ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

H-429

К.Неергорд, В.В.Пашкевич, С.Фрауендорф

ОБОЛОЧЕЧНАЯ ЭНЕРГИЯ БЫСТРО ВРАЩАЮЩИХСЯ ЯДЕР.

4969/2-75

Формулировка модели и метод расчета

К.Неергорд, В.В.Пашкевич, С.Фрауендорф²

1

ОБОЛОЧЕЧНАЯ ЭНЕРГИЯ БЫСТРО ВРАЩАЮЩИХСЯ ЯДЕР.

Формулировка модели и метод расчета

Направлено в Nuclear Physics.

объединенный институт перных есслодованой БИБЛИЮТЕКА

Адрес с 1 сентября 1975 года: Институт ядерной физики. Центр по ядерным исследованиям, Юлих, ФРГ.

² Центральный институт ядерных исследований, Россендорф, ГДР.

1. Введение

Изучение оболочечных эффектов в быстро вращающихся ядрах /1,2/ важно для понимания свойств ядер в этой области фазового пространства, которая недавно стала доступной /3,4/ для экспериментального исследования.

В настоящей работе теория, развитая ранее /1/, применяется для изучения неаксиальной деформации во всем интервале возможных спинов в редкоземельных ядрах вблизи линии бета-стабильности. На важность учета неаксиальной деформации при больших спинах указывалось в работах Бора и Моттельсона /5,6/. Конкретная модель, используемая в этой связи, описана в разд. 2 и 3. Метод расчета оболочечной поправки и некоторые результаты его использования представлены в разд. 4 и 5.

В приложении проводится сравнение наших оценок с аналогичными выводами, сделанными в рамках модели вращаемого анизотропного гармонического осциллятора, для которой известно точное решение /7/.

Часть результатов, представленных здесь, была опубликована ранее /8/.

2. Формулировка модели

Для расчета оболочечных эффектов необходимо конкретизировать вид одночастичного потенциала \tilde{V} , "гладкой" части R-функции $\tilde{R}^{/1/}$ и форму ядра.

Практически невозможно рассматривать одновременно большое число параметров. Поскольку мы в особенности интересуемся проблемой трехосных деформаций, рассмотрим два параметра, описывающих произвольную эллипсоидальную форму. Такая форма однозначно характеризуется тремя главными полуосями R_i , i = 1-3. Предполагая сохранение объема, можно выразить R_i через обычные параметры β и γ :

$$R_{i} = R_{0}(\beta, \gamma) \left(1 + \sqrt{\frac{5}{4\pi}}\beta \cos(\gamma - i\frac{2\pi}{3})\right), \qquad /1/$$

где R₀ дается соотношением

 $R_1 R_2 R_3 = Ar_0^3$, $r_0 = 1,225 \phi epmu$. /2/

Ограничимся рассмотрением таких конфигураций, в которых спин \vec{l} параллелен оси 1. Тогда из симметрии задачи следует, что и угловая частота $\vec{\omega}$ должна быть параллельной той же оси и что обе величины можно считать скалярными. Энергия $E(\beta, \gamma, 1)$ будет симметричной относительно линии $\sin(\gamma - 2\pi/3) = 0$ в $\beta - \gamma$ плоскости, так что интересной областью изменения параметра γ является $\frac{1}{9}$

 $-\pi/3 < \gamma < 2\pi/3$.

Оболочечные поправки выражаются /1/ через собственные значения оператора

 $\mathbf{r} = \mathbf{t} - \vec{\mathbf{j}} \cdot \vec{\omega} + \hat{\mathbf{V}}, \qquad /4/$

где t - одночастичная кинетическая [†]энергия, а \vec{j} - одночастичный угловой момент.

Остается выбрать разумные выражения для $R(\beta, \gamma, \omega)$ н $\tilde{V}(\beta, \gamma, \omega)$. О зависимости \tilde{V} от ω делается простейшее предположение, а именно, $\tilde{V}(\beta, \gamma, \omega) = \tilde{V}(\beta, \gamma, 0)$. Чтобы иметь возможность провести численные расчеты для трехосных форм, в качестве $V(\beta, \gamma, 0)$ было выбрано выражение Нильссона с учетом ϵ_2 -деформации. Во втором члене в выражении /4/ ℓ_1 было заменено на "растянутую" величину ℓ_1^{ι} /ср. работу /10//. Тем самым матрица $r(\beta, \gamma, \omega)$ разделяется на подматрицы вдоль главной диагонали, максимальная размерность которых равна 55, когда включаются главные оболочки вплоть до N =9. Частоты гармонического осциллятора были выбраны следующим образом:

$$\omega_{i} = \frac{(R_{1}R_{2}R_{3})^{1/3}}{R_{i}} \vartheta$$
, $\vartheta = \frac{55}{A^{1/3}}$. /5/

Такое значение $\hat{\omega}$, которое на 35% больше обычного 41/A^{1/3} *МэВ*, было выбрано для того, чтобы обеспечить вогнутость/1/ $R(\beta, \gamma, \omega)$. В остальном мы используем обычные параметры для редкоземельной области /11/ $\kappa_{p,n_{\infty}} = 0,0637;$ $\mu_p = 0,6;$ $\mu_n = 0,42.$

Зависимость К от ω должна быть учтена. Действительно, ротационная энергия составляет основную часть энергий при больших спинах. Форма зависимости была выбрана следующей:

$$\widetilde{R}(\beta, \gamma, \omega) = \bigcup_{L D} (\beta, \gamma) - \frac{1}{2} J_{rig}(\beta, \gamma) \omega^{2}, \qquad /6/$$

что эквивалентно

/3/

$$\widetilde{E}(\beta, \gamma, I) = \widetilde{R}(\beta, \gamma, \omega) + \omega I = U_{LD}(\beta, \gamma) + \frac{I^2}{2J_{rig}(\beta, \gamma)}, \qquad /7/$$

где *w* получено из выражения /1/

 $\widetilde{I}(\beta,\gamma,\omega) = I.$ /8/

Здесь $J_{rig}(\beta, \gamma)$ означает момент инерции относительно 1-ой оси однородного эллипсонда с главными полуосями, даваемыми уравнением /1/, т.е.

$$J_{rig}(\beta, \gamma) = \frac{1}{5} AM(R_2^2 + R_2^2)$$
, /9/

где М – масса нуклона, $M c^2 = 939,15 M \mathcal{B}.$

Энергия жидкой капли была разложена $^{/12/}$ по степеням β вплоть до третьего порядка,

4

$$U_{\rm LD}(\beta,\gamma) = (16 \, \textbf{M} \cdot \textbf{3} \, \textbf{B}) + A^{2/3} \left[\frac{2}{5}(1-x) \left(\sqrt{\frac{5}{4\pi}}\beta\right)^2 - \frac{4}{105}(1+2x)\left(\sqrt{\frac{5}{4\pi}}\beta\right)^{\cdot 3}\cos 3\gamma\right], \qquad /10/$$

 $x = \frac{1}{45} z^2 / \Lambda \, .$

В принципе, выражение /7/ для "гладкой" энергин идентично тому, которое рассматривалось при изучении различных классических моделей /см. работу /13/ и ссылки в ней/. В табл. 1 результаты для вращающегося основного состояния классического ядра, полученные на основе формул /9/ и /10/, сравниваются с соответствующими результатами работы $^{/13/}$. Видно, что наша простая классическая модель воспроизводит результаты более детальных вычислений с хорошей точностью. Особенно следует отметить согласие в критических спинах I_1 и I_{11} /определение этих величин дано в работе $^{/13/}$.

3. "Гладкий" угловой момент в модели Нильссона

При определении R-функции^{/1/} подразумевается, что она является вогнутой функцией $\vec{\omega}$. В нашем случае это означает, что должно выполняться соотношение

 $\frac{\partial I(\beta, \gamma, \omega)}{\partial \omega} \geq 0.$ /11/

Оболочечная часть углового момента /1/,

$$I_{sh}(\beta, \gamma, \omega) = \sum_{i} \sum_{i} \langle j_{1} \rangle_{i}, /12/$$
по протонам $\epsilon_{i} \langle \lambda$
и нейтронам
а также и "гладкая" часть /1/,

 $\widetilde{I}(\beta, \gamma, \omega) = J_{rig}(\beta, \gamma) \omega, \qquad /13/$

				Табли	ta 1		
н	Haua M	одел	<u>م</u> لا	ررا	a) Pa(50Ta/13/	1
	3		رئا	(Mab)	, C	ج	(MaB)
20	0,03	I	60	2,6	0 , 04	- 60	2.6
4C	U,II	1	60	I0,2	0,14	- 60	10.2
<u>60</u>	0,23	I	60	22,0	0,30	- 60	22.8
70	0,30	1	60	29 , I	C,4I	- 60	30.3
80	0,40	1	43	37,0	0,5I	- 60	38.6
60	нестаби	илен			нестабиле	Н	
, ⊢ 1 4 , ,	1	62				80.7	
H	×	30,	06 ≻			85,7	
B pao	а) Получ оте/13/и	нены 1 ура	На ОСНО. ВНЕНИЯ	ве главных (I).	полуосей,	приведенн	IJX

7

1

「日本」の「日本」の「日本」

~ 私大部

ł

удовлетворяют этому условию. Однако полный угловой момент дается выражением

$$I = I_{sh} - \tilde{I}_{sh} + \tilde{I}, \qquad /14/$$

где

$$I_{sh}(\beta, \gamma, \omega) = \sum_{i=1}^{\infty} \sum_{i=1}^{\infty} \widetilde{n}_{i} \leq j_{1} \geq_{i}.$$
 /15/
πο протонам

и нейтронам

Здесь \tilde{n}_i - "гладкие" числа заполнения $^{/14/}_{O}$. Вычисляя \tilde{l}_{sh} в модели Нильссона с $\omega = 41 A^{-1/3}$ МэВ, мы заметили, что с хорошей точностью

$$\tilde{I}_{sh}(\beta, \gamma, \omega) = \tilde{J}_{sh}(\beta, \gamma) \omega,$$
 /16/

где $J_{sh} = 1,30 J_{rig}$ /см. рис. 1/. Следовательно, когда производные I_{sh} довольно близки к нулю, условие вогнутости может нарушиться.

В наших вычислениях вогнутость $\Re(\beta, \gamma, \omega)$ была восстановлена повышением на 35% значения ω , т.е. использовалось $\omega = 55/\Lambda^{1/3} M_{3}B$, как это рекомендовано в /14/, что пропорционально уменьшает значение J_{sh} . Следует подчеркнуть, однако, что такой выход из положения следует считать крайней мерой. Существование такой проблемы в сильной степени указывает на необходимость использования более реалистического потенциала, как например, потенциала типа Вудса-Саксона.

Расхождение между J_{sh} , полученным в потенциале Нильссона, и твердотельным моментом инерции, как это можно проследить, связано с присутствием зависящего от скорости члена с $\vec{\ell}^2$ в потенциале Нильссона. Известно /6/, что в локальном потенциале приближение Томаса-Ферми, обобщенная форма которого является хорошим приближением /15-18/ для "гладкой" части плотности в оболочечной модели, дает уравнение /16/ с \tilde{J}_{sh} , равным моменту инерции распределения Томаса-Ферми. Рассмотрим, однако, потенциал, составленный из локального потенциала плюс член с $\vec{\ell}^2$,

Рис. 1. График зависимости I_{sh} от ω в пяти различных моделях: 1. Гармонический осциллятор в приближении, когда ℓ_1 заменено на ℓ_1 /см. текст/. 2. Как в пункте 1, плюс спин-орбитальное взаимодействие Нильссона. 3. Как в пункте 2,плюс член с ℓ^2 . 4. Полный потенциал Нильссона, как в работе /11/. 5. Точное выражение для гармонического осциллятора. Все расчеты проведены для 1^{50} Gd с β = 0,133 и γ = -60°. Штрих-пунктирной линией показана функция $J_{rig} \cdot \omega$, пунктир - функция $I_{sh}(\omega)$ в модели 4. /При γ =- 60° это ступенчатая функция/.

8

$$V_{\vec{\ell}^2} = - \overset{\circ}{\omega} \kappa \mu \vec{\ell}^2.$$
 /17/

Эта добавка может быть представлена перенормировкой массы нуклона, входящей в момент инерции, в направлении, перпендикулярном \vec{r} . Соответствующая эффективная масса $M^*(\vec{r})$ равна

$$\frac{1}{M^{*}(\vec{r})} = \frac{1}{M} - 2\omega \kappa \mu \vec{r}^{2}.$$
 /18/

Эта эффективная масса определяет сдвиг среднего момента, наведенный вращением /6/ в точке г. Следовательно, приближение Томаса-Ферми дает в этом случае

$$\vec{J}_{sh} = \int M^*(\vec{r}) \,\rho(\vec{r},\omega) \,(x_2^2 + x_3^2) \,dr \,.$$
 (19/

Эта величина превышает соответствующую величину в потенциале без члена с ℓ^{2} ,

$$(\tilde{J}_{sh})_{\mu=0} = M \int \rho_{\mu=0} (r, \omega) (x_2^2 + x_3^2) d\tau,$$
 /20/

хотя соответствующие распределення $\rho(\vec{r}, \omega)$ и $\rho_{\mu=0}(\vec{r}, \omega)$ приблизительно равны между собой. В действительности, как включение члена с $\vec{\ell}^2$, так и конечное значение ω меняют среднеквадратичный раднус только на несколько процентов./Мы благодарны С.Нильссону за полезное обсуждение этого вопроса/. Пренебрегая этими малыми изменениями и используя распределение $\rho_{\mu=0}(\vec{r}, \omega)$ сферического гармонического осциллятора в обеих формулах /19/ и /2O/, получаем

$$\tilde{J}_{sh}/(\tilde{J}_{sh})_{\mu} = 0 = 1.76$$

что действительно близко к "эмпирическому" отношению ≈ 1,9, следующему из рис. 1.

Из рис. 1 видно также, что включение члена $^{/11/}$ с < ℓ^2 > уменьшает расхождение на 70%. Вклад в \tilde{J}_{sh} спин-орбитального члена мал.

4. Детали численных расчетов и точность вычислений

Вычисления выполнялись следующим образом. Во-первых, в каждой точке координатной сетки в β - γ плоскости рассчитывались величины $^{1/}$ I(β , γ , ω) и E(β , γ , I(β , γ , ω)) при значениях ω , равных $\omega/\tilde{\omega}$ = = 0,00; 0,03; 0,06; 0,08; 0,10 и 0,12. Затем для того, чтобы получить величину E(β , γ , I) при заданном значении I, проводилась интерполяция между рассчитанными точками с учетом соотношения /6/ работы $^{/1/}$. Окончательно интерполяция проводилась между точками координатной сетки по β и γ .

Координатная сетка в $\beta - \gamma$ -плоскости была выбрана с постоянным шагом по β , $\Lambda\beta = 1/30$. Рассматривались три интервала по β , в каждом из которых шаг по γ выбирался постоянным, свой для каждого интервала, как это указано в табл. 2.

В вычислениях по методу Струтинского учитывались протонные и нейтронные уровни из больших оболочек вплоть до N = 9. Параметр сглаживания выбирался равным $1,0\overset{\circ}{\omega}$; учитывалась поправка на кривизну до 6-го порядка включительно. Качество плато для δR и $\delta 1$ оказалось таким же хорошим, как и в случае малых $\omega^{/19/.}$

Рассматривалось также влияние включения большой оболочки с N =1O. Максимальная поправка доходила до \approx 0,5 *МэВ* в δR и \approx 1 для δI .

Таблица	2
---------	---

Интервал	Интервал	llar
по В	по 🏠	по 🏌
·	<u>(°)</u>	(°)
0,000 - 0,167	(-60) - 30	18
0,200 - 0,567	$(-60) - 22\frac{I}{2}$	$7\frac{I}{2}$
0,600 - 0,900	(-28) - 8	4

5. Модификация классической энергии деформации оболочечной поправкой

Как и в случае без вращения, оболочечная поправка существенно меняет поведение энергии деформации, полученной в классической модели. Это иллюстрируется рис. 2.

При рассмотрении эффективной оболочечной поправки, т.е. разности между полной энергией и ее классической частью, которые даны на рисунке, видно, что для трех показанных значений l области положительной и отрицательной оболочечной энергии остаются в основном одними и теми же. Единственное исключение составляет область вокруг $\beta = 0$. Здесь большая положительная оболочечная энергия невращающегося ядра плавно уменьшается с ростом l в результате ослабления сильной вырожденности одночастичного спектра при $\omega = 0$, и при l = 80 оболочечная энергия сферического ядра даже слегка отри-

Рассматривая "рельеф" более подробно, наблюдаем, однако, некоторые изменения в оболочечной энергии. Эти вариации, хотя и относительно малые, оказываются решающими при подробном обсуждении различных минимумов в энергии деформации. Отметим, например, что абсолютный минимум движется в направлении меньших значений β и больших значений γ , когда I возрастает от 10 до 40. При постоянной оболочечной энергии минимум двигался бы в прямо противоположном направлении вследствие роста классической центробежной силы.

Отметим также меняющуюся глубину и почти постоянное положение "сплюснутого" минимума в случае $\beta \approx 0,5$. При постоянной оболочечной энергии минимум, который получается в результате разреза вдоль "сплюснутой" осн, с ростом I становился бы все более глубоким и слегка передвигался бы в направлении больших β .

6. Заключение

На основе общей теории сформулирована модель для изучения формы быстро вращающегося ядра с учетом

12

легко видеть, что точки $\beta - \gamma$ -плоскости, в которых спектр последовательно оказывается одним и тем же при растущих значениях ω , движутся по направлению к оси симметрии $\sin(\gamma - 2\pi/3) = 0$, причем движение происходит приблизительно вдоль прямой линии, перпендикулярной этой оси. Ось симметрии достигается при

$$\omega = \frac{1}{2} (\Omega_2 - \Omega_3) \approx \hat{\omega} \sqrt{\frac{15}{16\pi}} \beta_0 \sin(\gamma_0 - 2\pi/3) .$$
 /25/

Таким образом, поверхность оболочечной поправки при любом конечном значении ω получается из поверхности при $\omega_{c} = 0$ просто непрерывным отображением плоскости $\beta - \gamma$ на себя, при этом каждая точка приближается к оси симметрии и исчезает на ней при определенном значении ω . В частности, таким же будет поведение любого локального минимума. Классическая часть R добавит легкое центробежное растяжение. функции /1/ В конечном счете, из общих свойств преобразования Лежандра следует, что непрерывное движение минимумов с ростом I будет обладать такой же тен- $E(\beta, \gamma, I)$ денцией, как и движение минимумов $R(\beta, \gamma, \omega)$ с ростом ω . Таким образом, непрерывное движение минимумов энергии деформации, получаемое в модели гармонического осциллятора, всегда будет состоять из наложения приближения к оси симметрии и легкого центробежного растяжения. Очевидно, что наши результаты, полученные в модели Нильссона, существенным образом, качественно отличаются от такой картины.

Литература

- 1. К.Неергорд, В.В.Пашкевич, С.Фрауендорф. Препринт ОИЯИ, Р4-9194, Дубна, 1975.
- 2. R.Bengtsson, S.E. Larsson, G.Leander, P.Møller, S.G.Nillson, S. Aberg, Z.Szymanski. Preprint, June, 1975.
- 3. M.V.Banashik, R.S.Simon, P.Colombani, D.P.Soroka, F.S.Stephens, R.M.Diamond. Phys.Rev.Lett., 34, 892 (1975).
- 4. G.B.Hagemann, R.Broda, B.Herskind, M.Ishikara, S.Ogaza, H.Ryde. Nucl. Phys., A245, 166 (1975).

- 5. B.R.Mottelson. Proc. Nuclear Structure Symp. of the Thousand Lakes, Joutsa, 1970 (Dept. of Phys., Univ. of Jyvaskyla, Res. Rep. 4/1971), part II, p. 148.
- 6. A.Bohr, B.R.Mottelson. Nuclear Structure, vol. 1, (Benjamin, New York, 1969), vol. II (in press).
- 7. J.G. Valatin. Proc. Roy. Soc. (London), 238, 132 (1956).
- 8. К. Неергорд, В. В. Пашкевич. ОИЯИ, Р4-8947, Дубна, 1975.
- 9. И.Н. Михайлов. Сообщения ОИЯИ, Р4-7862, Дубна, 1974.
- 10. S.G.Nilsson. Mat. Fys. Medd. Dan. Selsk. Vid., 29, 16 (1955). См. перевод в сб."Деформация атомных ядер", ИЛ, М., 1958, стр. 232.
- 11. C.Gustafson, I.L.Lamm, B.Nilsson, S.G.Nilsson. Arkiv for Fysik, 36, 613 (1966).
- 12. N.Bohr, J.A. Wheeler. Phys. Rev., 56, 426 (1939).
- 13. S.Cohen, F.Plasil, W.J.Swiatecki. Ann. Phys., 82, 557 (1974).
- 14. M.Brack, J.Damgaard, A.S.Jensen, H.C.Pauli, V.M.Strutir.sky, C.Y.Wong. Rev. Mod. Phys., 44, 320 (1972).
- 15. А.С. Тяпин. ЯФ, 11, 98 /1970/.
- 16. R.K.Bhaduri, C.K.Ross. Phys.Rev.Lett., 27, 606 (1971).
- 17. А.С.Тяпин. ЯФ, 14, 88 /1971/.
- 18. B.K. Jennings. Nucl. Phys., A207, 538 (1973).
- 19. В.В.Пашкевич, С.Фрауендорф. ЯФ, 20, 1122 /1974/.

Рукопись поступила в издательский отдел 24 сентября 1975 года.