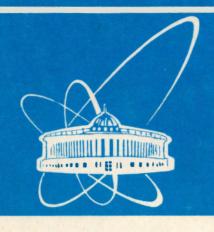
94-115



объединенный институт ядерных исследований дубна

P4-94-115

И.М.Матора

ОБЛАСТИ СУЩЕСТВОВАНИЯ
И НЕКОТОРЫЕ СВОЙСТВА
СВЯЗАННЫХ СОСТОЯНИЙ ЧАСТИЦЫ
В ПОЛЯХ С ОДНОРОДНОЙ ЗАВИСИМОСТЬЮ
ЕЕ ПОТЕНЦИАЛЬНОЙ ЭНЕРГИИ
ОТ КООРДИНАТ

Направлено в журнал «Оптика и спектроскопия»

1. ВВЕДЕНИЕ

К настоящему времени наиболее точно исследованы квантово-механические состояния частицы в полях с оператором ее потенциальной энергии $U(\vec{\mathbf{r}}) = -\frac{Ze^2}{r}$ (кулоновское взаимодействие электрона с тяжелым положительным зарядом Ze) и $U(\vec{\mathbf{r}}) = \frac{m}{2} \, \omega^2 x^2$ (гармонический осциллятор). Оба вида взаимодействия имеют т.н. однородную, степени ρ зависимость $U(\vec{\mathbf{r}})$ от координат ($\rho = -1$ в кулоновском поле и $\rho = +2$ в гармоническом осцилляторе), при которой всегда $U(\lambda \, \vec{\mathbf{r}}) = \lambda^{\rho} U(\vec{\mathbf{r}})$ ($\lambda = \text{const.}$).

В действительности реализуются не только вышеупомянутые степени однородности $\rho = -1$ и +2, но также и другие значения ρ . В частности, $\rho = -3$ характеризует взаимодействие магнитных моментов двух элементарных частиц, а $\rho = -2$ хотя и не имеет физического смысла, но проблема существования суперсвязанного состояния частицы в гипотетическом поле с $U(\bar{\Gamma}) = \frac{\gamma}{r^2} (\gamma > 0)$ (падения ее на центр) давно привлекает внимание физиков (см., например, §§ 18 и 35 в [1]).

В связи с этим представляется актуальным исследовать возможность (или ее отсутствие) существования связанных квантово-механических состояний микрочастицы, взаимодействующей с массивным (неподвижным) центром через однородный оператор ее потенциальной энергии в поле центра $U(\hat{\mathbf{r}}) = \gamma \ r^{\rho} \ (\gamma = \text{const})$ при всевозможных значениях степени $\rho \in (-\infty, +\infty)$.

2. ТЕОРИЯ

Очевидный способ точного расчета спектров собственных значений оператора полной энергии частицы, двигающейся в поле неподвижного центра, при каждой конкретной степени $\rho \in (-\infty, +\infty)$ с помощью решения соответствующих уравнений Шредингера в данном случае реализовать нельзя.

Однако решение проблемы возможно, если воспользоваться данным в 1930 г. В.А.Фоком квантово-механическим обобщением известной теоремы вириала [2,3] для совершающей финитное движение вокруг центра частицы с оператором ее потенциальной энергии $U(\Gamma)$

$$2\overline{T} = \overline{V},\tag{1}$$

Среднее значение \overline{T} оператора кинетической энергии частицы в (1) точно выражено через среднее значение \overline{V} ее вириала $V(\overline{\Gamma}) = x \frac{\partial U}{\partial x} + y \frac{\partial U}{\partial y} + z \frac{\partial U}{\partial z}$, причем в случае однородной степени ρ зависимости $U(\overline{\Gamma})$ из (1) следует:

$$2\overline{T} = \rho \overline{U}. \tag{2}$$

Из теоремы (2) и определения среднего значения оператора полной энергии частицы $\overline{E}=\overline{T}+\overline{U}$ при финитном ее движении (т.е., дискретном спектре ее полной энергии \overline{E}_n) находим связь \overline{T}_n и \overline{U}_n с \overline{E}_n (n — квантовое число уровня) в виде

$$\overline{E}_n = \left(1 + \frac{2}{\rho}\right) \overline{T}_n = \left(1 + \frac{\rho}{2}\right) \overline{U}_n. \tag{3}$$

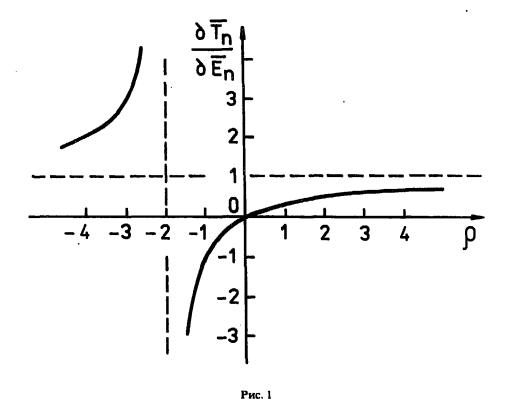
Последнее точное соотношение между средними значениями полной, кинетической и потенциальной энергии (в предположении финитности движения частицы) хотя и не содержит прямой зависимости каждого из \overline{E}_n , \overline{T}_n и \overline{U}_n от ρ , но, тем не менее, позволяет не только классифицировать интервалы ρ по возможности существования в них связанных состояний, но и выяснить ряд новых интересных особенностей этих состояний.

Рассмотрим, прежде всего, связь значений \overline{E}_n с \overline{T}_n , найдя из выражения (3) частную производную

$$\frac{\partial \overline{T}_n}{\partial \overline{E}_n} = \frac{\rho}{2 + \rho},\tag{4}$$

зависимость которой от ρ представлена рисунком 1.

Обращает на себя внимание то, что значения производной положительные, обусловливающие возрастание наблюдаемой кинетической энергии частицы после ее возбуждения из любого связанного состояния в более высокое (по полной энергии) связанное состояние, существует лишь в двух областях ρ : $-\infty < \rho < -2$ и $0 < \rho < +\infty$, а в области $-2 < \rho < 0$, в которой находится и одно из наиболее распространенных — кулоновское поле притяже-



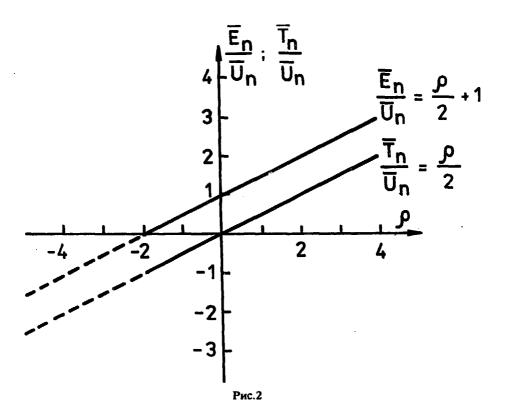
ния $U(\overline{\bf r})=-rac{\gamma}{r}\,(\gamma>0)$ со степенью однородности $\rho=-1$, переход частицы на более высокий уровень \overline{E}_n всегда сопровождается убыванием \overline{T}_n .

Теперь проанализируем отношения $\frac{\overline{T}_n}{\overline{U}_n}$ и $\frac{\overline{E}_n}{\overline{U}_n}$.

$$\frac{\overline{T}_n}{\overline{U}_n} = \frac{\rho}{2},\tag{5}$$

$$\frac{\overline{E}_n}{\overline{U}_n} = \frac{\rho}{2} + 1. \tag{6}$$

Ход обоих отношений по ρ изображен на рис.2. Из отношения (5) следует:



из-за того, что всегда $\overline{T}_n>0$, при финитности движения частицы для всех $\rho<0$ \overline{U}_n всегда должно быть отрицательным, а для всех $\rho>0$ пригодны только положительные средние значения потенциального энергии \overline{U}_n .

Но тогда из соотношения (6) и $\overline{U}_n < 0$ при $\rho < 0$ и $\overline{U}_n > 0$ для $\rho > 0$ (см. рис.2) отрицательные средние значения \overline{E}_n допустимы только в узком интервале $\rho \in (-2,0)$, а при всех ρ вне этого интервала, т.е. при $\rho < -2$ и $\rho \in (0,+\infty)$ \overline{E}_n связанных состояний могут быть только положительными.

Оба вида совместимых с возможностью существования связанных состояний операторов потенциальной энергии $U(\mathbf{r}) = \gamma r^{\rho}$, первый из которых имеет константы $\gamma < 0$ и $\rho < 0$, а второй $-\gamma > 0$ и $\rho > 0$, представлены на рис.3. Масштаб осей на нем таков, что выражаемая в эВ потенциальная энергия на задаваемых в а.е. расстояниях близка к U(r) электрона в атоме водорода и U(x) (под x подразумевается абсолютная величина отклонения частицы от положения равновесия) одного из атомов в молекуле водорода H_2 . Полезно отметить, что в зависимостях обоих видов знак оператора

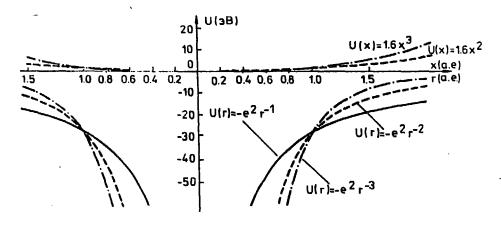


Рис.3

 $\gamma \, r^{\rho}$ остается неизменным во всем пространстве, и, разумеется, он всегда совпадает со энаком ρ .

В соответствии с соотношением (5) (см. также рис.2) для всех $|\rho| > 2$ модули $|\overline{T}_n|$ частиц в состояниях с финитным движением должны превосходить $|\overline{U}_n|$.

Рассмотрим более подробно сваязанные состояния частицы в гипотетическом поле $U(r) = -\frac{\gamma}{r^2} \ (\rho = -2)$.

3. ПАРАДОКСАЛЬНЫЕ СВЯЗАННЫЕ СОСТОЯНИЯ ЧАСТИЦЫ В ПОЛЕ С $U(r) = -\frac{\gamma}{r^2}$

Вещественное общее решение нерелятивистского радиального уравнения Шредингера для волновой функции частицы в поле с $U(r) = -\frac{\gamma}{r^2} \ (\gamma > 0)$

$$r^2 \frac{d^2 R}{dr^2} + 2r \frac{dR}{dr} + [2Er^2 + 2\gamma - l(l+1)]R(r) = 0$$
 (записано в а.с.) (7)

легко находится [4] для всех возможных сочстаний входящих в него параметров $E \leq 0$ — среднего значения полной энергии; γ — постоянной взаимодействия частицы с центром и момента импульса $\sqrt{l(l+1)}$ (l=0,1,2,...). Вид решения следующий:

$$R(r) = \frac{Cl_{\nu}(\beta r) + DK_{\nu}(\beta r)}{\sqrt{r}} \quad \text{для } \overline{E} < 0;$$

$$\nu = \sqrt{\frac{1}{4} - 2\gamma + l(l+1)}; \quad \beta = \sqrt{-2E}; \quad (8)$$

$$R(r) = \frac{C\cos{(\alpha \ln{r})} + D\sin{(\alpha \ln{r})}}{\sqrt{r}}$$
 для $\overline{E} = 0$;

$$\alpha = \sqrt{2\gamma - \frac{1}{4} - l(l+1)}; \ 2\gamma > \frac{1}{4} + l(l+1);$$
 (9)

$$R(r) = \frac{C \ln r + D}{\sqrt{r}}$$
 gas, $\overline{E} = 0$; $2\gamma = \frac{1}{4} + l(l+1)$; (10)

$$R(r) = \frac{Cr^{\delta} + Dr^{-\delta}}{\sqrt{r}}$$
 для $\overline{E} = 0$;

$$\delta = \sqrt{\frac{1}{4} + l(l+1) - 2\gamma}; \ 2\gamma < \frac{1}{4} + l(l+1); \tag{11}$$

 $(I_{\nu}(z)$ и $K_{\nu}(z)$ — цилиндрические функции мнимого аргумента, первая из которых при $z \to \infty$ неограниченно возрастает, а вторая — экспоненциально убывает).

Для превращения найденных общих решений уравнения (7) в волновые функции стационарных состояний необходимо найти для каждого из них такие значения постоянных C и D и параметров E, γ и l, при которых будут выполнены стандартные требования к волновым функциям таких состояний [1,3,5—7]: нормируемости на 1, однозначности и непрерывности вместе с производной во всем пространстве, а также конечности (точнее — выполнения соотношения $\lim r \cdot R(r) = 0$ [5]).

Начнем со среднего значения полной энергии $E \equiv 0$, которое, на первый взгляд, наиболее точно соответствует теореме вириала для рассматриваемого поля со степенью однородности $\rho = -2$ (см. соотношение (5)). Легко видеть, что решениям (9) и (10) придать вид волновых функций стационарных состояний невозможно по причине расходимости нормировочного интеграла на ∞ при любых C и D. Решение (11) также неприемлемо — в нем для обеспечения сходимости на ∞ нормировочного интеграла ∞ $\int R^2(r) \ r^2 dr$ нужно приравнять C = 0, но и после этого для его сходимости в

нуле нужно ограничить величину $\delta < \frac{1}{2}$, а это даже при C = 0 делает его расходящимся на ∞ . Тем самым доказана невозможность финитности движения частицы в этом поле при $E \equiv 0$.

Исследуем теперь оставшееся общее решение (8) для $\overline{E} < 0$. Оно при C = 0 и, в частности — v = 0, хотя и возрастает неограниченно при $r \to 0$, но $\lim_{r \to 0} r \cdot R_0(r) = 0$, а сама $R_0(r)$ нормируема на 1 и, кроме того, непрерывна вместе с производной и однозначна в интервале $0 < r < \infty$. Может ли $R_0(r)$ оказаться волновой функцией стационарного состояния, проверим, прежде всего, на поле с постоянной взаимодействия $\gamma = \frac{1}{8} + \frac{l(l+1)}{2}$, при которой и само уравнение (7), и его решения неизменны для всех l. В частном случае с l = 0 это поле в [1] названо критическим.

Здесь $\nu=0$, и предполагаемая волновая функция $R_0(r)$ в соответствии с (8) имеет вид

$$R_0(r) = \frac{D}{\sqrt{r}} K_0(\beta r)$$
, где [8]

$$K_0(z) = -\ln \frac{z}{2} I_0(z) + \sum_{k=0}^{\infty} \frac{\Psi(k+1) \cdot z^{2k}}{2^{2k} \cdot (k!)^2}; \quad I_0(z) = \sum_{k=0}^{\infty} \frac{z^{2k}}{2^{2k} (k!)^2};$$

$$\Psi(k+1) = -0.5772... + \sum_{m=1}^{k} \frac{1}{m}.$$
(13)

Нормировочный интеграл от (12) равен (см. [8]):

$$D^2 \int\limits_0^\infty K_0^2(\beta r) r dr = \frac{D^2}{2\beta^2} = I$$
, т.е., $D = \beta \sqrt{2}$, и нормированная на I

$$R_0(r) = \beta \sqrt{2} \, \frac{K_0(\beta r)}{r^{1/2}}.\tag{14}$$

Вычисление среднего значения расстояния \overline{r} частицы от центра дает:

$$\bar{r} = 2 \beta^2 \int_0^\infty r^2 dr K_0^2(\beta r) = \frac{2}{\beta} \int_0^\infty K_0^2(z) z^2 dz = \frac{A}{\beta}$$
 (15)

$$(A=2\int\limits_0^\infty K_0^2(z)\ z^2dz\doteq 0.62$$
 — результат численного интегрирования).

Тот факт, что $\overline{r} = \frac{1}{\beta} = \frac{1}{\sqrt{-2E}}$, является аргументом в пользу основанного на приближенном исследовании проблемы в [1] утверждения о возможности падения частицы на центр в рассматриваемом поле при $\overline{E} \to -\infty$.

Вычислим, далее, средние значения \overline{T} , \overline{U} и \overline{E} и сопоставим их с вытекающими из теоремы вириала соотношениями между ними. При вычислениях полезно воспользоваться вытекающим из рекуррентных соотношений между K_{ν} выражением $K_0^{\prime\prime}=K_0-\frac{K_0^{\prime}}{z}$, разложением (13) $K_0(z)$ в ряд, а также экспоненциальным убыванием $K_0(z)$ на ∞ . В результате

$$\overline{T} = \int_{0}^{\infty} R_{0}(\beta r) \left(-\frac{1}{2} \frac{d^{2}R_{0}}{dr^{2}} - \frac{1}{r} \frac{dR_{0}}{dr} + \frac{l(l+1)}{2r^{2}} R_{0} \right) r^{2} dr =$$

$$=2\gamma\,\beta^2\,\int\limits_0^\infty\,K_0^2(z)\,\frac{dz}{z}-\frac{\beta^2}{2}=2\gamma\,\beta^2\bigg(\frac{L^3}{3}+aL^2+a^2L\bigg)\,-\frac{\beta^2}{2}\,;$$

$$(a = \ln 2 - 0.5772...; L = \lim_{z \to 0} |\ln z|);$$
 (16)

$$\overline{U} = -\gamma \int_{0}^{\infty} R_{0}^{2}(\beta r)dr = -2\gamma \beta^{2} \left(\frac{L^{2}}{3} + aL^{2} + a^{2}L\right);$$
 (17)

$$\overline{E} = \overline{T} + \overline{U} = -\frac{\beta^2}{2}$$
 для любого значения l . (18)

Как видим, волновая функция $R_0(\beta r)$ состояний частицы в поле со степенью однородности $\rho=-2$ и постоянной взаимодействия $\gamma=\frac{1}{8}+\frac{l(l+1)}{2}$ в нерелятивистском приближении найдена. Средние значения всех необходимых характеристик состояния с фиксированным \overline{E} легко с ее помощью вычисляются, причем полученные величины $\overline{T}, \overline{U}$ и \overline{E} находятся в соответствии с теоремой вириала, справедливой только для состояний с финитным движением частицы. Так, соотношения (5) и (6) между средними значениями (16), (17) и (18) выполняются с точностью до бесконечно малых 3-го порядка:

Для (5) $\frac{\overline{T}}{\overline{U}} = -1 + 0 \left(\frac{1}{L^3}\right) = -1$; а для (6) $\frac{\overline{E}}{\overline{U}} = 0 \left(\frac{1}{L^3}\right) = 0$, как и должно быть при $\rho = -2$.

Но вместе с тем необходимо отметить следующие парадоксальные свойства описываемых ею состояний:

- а) Спектр средних значений полной энергии частицы $\overline{E} < 0$ в поле с $U(r) = -\frac{1}{8r^2} \frac{l(l+1)}{2r^2}$ является сплошным, равномерно заполняющим всю область $-\infty < \overline{E} < 0$, а не дискретным, несмотря на ярко выраженную финитность ее движения.
- б) Собственные функции каждого значения \overline{E} имеют универсальную для всей области $-\infty < \overline{E} < 0$ зависимость $R_0(r) = \beta \sqrt{2} \frac{K_0(\beta r)}{\sqrt{r}}$ от r, причем любые две из них $R_0(\beta_1 r)$ и $R_0(\beta_2 r)$ с $\overline{E}_1 = \frac{\beta_1^2}{2} \neq \overline{E}_2 = -\frac{\beta_2^2}{2}$ не ортогональны друг другу.

Уместно заметить, что последнее свойство $R_0(\beta r)$ для E < 0 не является признаком неполноты набора волновых функций всей области $-\infty < E < +\infty$, ибо волновые функции для положительных E, которые, как легко проверить для $\gamma = \frac{1}{8} + \frac{l(l+1)}{2}$ имеют вид

$$R_{0+} = \frac{1}{\sqrt{r}} (M \cos \kappa \, r + N \sin \kappa \, r), \, (M$$
 и N — константы, $\kappa = \sqrt{2E}$)

в совокупности со всеми R_0 являются, очевидно, набором полным.

в) Состояние с $\overline{E} \equiv 0$, которое наиболее точно соответствовало бы теореме вириала в рассмотренном поле, не реализуется.

Итак, в нерелятивистском приближении исследованы связанные состояния частицы в поле со степенью однородности $\rho=-2$ лишь при значениях $\gamma=\frac{1}{8}+\frac{l(l+1)}{2}$ с универсальной волновой функцией $R_0(\beta r)=\beta\sqrt{2}\frac{K_0(\beta r)}{\sqrt{r}}$. Однако то, что расходимость в 0 входящей в R_0 цилиндрической функции мнимого аргумента $K_0(z)$ является логарифмической, т.е., минимальной для многообразия $K_{\nu}(z)$ со всевозможными ν и, вместе с тем, даже при $\nu=0$ средние значения \overline{T} и \overline{U} логарифмически расходились, дает основание предполагать, что состояния в этом поле с $R_{\nu}(\beta r)=D\frac{K_{\nu}(\beta r)}{\sqrt{r}}$ ($\nu\neq 0$) ока-

жутся не финитными. Поэтому исследование решений уравнения Шредингера (7) типа (8) с $\nu \neq 0$ не представляется необходимым.

Найти волновые функции частицы для имеющего физический смысл поля $U(r)=-\frac{\gamma}{r^3}$ пока, к сожалению, не удалось, и вопрос о существовании в нем связанных состояний с положительными (в соответствии с теоремой вириала) \overline{E} , тогда как верхний предел величины оператора потенциальной энергии се $U(r)_{\max}=0$, остается открытым. Правда, решение его с помощью нерелятивистского уравнения Шредингера, по-видимому, не будет убедительным, т.к. даже для $\rho=-2$ полученные средние значения \overline{T} являются ультрарелятивистскими, а для $\rho=-3$ логично ожидать их возрастания

В заключение искренне благодарю Б.Н.Захарьева, В.И.Лущикова, С.А.Ракитянского и В.М.Чабанова за плодотворные дискуссии.

ЛИТЕРАТУРА

- 1. Ландау Л.Д., Лифшиц Е.М. Квантовая механика. Нерелятивистская теория. М., Наука, 1989.
- 2. Фок В.А. ЖРФХО, 1930, т.42, 379.
- 3. Фок В.А. Начала квантовой механики. М., Наука, 1976.
- 4. Камке Э. Справочник по обыкновенным дифференциальным уравнениям. М., Наука, 1965.
- 5. Дирак П.А.М. Принципы квантовой механики. М., Наука, 1979.
- 6. Блохинцев Д.И. Основы квантовой механики. М.—Л., ГИТТЛ, 1949.
- 7. Соколов А.А., Лоскутов Ю.М., Тернов И.М. Квантовая механика. М., Просвещение, 1965.
- 8. Рыжик И.М., Градштейн И.С. Таблицы интегралов, сумм, рядов и произведений. М.—Л., ГИТТЛ, 1951.

Рукопись поступила в издательский отдел 1 апреля 1994 года.