ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

Л.И.Пономарев, И.В.Пузынин, Т.П.Пузынина

квазистационарные состояния *и*-мезомолекул водорода

M-563

11 11 11

.....

166712-45

P4 - 9183

Л.И.Пономарев, И.В.Пузынин, Т.П.Пузынина

1

квазистационарные состояния *µ*-мезомолекул водорода

Направлено в ЖЭТФ

BUICA		۱
Salidebre .	. CLUQOBGREA	
6HIL	mic i ErtA	J

1. В работе ^{/1/} авторами вычислены все стационарные состояния µ-мезомолекул с ядрами изотопов водорода. Вычисления были проведены ваднабатическом представлении задачи трех тел с кулоновским взаимодействием ^{/2/} и, в конечном итоге, сводились к решению задачи Штурма-Лиувилля для связанной системы уравнений

1

$$\frac{d^{2}\chi_{i}}{dR^{2}} + 2M \left[E - \frac{L(L+1)}{2MR^{2}} - V_{ii}(R)\right]\chi_{i} = \sum_{j \neq i} V_{ij}(R)\chi_{j}$$

$$/1/$$

$$(i,j) = (1,2), \quad \chi_{i}(0) = 0, \quad \chi_{i}(R) \underset{R \to \infty}{\sim} exp\{-\left[2M(V_{ii}(\infty) - E)\right]^{1/2}\}.$$

Здесь: М = $(1/m_{\mu} + 1/(M_{f}M_2))(1/M_1 + 1/M_2)^{-1}$ - эффективная масса системы трех тел, Е - искомая энергия системы, а V_{ij}(R) - эффективные потенциалы, вычисленные ранее /3/, и способ построения которых изложен в работе /1/ При этом выполняется неравенство:

$$\mathbf{E} < \mathbf{V}_{11}(\infty) \leq \mathbf{V}_{22}(\infty).$$
 /2a/

2. Квазистационарные уровни мезомолекул с разными ядрами расположены в области значений

 $V_{11}(\infty) < E < V_{22}(\infty).$ /26/

В случае мезомолекул с равными ядрами, когда $V_{11}(\infty) = = V_2(\infty)$, значения Е расположены в интервале

3

$$0 < E \leq \left[\frac{L(L+1)}{2MR^2} + V_{ii}(R) \right]_{max}$$
, $R > R_2$, /2B/

т.е. не превышают высоты центробежного барьера. Типичная ситуация этого типа изображена схематически на *рис.* 1.

В общем случае /26/ асимптотика решений /1/ в открытом и закрытом каналах соответственно имеет вид:

$$\chi_{1}(\mathbf{R}) \sim \sin(\mathbf{kR} - \frac{\pi \mathbf{L}}{2} + \delta_{\mathbf{L}}(\mathbf{k}))$$

$$\chi_{2}(\mathbf{R}) \sim \exp\{-[2\mathbf{M}(\mathbf{V}_{22}(\infty) - \mathbf{E})]^{1/2}\}$$
/3/

$$\mathbf{k}^{2} = 2\mathbf{M}[\mathbf{E} - \mathbf{V}_{11}(\infty)].$$

Существует несколько определений квазистационарных состояний в квантовой механике^{/4/}, области применимости которых несколько различаются. Не входя в детали этого довольно сложного вопроса, примем в дальнейшем следующее определение:

$$\delta_{\rm L}({\rm k_0}) = \pi ({\rm n} + 1/2),$$
 /4/

где п - целое число, равное числу нулей $\chi_1(\mathbf{R})$ в области действия потенциала $V_{11}(\mathbf{R})$, а k $_0$ соответствует действительной части E_0 комплексной энергии квазистационарного уровня

$$E = E_0 - i\frac{\Gamma}{2}$$
, $k_0^2 = 2ME_0$. /5/

Ширину Γ квазистационарного уровня также можно определить несколькими способами, различие между которыми несущественно в пределе $\Gamma \rightarrow 0$. Мы используем определение _

$$\Gamma = \frac{k}{M} / \int_{0}^{R} \chi_{1}^{2}(R) dR , \qquad /6/$$

которое следует из формул монографин^{4/}. При этом функция $\chi_1(\mathbf{R})$ при $\mathbf{R} \to \infty$ нормирована на единичную амплитуду

условием /3/. Значение \bar{R} выбирается вобласти $R_3 \leq \bar{R} \leq R_0$ /см. *рис.* 1/, где $\chi_1(R)$ экспоненциально мала, и поэтому точное знание \bar{R} несущественно. Приведенные результаты соответствуют выбору $\bar{R} = R_0$.

При вычислениях была использована схема CAMEN, которая подробно изложена в работе^{/5/}и является дальнейшим развитием непрерывного аналога метода Ньютона для нахождения стационарных состояний уравнения Шредингера^{/6/}.

3. Результаты вычислений квазистационарных состояний μ -мезомолекул водорода представлены в *табл.* 1. В случае мезомолекул с разными ядрами энергия Е квазистационарных состояний отсчитывается от основного состояния мезоатома с ядром более тяжелого изотопа водорода, т.е. от уровия мезоатома $d\mu$ для мезомолекулы $pd\mu$, и от уровня мезоатома $t\mu$ в случае мезомолекул $pt\mu$ и $dt\mu$. Это соглашение эквивалентно условию $V_{11}(\infty)=0$.

Кроме энергий E_0 и ширин Γ в *табл.* 1 приведена максимальная амплитуда решения $\chi_1(R)$ в области действия потенциала, которая также может служить характеристикой "квазистационарности" уровня, поскольку она растет ~ $(\Gamma)^{-\frac{1}{2}/4}$ Все найденные квазистационарные уровни яв ляются следствием существования центробежного барьера в эффективных потенциалах

$$U_{ii}(R) = \frac{L(L+1)}{2MR^2} + V_{ii}(R)$$
 и потому

имеют значительную ширину. Они определяют резонансное поведение сечений упругого рассеяния мезоатомов. Например, существование уровня L=2, n=0, E₀=55,6 эB, Γ = 35 эB в мезомолекуле pdµ приводит к резонансу в сечении рассеяния dµ +p⁷⁷, уровень L=2, n=1, молекулы ^ttµ - к резонансу в сечении реакции tµ+t⁸ и т.д.

Отметни, что разработанный метод вычисления квазистационарных состояний квантовой системы может быть использован также в других областях физики.

В заключение авторам приятно поблагодарить С.С.Герштейна за постоянное внимание к работе и об-

суждения, Л.Н.Сомова - за помощь в проведении вычислений.

Таблица I Характеристики квазистационарных состояний мезомолекул

BO KODO KA

	L	n	E.(,B)	Г(•В)	$I_{max} = I_1(\bar{R}) $	R
ddu	3	0.	37,2	7,9	2,22	4,7
ttµ	2	I	4,5	I,I	2,74	6,3
pdu	2	0	55,6	35	I,38	4,7
рtл	2	0	44,9	24	I,47	4,6
dtµ	3	0	25,2	2,9	3,47	4,2

Значения Е. и Г приведены в эВ. Переход к единицам задачи $e = t = m_a = 1$ осуществлялся с помощью соотношения $E_o(>B) = E(e_3) \cdot d$, где $d = \frac{m_A(M_a + M_b)}{m_E(M_a + M_b)} \cdot 27, 211652 \cdot 3B$. При вычислениях использованы следующие значения масс /9/: $m_e = I$, $m_A = 206,769$, $M_p = I836, I09$, $M_d = 3670,398$, $M_t = 5496,753$.

Энергии уровней отсчитываются от основного состояния изолированного мезоатома с ядром более тяхелого изотопа. Значение \mathscr{S}_{max} равно максимальной амплитуде функции $\mathscr{S}_{4}(R)$ при нормировке на единичнур амплитуду при $R \to \infty$:

$$J_{j}(R) \xrightarrow{R \to \infty} \sin\left(k_{*}R - \frac{\pi L}{2} + \delta_{L}(k_{*})\right)$$

6

7

- 1. Л.И.Пономарев, И.В.Пузынин, Т.П.Пузынина. . ЖЭТФ, 65, 28, 1973.
- 2. Н.Ф. Мони, Г.Ю. Мэсси. "Теория аномных сполкновений", М., Мир, 1969. 3. Л.И.Пономарев, Т.П.Пузынина. ОИЯИ, Р4-3405,
- Дубна, 1967; P4-5040, Дубна, 1970.
- 4. А.И.Базь, Я.Б.Зельдович, А.М.Переломов. "Рассеяние реакции и распады в нерелятивистской квантовой механике", М., Наука, 1971.
- 5. Л.И.Пономарев, И.В.Пузынин, Т.П.Пузынина. ОИЯИ, P4-8884, Дубна, 1975.
- 6. L.I. Ponomarev, I.V. Puzynin, T.P. Puzynina. J. Comp.
- Рһуѕ., 13, 1 (1973). 7. А.В.Матвеенко, Л.И.Пономарев, М.П.Файфман. ЖЭТФ, 68, 437, 1975.
- 8. А.В.Матвеенко, Л.И.Пономарев. ЖЭТФ, 58, 1640, 1970.
- 9. B.N. Taylor, W.H. Parker, D.N. Landenberg. Rev. Mod. Phys., 41, 375 (1969); И.П.Селинов. "Изотопы", 3. Наука, 1970.

Рукопись поступила в издательский отдел 22 сентября 1975 года.