92-166

Объединенный институт ядерных исследований дубна

P4-92-166

1992

И.Н.Михайлов, П.Н.Усманов¹, А.А.Охунов², Ш.Бриансон³, Р.Кулесса⁴

МАГНИТНЫЕ ХАРАКТЕРИСТИКИ КОЛЛЕКТИВНЫХ СОСТОЯНИЙ ИЗОТОПОВ ^{156,158,160,162,164}Dy

Направлено в журнал "Известия РАН, серия физическая"

¹ Московский государственный университет им. М.В.Ломоносова ²Институт ядерной физики АН Республики Узбекистан, Ташкент ³Центр ядерной спектрометрии и спектрометрии масс, Орсэ, Франция

⁴Институт физики, Ягиллонианский университет, Краков, Польша и GSI, ФРГ

Ввеление

이 같은 것 같은 것은 것은 것은 것을 알았는 것이 같은 것을 것을 수 있는 것을 물었다.

机动力 计可以编码 网络特别人名法拉斯特特

Изучению I^π = 1⁺-состояний и М1- переходов в атомных ядрах посвящено множество экспериментальных и теоретических работ. Существует ряд исследований, в которых рассматриваются те или иные аспекты этой проблемы [1, 3]. Особый интерес к возбуждениям М1- мод обусловлен тем, что в настоящее время во многих четно-четных ядрах обнаружено по несколько 1⁺ низколежащих коллективных уровней в области энергии 3 MoB [4, 5] и показано, что смешивание этих состояний с уровнями βи у- вибрационных полос приводит к М1- переходам из них [6-8]. На эксперименте [4] с высокой разрешающей способностью по рассеянию фотонов на ядрах были обнаружены в изотопах ${}^{160,162}Dy$ по три и ${}^{164}Dy$ семь $K^{\pi} = 1^+$ уровней, которые имеют сильные В(М1)-переходы на основное состояние. В работе [9] нами в рамках феноменологической модели было рассмотрено кориолисово смешивание этих $K^{\pi} = 1^+$ -состояний с уровнями основной $(gr), \beta$ - и у- вибрационных полос. Изучены неадиабатичности отношений приведенных вероятностей электрических квадрупольных переходов из 7- полосы, а также оценены значения B(E2) из уровней $K^{\pi} = 1^+$ - полос на основе экспериментальных данных о вероятностях Е2- переходов из низколежащих уровней.

В настоящей работе, которая является продолжением [9], изучается влияние состояний $K^{\pi} = 1^+$ - полос на магнитные характеристики низколежащих уровней. Объясняется различие g_в- факторов состояний основной и γ- полос при низких спинах. Вычисляются значения коэффициентов смеси мультиполей δ для $\gamma \to \gamma$ и $\gamma \to gr$ -переходов и сравниваются с экспериментальными данными.

- ของที่การจะที่ว่า สารีสารสารแสดสมแรง เสียงในการสำคัญ และ 13 กับกรรม เรื่อง ซองและไป ด Магнитные дипольные переходы

Мультипольный оператор М1- перехода напишем в виде [7]:

 $\hat{m}(M1;\mu) = \sqrt{\frac{3}{4\pi}} \left(\frac{e\hbar}{2Mc}\right) g_{\rm R}(I_{\mu=0} - I_3 D^1_{\mu=0,0}) + \sum_{\mu} \hat{m}(M1;\nu) D^1_{\mu=0,\nu} .$ (1)COSCREMENTER NECTOR BANSILL DICLEROBBID

Первый член есть вклад вращательного движения, который пропорционален компоненте углового момента, перпендикулярной оси симметрии. Для оператора $\hat{m}(M1;\nu)$, согласно [7], напишем

$$\hat{m}(M1;\nu) = \sqrt{\frac{3}{4\pi}} \left(\frac{e\hbar}{2Mc}\right) \left[m_{\kappa,\nu} (b_{\kappa} b_{\kappa}^{+} + b_{\kappa}^{+} b_{\kappa}) + m_{1\nu}' (b(b^{+}b)_{\kappa}^{1})_{\nu}^{1} + \text{s.c.} \right].$$
(2)

Используя общепринятое обозначение

$$\langle I_f K_f \parallel \hat{m}(M1; \mu = 0) \parallel I_i K_i \rangle = \sqrt{\frac{3}{4\pi}} \left(\frac{e\hbar}{2Mc}\right) g_{\kappa} K, \qquad (3)$$

где g_{κ} – внутренний g-фактор полосы с $K \neq 0$, получим для приведенных вероятностей М1- переходов следующее выражение

$$B(M1; I_i K_i \to I_f K_f) = \frac{1}{2I_i + 1} | < I_f K_f \parallel \hat{m}(M1; \mu = 0) \parallel I_i K_i > |^2,$$
(4)

где

$$< I_{f}K_{f} \parallel \hat{m}(M1; \mu = 0) \parallel I_{i}K_{i} > = \sqrt{\frac{3}{4\pi}} \left(\frac{e\hbar}{2Mc}\right) \sqrt{2I_{i} + 1} \times \\ \times \left\{ \sum_{n}^{1+\nu} \psi_{K_{n}K_{i}}^{I_{i}} \psi_{K_{n}K_{f}}^{I_{f}} K_{n} C_{I_{i}K_{n};10}^{I_{f}K_{n}} (g_{\kappa_{n}} - g_{n}) + \frac{\sqrt{6}}{10} \psi_{g_{r},K_{f}}^{I_{f}} C_{I_{i}1;1-1}^{I_{f}0} \sum_{\nu} m_{1\nu}^{\prime} \psi_{1\nu,K_{i}}^{I_{i}} \right\}$$

날랐다. 집안 동네는 이 이 방문을 위한 것이 다 것 같아요. 한 것 같아요.

Здесь $\psi'_{K,K'}$ - амплитуды смешивания базисных состояний, ν - число 1⁺-уровней, включенных в базисные состояния гамильтониана, и $m'_{1\nu}$ - некоторые численные параметры, определяемые из эксперимента.

В адиабатическом приближении для внутриполосных М1- переходов с $K \neq 0$ формула (4) имеет вид

$$B(M1; I_i K \to I_f K) = \frac{3}{4\pi} \left(\frac{e\hbar}{2Mc}\right)^2 (g_{\kappa} - g_{\rm R})^2 K^2 \left[C_{I_i K; 10}^{I_f K}\right]^2, \tag{5}$$

а для M1- переходов из уровней 1⁺-полос на состояния основной полосы она имеет более простой вид:

$$B(M1; I_i 1_{\nu}^+ \to I_f 0_{gr}) = \frac{3}{4\pi} \frac{3}{50} \left(\frac{e\hbar}{2Mc}\right)^2 (m_{1\nu}')^2 \left[C_{I_i 1; 1-1}^{I_f 0}\right]^2.$$
(6)

В аднабатическом приближении М1- переход из состояний β - и γ - вибрационных полос равен нулю. В данной схеме магнитный момент состояния определяется следующей формулой

$$\mu_{\kappa}(I) = \left(\frac{e\hbar}{2Mc}\right) \left\{ g_{\kappa}I + \sum_{n}^{(1+\nu)} |\psi_{n,K}^{I}|^{2} (g_{\kappa_{n}} - g_{\kappa}) \frac{K_{n}^{2}}{I+1} + \frac{\sqrt{3}}{10} \psi_{gr,K}^{I} \sqrt{\frac{I}{I+1}} \sum_{\nu} m_{1\nu}' \psi_{1\nu,K}^{I} \right\}.$$
(7)

Экспериментальные значения $g_{\rm R}$ -фактора вращательного движения сравнимы с величиной Z/A, которая получалась бы в случае равномерно заряженного вращающего тела. Но для большинства случаев они несколько меньше. В расчетах значения $g_{\rm R}$ - фактора в вышеописанных формулах считаем как параметр и будем определять из данных о магнитных моментах вращательных полос. Эффективные значения $g_{\rm R}^{\rm opdp}$ - фактора определяем

$$g_{\rm R}^{\rm opp}(I) = \mu_{\rm K}(I)/I, \tag{8}$$

которые сравниваем с экспериментальными $g_{\mathrm{R}}^{\mathrm{экп.}}(I)$.

Результаты расчетов

Вычисленные эначения спектра энергии состояний и отношений приведенных вероятностей Е2- переходов из 7- полосы для изотопов 156,158,160,162,164 Dy даны в [9]. Там же детально описан расчет энергии. В табл.1,2 представлены структуры состояний $qr-, \beta$ -, γ - и $K^{\pi} = 1^+$ -полос ^{156,162}Dy, полученные при описании энергии. В состояниях у- полосы В- компоненты становятся спинах. Смешивание состояний β-и заметными уже при низких γ - полос сильно проявляется в ^{156,158} Dy из-за близости головных энергий ω_{β} и ω_{γ} . На рис.1(a,b,c,d,e) даны вычисленные эначения B(E2) для $I_{\gamma} \rightarrow (I-2)_{or}$, $I_{\gamma} \rightarrow I_{gr}$ и $I_{\beta} \rightarrow (I-2)_{gr}$ переходов и приведенные матричные элементы $<(I+2)_{gr} \parallel \hat{m}(E2) \parallel I_{gr}>, < I_{gr} \parallel E2 \parallel I_{gr}>$ в ¹⁵⁶Dy, которые сравниваются с экспериментом [18] и вычисленными значениями в адиабатическом приближении. Как видно из рис.1, неадиабатичности В(Е2)-переходов из β- и γполос можно объяснить смешиванием состояний qr-, β -, γ - и $K^{\pi} = 1^+$ -полос. Отметим, что в расчетах B(E2) для ¹⁵⁶Dy использовались следующие эначения $m_0 = 4.5 \text{ фм}^2$, $m_1 = 85.5 \text{ фм}^2$ и $m_2 = -40.5 \text{ фм}^2$, которые отличаются от тк, использованных в [9].

Вычислены М1- переходы по (4) из состояний β - и γ - полос. Параметры $m'_{1_{\nu}}$ определили по (6), используя экспериментальные значения B(M1) из 1^{+}_{ν} -уровней [4]. Фазы $m'_{1_{\nu}}$ определялись из наилучшего согласия вычисленных значений коэффициентов смеси мультиполей δ с экспериментом для переходов $\gamma \to gr$. Значения $m'_{1_{\nu}}$ представлены в табл.3.

Таблица 1

Структура состояний ¹⁵⁶ Dy										
I	· · ·		gr		β					
	gr /	β	1+	γ	gr	β	1+	γ		
2	.9998	.0024	.0177	.0029	0033	9979	0422	0493		
4	.9996	.0058	0278	.0081	0090	9864	0741	1463		
· 6	.9992	.0094	.0357	.0134	0161	9635	1038	2464		
8	.9989	.0129	.0422	.0186	0238	9321	1306	3371		
10	.9984	.0163	.0481	.0237	0319	8971	1540	4129		
12	.9980	.0197	.0533	.0287	0319	8971	1540	4129		
14	.9975	.0231	· .0582	.0336	0479	8310	1908	5203		
16	.9969	.0264	.0629	.0385	0557	8029	2052	5570		
18	.9963	.0297	.0673	.0434	0634	7782	2176	5857		
20	.9957	.0329	.0716	.0482	0709	7568	2283	6084		
		γ			1+					
2	.0037	.0516	0548	9972	.0174	.0394	9974	.0596		
3		·	0824	9966		·	9966	.0824		
4	.0096	.1528	0902	9841	.0265	.0599	9928	.1006		
5	:::: : :	::::: 	1166	9932	а. —		9932	.1166		
6	.0142	.2572	1048	9606	.0329	.0743	9884	.1282		
7	- 1		1407	9900		s - 12	9900	.1407		
8	.0174	.3519	1091	9295	.0378	.0852	9845	.1485		
9	. —		1595	9872	· · · · · · · · · · · · · · ·	1	9872	.1595		
10	.0194	.4314	1082	8955	.0418	.0941	9810	.1647		
11		÷	1748	9846	1997	2 1 <u>1 1</u>	9846	.1748		
12	.0206	.4950	1047	8623	.0451	.1015	9777			
13	· · ·		1879	9822	·	14 1	9822	.1879		
14	.0213	.5452	1004	8320	.0480	.1079	9747	.1896		
15	·	-	1993	9799	· · · · · · · · · · · · · · · · · ·		9799	.1993		
16	40217	.5847	0960	8053	.0506	.1135	9720	.1996		

Параметры g_{κ} и g_{R} найдены из экспериментальных эначений магнитных моментов для основной ($\mu(4^+, \text{gr})=1.48^{+0.67}_{-0.54}$ μ_{s}) и γ ($\mu(2^+, \gamma)=0.32\pm0.4\mu_{s}$) полос для.¹⁶⁰Dy [10], которые оказались равными $g_{\kappa}=0.10$ и $g_{R}=0.36$. В работе [11] показано, что $g_{\kappa}^{\text{оксп.}}(4^+, {}^{158}\text{Dy}) \simeq g_{R}^{\text{оксп.}}(2^+, {}^{160}\text{Dy}) \simeq g_{R}^{\text{оксп.}}(2^+, {}^{162}\text{Dy})$. Поэтому в расчетах для всех изотопов Dy использовались определенные выше значения g_{κ} и g_{R} . Вычисленные значения $g_{R}^{eff}(I) = \mu(I)/I$ в зависимости от спина I представлены на рис.2 для 158,160,162 Dy. Как видно из рисунков, g_{R} - фактор γ - полосы при низких I мењице, чем в основной полосе (g_{R}^{gr}), и с ростом I становится близким к g_{R}^{gr} . В нашей схеме значения g_{R} для состояний основной полосы оказались постоянными, что и подтверждает эксперимент при $I < 10\hbar$ в 158 Dy [11, 12].

Эксперимент [12] для ¹⁵⁸Dy при спинах I \approx 14 \hbar в gr- полосе дает $g_{\rm R}$ =0.04 \pm 0.11. Это, наверное, связано со сложной структурой основной полосы при высоких спинах. Например, в нашей схеме не учитывается смешивание gr- полосы с выстроенной S- полосой, которая имеет большой момент инерции. На рис.3 даны вычисленные эначения B(M1) по формуле (4), для переходов $I_{\gamma} \rightarrow (I \pm 1)_{gr}, I_{\gamma} \rightarrow I_{gr}$. Во всех случаях B(M1) монотонно растет с увеличением спина и для ¹⁶⁰Dy всегда B(M1) меньше, чем для других ядер. Экспериментальных эначений B(M1) таких переходов нет, но существуют экспериментальные эначения коэффициентов смеси мультиполей

$$\delta = 0.833 E_{\gamma} \frac{\langle I_f K_f \parallel m(E2) \parallel I_i K_i \rangle}{\langle I_f K_f \parallel m(M1) \parallel I_i K_i \rangle} (M \Rightarrow B \frac{e6}{\mu_s}).$$
(9)

В табл.4 приводится сравнение теоретических и экспериментальных эначений δ для ^{160,162,164}Dy. Экспериментальные данные по δ для ¹⁶⁰Dy оказались больше, чем для ^{162,164}Dy, а для ^{156,158}Dy их не имеется. Эначения $\delta^{\text{оксп.}}$ для переходов в γ - полосе есть только для ¹⁶²Dy, что в пределе погрешности эксперимента согласуется с вычисленными $\delta^{\text{теор.}}$. Для $\gamma \rightarrow gr$ переходов в большинстве случаев теория дает удовлетворительное согласие с экспериментом. В табл.4 энак δ представлен в соответствии с определением Стефана - Беккера [13].

Представленные в [15] экспериментальные эначения $B^{\text{оксп.}}(E2; 2_{\gamma} \rightarrow 2_{gr}) = 0.045(25) e^2 6^2$, $= 0.0446(27) e^2 6^2$, $= 0.0411(25) e^2 6^2$ для изотопов ^{160,162,164}Dy, соответственно и коэффицентов смеси мультиполей $\delta^{\text{оксп.}}(2_{\gamma} \rightarrow 2_{gr}; ^{160}\text{Dy}) = -16.7(14)$ [16], $\delta^{\text{оксп.}}(2_{\gamma} \rightarrow 2_{gr}; ^{162}\text{Dy}) = -8.1(11)$ [17], $\delta^{\text{оксп.}}(2_{\gamma} \rightarrow 2_{gr}; ^{164}\text{Dy}) = -5.7(1.2)$ [17], позволяют определить $B^{\text{оксп.}}(M1)$. Они оказались равными $B^{\text{эксп.}}(M1; ^{160}\text{Dy}) = 0.086(6) \cdot 10^{-3} \mu_a^2$, $B^{\text{эксп.}}(M1; ^{162}\text{Dy}) =$ $= 0.44(3) \cdot 10^{-3} \mu_a^2$ и $B^{\text{эксп.}}(M1; ^{164}\text{Dy}) = 0.42(3) \cdot 10^{-3} \mu_a^2$. Наши вычисления в рамках описанной выше модели дают $B^{\text{теор.}}(M1; ^{160}\text{Dy}) = 0.082 \cdot 10^{-3} \mu_a^2$, $B^{\text{теор.}}(M1; ^{162}\text{Dy}) = 0.52 \cdot 10^{-3} \mu_a^2$ и $B^{\text{теор.}}(M1; ^{164}\text{Dy}) = 0.42 \cdot 10^{-3} \mu_a^2$, что хорошо согласуется с экспериментальными значениями.

医颈口口的 网络门口的 医静脉的

5 👌

Таблица 3

	Параметры $m_{1_{\nu}}$ для изотопов $^{100,102,104}Dy$									
	Ядро	V		эксперимент [4]	$m'_{1\nu}$					
			$E_{1\nu}(Margore B)$	$B(M1;00_{gr} \rightarrow 1^+1) \ (\mu_{\pi}^2)$						
		1	2.822	1.09 ± 0.13	-8.7±0.5					
	¹⁶⁰ Dy	2	2.864	$1.03 {\pm} 0.12$	8.5 ± 0.5					
		3	3.061	$0.30 {\pm} 0.05$	-4.6 ± 0.4					
	•	1	2.395	$0.54{\pm}0.07$	5.7 ± 0.4					
	^{162}Dy	2	2.900	1.60 ± 0.18	$10.0 {\pm} 0.6$					
ļ		3	3.061	$0.80 {\pm} 0.20$	-6.8 ± 0.9					
		1	2.530	$0.36 {\pm} 0.05$	-5.0 ± 0.4					
1		2	2.539	$0.30 {\pm} 0.04$	4.6 ± 0.3					
		3	2.578	0.48 ± 0.06	5.8 ± 0.3					
	^{164}Dy	4	2.694	$0.53 {\pm} 0.06$	6.1 ± 0.3					
	a	5	3.112	$1.04{\pm}0.12$	8.5 ± 0.5					
		6	3.159	1.16 ± 0.14	9.0 ± 0.5					
		7	3.173	0.95 ± 0.11	-8.1±0.6					

Таблица 4

i,			Значен	ия б	для изотопо	B 100,1	102,104Dy	
	Ii	If	¹⁶⁰ Dy	100	^{162}Dy	11.1	¹⁶⁴ Dy	1.500
	1.1.1.1		эксп. [2]	теор.	эксп. [14]	теор.	эксп. [14]	теор.
	27	2gr	$\delta > 0.5$	14.1	$-8.3 < \delta < 3.4$	-5.64	$-16.3 < \delta < 31.5$	-5.22
	4_{γ}	4 _{gr}	< 1; > -8	7.62	$-5.3^{+4.7}_{-0.8}$	-2.65	$-0.87^{+0.11}_{-0.13}$	-2.63
2	67	6gr	$\delta > 1.4$	4.96	$-17.9 < \delta < 2.3$	-1.64	—	-1.78
7	8γ	8 _{gr}	$\delta > 1.5$	3.5	—	-1.08		-1.80
i.	10_{γ}	10_{gr}	< -2.7; > 1.2	2.55		-0.74	지 않는 수 있는 것이 같이 같이 같이 같이 같이 않는 것이 같이 않는 것이 같이 않는 것이 같이 했다. 말했다. 말했다. 말했다. 말했다. 말했다. 말했다. 말했다.	-1.39
1	37	2gr	$\delta > 11.0$	15.79	$-2.6^{+1.6}_{-5.3}$	-5.27	$-6.7 < \delta < 55.5$	-4.48
7	5_{γ}	4gr	< 8; > -14.0	10.34	$\delta < 62.7$	-2.72	$-5.5^{+2.1}_{-6.1}$	-2.54
Ì	7_{γ}	6gr	7.2(10)	6.9		-2.13		-1.76
	9,	8gr	7.0(12)	5.84		-1.65	τ	-1.31
	11_{γ}	10_{gr}	$\delta > 0.0$	5.01		-1.33		-1.13
Ì	3.	4gr	-0.05(5)	9.73	$-11.7 < \delta < 10.4$	-5.41	$-5.4^{+3.2}_{-2.5}$	-3.63
1	5.	6gr	$\delta > 10.0$	6.11	$-3.9^{+1.5}_{-4.1}$	-2.6	요즘 바늘 것 같은	-2.31
5	7.	8 _{gr}	5(8)	4.72	<u> </u>	-1.95		-1.72
Ì	4γ	37	200 - - 200 -	-0.77	$ \delta = 1.2^{+0.9}_{-0.6}$	-0.67	WE SALE STRUCT	-0.60
	5_{γ}	47		-0.75	$ \delta = 1.2^{+0.9}_{-0.6}$	-0.66		-0.59
	6_{γ}	5_{γ}	<u> </u>	-0.70	$ \delta = 0.67^{+0.36}_{-0.30}$	-0.63	- 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19	-0.59

7.

Таблица 2

Структура состояний 162 Dy												
I		201 P.L	1 -1 	gr	11 - Cal		β					
1	gr	β	1	12	13	γ	gr	β	1+	12	13	γ .
2	.99999	.0014 .	.0065	.0054	.0051	.0010	0029	.9882	.1128	.0751	.0678	0222
4	.9998	.0046	.0121	.0099	.0094	.0038	0086	.9662	.1799	.1220	.1106	0832
6	.9996	.0096	.0178	.0147	.0139	.0082	0156	.9385	.2185	1.1511	,1376	1716
.8.	.9991	.0163	.0240	.0198	.0187	.0140	0225	9044	.2334	.1641	.1499	2788
10	.9984	.0249	.0307	.0253	.0240	.0215	0280	.8624	.2308	.1644	.1506	3905
12	.9972	.0354	.0383	.0316	.0299.	.0306	0315	.8158	.2177	.1565	.1437	4909
14	.9954	.0485	.0470	.0388	.0367	.0419	0335	.7701	.2007	.1452	.1335	5715
16	.9926	.0645	.0572	.0472	.0447	,0558	0344	.7296	.1838	.1335	.1228	6323
18	.9882	.0843	.0694	.0573	.0543	.0728	0347	.6957	.1686	.1229	.1131	6771
20	.9813	.1091	.0843	.0696	.0660	.0941	0347	.6678	.1557		.1047	7104
•			γ		1.12-21	19.94		at se de la	- 1 A 1	+	<u></u>	121312
2	.0015	0155	0319	0241	0224	9988	0060	1103	.9928	0291	0219	0222
3		s 191 — 114.	0480	0363	0337	9976		· - ·	.9988	0072	0054	0476
. 4	.0059	0598	0707	0535	0497	9930	0093	1684	· .9784	0867	0644	0517
5	1. 1	·	0771	0585	0543	9938	$[\gamma_{i}\gamma_{i}] \longrightarrow [\gamma_{i}\gamma_{i}]$	-	.9969	0187	0141	0755
6	.0136	1277	-,1112	0845	0785	9787	0110	1947	.9608	1511	1104	0620
7		ar - 1 ~ .	1018	0774	0719	9892	. <u> </u>	$\gamma \rightarrow \gamma$.9943	0330	0249	0980
, 8	.0249	2131	1544	1179	1097.	9509	0115	2009	.9429	2087-	1502	0652
9	21 <u>— "</u> 1	1	1230	0938	0872	9841	10 — 10	• • • • • • •	.9914	0488	0366	1160
10	.0404	3038	1968	1513	1409	9081	0114	1974	.9267	2550	1813	0647
:11	10 - 1 0 -		1411	1079	1004	9790	200 	1. ju 1	.9882	0651	0486	1302
12	.0598	3856	2338	1810	1689	8554	0110	1899	.9128	2909	2048	0627
13	i	s.) 	1566	1202	1119	9739	. — ·	· · ·	.9848	0812	0603	1414
14	.0832	4505	2630	2052	1917	8013	0106	1814	.9013	3185	2225	0602
15			1701	1309	1220	9691	3- 22	- 11 	.9813	0968	0717	1501
16	.1111	4981	2846	2237	2094	7515	0101	1731	.8919	3399	2360	0576

8

e di National

9

Литература

- [1] Hartmann U. et al. Nucl. Phys. A465, 1987, p.25.
- [2] Riezebos H.J. et al. Nucl. Phys. A465, 1987, p.1.
- [3] Arima A., J. Phys. G: Nucl. Phys. N88,14 Suppl., 1988, S1.
- [4] Wesselborg C. et al. Phys. Lett., 207B, 1988, p.22.
- [5] Zilges A. et al. Nucl. Phys. A507, 1990, p.399.
- [6] Бриансон Ш., Михайлов И.Н., Усманов П.Н. ЯФ, т.50, 1989, с.52. Препринт ОИЯИ, Р4-87-889, 1987, Дубна.
- [7] Михайлов И.Н., Усманов П.Н. ЯФ, т.54, 1991, с.1238.
- [8] Громов К.Я., Исламов Т.А., Усманов П.Н. Изв. АН СССР, сер.физ., т.53, N5,1989, с.858.
- [9] Михайлов И.Н., Усманов П.Н., Охунов А.А., Бриансон Ш. Изв. АН СССР, сер.физ., т.56, N1, 1992, с.121. Препринт ОИЯИ, Р4-91-170, 1991, Дубна.
- [10] Saghirun Nisa Khan et al. J. Phys. G: Nucl. Phys., 1, 1975, p.727.
- [11] Kalish R., Herskind B., Hagemann G.B. Phys. Rev. C8, 1973, p.757.
- [12] Seiler Clark G. et al. Nucl. Phys. A399, 1983, p.211.
- [13] Бегжанов Р.Б. и др. Справочник по ядерной физики т.1,2, Ташкент, Фан, 1989.
- [14] Hungerford P. et al. J.Phys. G: Nucl.Phys., 6, 1980, p.741.
- [15] Mc Gowan F.K., Milner W.T. Phys.Rev. 1981, C23, p.1926.
- [16] Krane K.S. Nucl. Phys. A377, 1982, p.176.
- [17] Hooper H.R. Phys. Rev. C15, 1977, p.1665.
- [18] Kulessa R., Emling H., Grosse E., Simon R.S., Wollersheim H.J., Schwalm D., to be publ.

Рукопись поступила в издательский отдел 13 апреля 1992 года.