при $s > 4m^2$ были бы известны экспериментальные значения ImG и ReG. Определение их требует проведения поляризационных опытов, теоретическое рассмотрение которых проведено в работе [18].

В заключение отметим чисто теоретический результат, что способ вывода формулы (10) для описания квазиядерного состояния может быть применен к любому векторному мезону в формуле (2). В результате любой векторный мезон будет характеризоваться не только массой и шириной, но и двумя параметрами типа констант связи. Другими словами, эффективные константы связи векторных мезонов окажутся зависящими от энергий, что предполагалось в работе [12] и отражено в формулах (6).

1. Приложение

Условие унитарности (3) есть точное уравнение, если используется полная система допустимых промежуточных состояний (4). В противном случае оно — приближенное уравнение, зависящее от сделанных предположений, т.е. от формы записи. Возьмем его в виде

$$ImF = F(e^{i\delta}\sin\delta)^* + \bar{g}_{\mu\nu}$$

где δ — фаза $N\bar{N}$ -рассеяния с квантовыми числами полюсного состояния, которые пока неизвестны, \bar{g} — вклад всех остальных процессов в том же канале. Приведем его к виду:

$$F = e^{2i\delta}F^* + 2ig, \qquad (*)$$

Соотношение (*) справедливо при Ims = 0, $Res \ge 4m^2$. В нем F — функция, аналитическая в комплексной плоскости *s* с разрезом $[4m^2, \infty)$, вне которого $F^*(s) = F(s^*)$. Оно есть линейная неоднородная краевая задача Римана относительно функции *F*. Пусть $e^{2i\delta}$ имеет полюс вблизи разреза, тогда в его окрестности разумно ограничиться однородной задачей

 $F = e^{2i\delta}F^*$.

Как известно [17], основная трудность ее решения состоит в построении аналитической в плоскости *s*-функции, совпадающей с $e^{2i\delta}$ на разрезе. Однако если $e^{2i\delta}$ выбрана в форме, допускающей аналитическое продолжение на комплексные *s*, то задача сводится к решению функционального уравнения на *F* по униформизирующей переменной *z*. Будем представлять $e^{2i\delta}$ в виде

$$e^{2i\delta} = \prod_{j} \frac{(z-z_{j}^{*})(z+z_{j})}{(z-z_{j})(z+z_{j}^{*})}$$

Функция $e^{2i\delta}$ действительна на мнимой оси *z*, т.е. на действительной оси *s* при $s < \alpha$. Уравнение (*) справедливо на разрезе $[4m^2, \infty)$, который переходит в

15

действительную ось z = x + iy, при этом $F(s) \to F(x), \ F^*(s) \to F(-x)$ и

$$F(x) = \frac{(x - z_j^*)(z + z_j)}{(x - z_j)(z + z_j^*)}F(-x)$$

где, не нарушая общности, ограничились одним полюсом. Последнее равенство,

функциональное уравнение на F(x), легко записать так:

$$F(x)(x - z_j)(x + z_j^*) = G(x)$$
$$G(x) = G(-x)$$

Отсюда ясно, что F(z) представима в виде:

$$F(z) = \frac{G(z)}{\prod_j (z - z_j)(z + z_j^*)}$$

где G(z) — целая, четная функция переменной z. Аналогичным образом можно решить неоднородную красвую задачу (*) и обосновать формулу (10).

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (93-02-3807).

Литература

[1] G. Bardin et al., Phys.Lett. B255 (1991) 149; B257 (1991) 514

- [2] G. Bassompierre et al. Phys.Lett. 68B, 477 (1977).
- [3] B. Kerbikov and L.A. Kondratyuk: Z.Phys. A Hadron and Nuclei 340 (1991)

- [4] B.O. Kerbikov, A.E. Kudryavtsev. Proceedings of the Second Biennial Conference on Low-Energy Aniproton. Physics (Ed. C. Guaraldo, F. IAZZI and A.Zenoni) Nucl.Phys. A558, 177c-182c (1992)
- [5] O.D. Dalkarov, K.V. Protasov: Sov.J.Nucl.Phys. 50 (1989) 1030; Nucl.Phys. A504 (1989) 845; Phys.Lett. B280 (1992) 107
- [6] R. Bacher. In Proc. First Bienual Conf. on Low Energy Antiproton Physics, Stockholm. 2-6 July 1990, Ed. P. Carlson et al. World Scientific, 1991, p.373
- [7] S. Dubnička, A.Z. Dubničkova, P.Striženec. Nuovo Cim. A106 (1993) 1253
- [8] V.A. Matveev, R.M. Muradyan, A.N. Tavkhelidze. Nuovo Cim.Lett. 7 (1974)719
- [9] W.R. Frazer, J.R. Fulco. Phys.Rev. 117 (1960) 1603,1609
- [10] G.V. Meshcheryakov, V.A. Meshcherykov, Preprint JINR, E2-93-88, Dubna (1993)

[11] S.I. Bilenkaya et al., Nuovo Cim. A105 (1992)

[12] V. Wataghin, Nucl. Phys. B10 (1969) 107

[13] M. Castellano et al., Nuovo Cim. A14 (1973) 1
B. Delcourt et al., Phys.Lett., B86 (1979) 395
G. Bassompierre et al., Nuovo Cim. A73 (1983) 347

 $\langle 0 \rangle$

181

D. Bissello et al., Nucl.Phys., B224 (1983) 379

D. Bisello et al., Z.Phys. C48 (1990) 23

[14] E. Luppi, Nucl. Phys., A558 (1993) 165c.

- [15] G.V. Meshcheryakov, V.A. Meshcheryakov, Preprint JINR, E2-93-88, Dubna (1991)
- [16] B.V. Bykovsky, V.A. Meshcheryakov, D.V. Meshcheryakov. Yad.Fiz. 53 (1990)257

[17] M. Muskhelishvili. Singular Integral Equation. Groningen, 1953.

[18] S.M. Bilenky, C.Giunti, V.Wataghin. Z.Phys. C59 (1993) 475

Рукопись поступила в издательский отдел 22 июля 1994 года.

18

0

Q