

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

P4-90-490

1990

Р.Р.Сафаров*, А.И.Вдовин

МАГНИТНЫЕ МОМЕНТЫ ВИБРАЦИОННЫХ СОСТОЯНИЙ СФЕРИЧЕСКИХ ЯДЕР

*Институт ядерной физики АН УзССР, Ташкент

Недавно в работе^{/1/} исследовалось влияние на магнитные моменты низколежащих квадрупольных состояний четно-четных изотопов Sn μ (2_i^+) взаимодействия вибрационных и неколлективных (двухквазичастичных) степеней свободы в рамках квазичастично-фононной модели ядра (KФМ)^{/2-4/}. При этом учитывалась перенормировка μ за счет смещивания различных однофононных компонент в структуре соответствующего состояния, а также из-за магнитной поляризации остова, связанной с двухфононными компонентами волновых функций, в которые входят резонансные М1-фононы. Было получено удовлетворительное согласие с экспериментальными данными.

В соседних четно-четных изотопах Те и Сd картина поведения $\mu(2_1^+)_{3 \times C \Pi}$. отличается от изотопов Sn (см. последнюю компиляцию $\frac{5}{5}$). Главной отличительной чертой является то, что величины $\mu(2_1^+)_{3 \times C \Pi}$. Ти постоянны вдоль цепочек изотопов, т.е. не наблюдается резких изменений величин и тем более знаков $\mu(2_1^+)_{3 \times C \Pi}$. с изменением числа нейтронов, как это имеет место в изотопах Sn.

Возникает вопрос, описывает ли КФМ значения $\mu(2^+_1)$ в ядрах с сильно коллективизированными состояниями (типа Те и Cd) с той же степенью точности, что и в изотопах Sn. Изучению этой проблемы и посвящена,главным образом,настоящал работа.

Как и в $^{/1/}$, модельную волновую функцию четно-четного сферического ядра будем искать в виде

$$\Psi_{\Psi} (JM) = \{ \sum_{i}^{\Sigma} R_{i} (JV) Q'_{JMi} +$$

$$+ \sum_{\lambda_{1}i_{1}}^{\Sigma} P_{\lambda_{2}i_{2}}^{\lambda_{1}i_{1}} \{ Q_{\lambda_{1}\mu_{1}i_{1}}^{+} Q_{\lambda_{2}\mu_{2}i_{2}}^{+} \}_{JM} \} \Psi_{0},$$

$$+ \sum_{\lambda_{2}i_{2}}^{\Sigma} P_{\lambda_{2}i_{2}}^{\lambda_{1}i_{1}} \{ Q_{\lambda_{1}\mu_{1}i_{1}}^{+} Q_{\lambda_{2}\mu_{2}i_{2}}^{+} \}_{JM} \} \Psi_{0},$$

$$= \sum_{\mu_{1}\mu_{2}}^{\Sigma} \langle \lambda_{1}\mu_{1} \lambda_{2}\mu_{2} | JM \rangle Q_{\lambda_{1}\mu_{1}i_{1}}^{+} Q_{\lambda_{2}\mu_{2}i_{2}}^{+} ,$$

$$(1)$$

$$Q_{\lambda\mu i}^{+} = \frac{1}{2} \sum_{j_{1} j_{2}} \psi_{j_{1} j_{2}}^{\lambda i} \left[a_{j_{1} m_{1}}^{+} a_{j_{2} m_{2}}^{+} \right]_{\lambda\mu} - (-1)^{\lambda-\mu} \phi_{j_{1} j_{2}}^{\lambda i} \left[a_{j_{2} m_{2}}^{-} a_{j_{1} m_{1}}^{-} \right]_{\lambda-\mu}, \qquad (2)$$

$Q_{\lambda \dot{\mu} i} \Psi_0 = 0.$

В (1), (2) использованы следующие обозначения: $Q_{\lambda\mu i}^{+}$, $Q_{\lambda\mu i}^{-}$ операторы рождения и уничтожения фонона с моментом λ , его проекцией μ и номером i; a_{jm}^{+} , a_{jm}^{-} операторы рождения и уничтожения квазичастицы на уровне среднего поля с квантовыми числами j; $m \equiv n \ell j; m$; квадратные скобки означают связь угловых моментов; Ψ_0^{-} волновая функция основного состояния четно-четного ядра.

Волновую функцию (1) можно использовать для описания структуры состояния, главная компонента которого — однофононная, в тех ядрах, где взаимодействие фононов не слишком сильно. Это, как правило, низколежащие (до 3-4 МэВ) состояния полумагических ядер. В соседних же ядрах такая волновая функция описывает спектр и структуру возбужденных состояний куже, чем в полумагических (например, нельзя воспроизвести расщепление двухфононного триплета). Для более корректного описания таких эффектов нужно учитывать взаимодействие с трехфононными и более сложными компонентами. Поэтому в расчетах с волновой функцией (1) для изотопов Те и Cd мы ограничились рассмотрением только первых квадрупольных возбужденных состояний — 2_1^+ . Здесь можно надеяться, что влияние трехфононных и более сложных компонент будет не очень заметным.

Перейдем теперь к обсуждению полученных результатов, которое начнем с результатов, полученных в приближении случайной фазы (ПСФ). В этом случае выражение для магнитного момента состояния $Q_{21}^+ | 0 >$ четно-четного сферического ядра имеет вид

$$\mu (2_{1}^{+}) = \sqrt{\frac{20\pi}{3}} < 2210 \mid 22 > \sum_{j_{1} j_{2} j'} M_{j_{1} j_{2}}^{(1)} v_{j_{1} j_{2}}^{(+)} (-1)^{j_{1} - j_{2}} \times$$

(3)

$$\times \left\{ \begin{array}{ccc} 1 & 2 & 2 \\ \mathbf{J}' & \mathbf{J}_{2} & \mathbf{J}_{1} \end{array} \right\} (\psi_{i_{1}i}^{21}, \psi_{i'i_{2}}^{21} + (-1)^{j_{1}+j_{2}} \phi_{i_{1}i'}^{21}, \phi_{i'j_{2}}^{21}),$$

где $v_{j_1j_2}^{(+)}$ — билинейная комбинация коэффициентов преобразования Боголюбова, $M_{j_1j_2}^{(1)}$ — приведенный одночастичный матричный элемент магнитного дипольного оператора, в который входят гиромагнитные факторы нуклонов. Значения $\mu(2_1^+)$ для изотопов Те и Сd представлены в табл.1 и 2. Видно, что уже в ПСФ экспериментальные данные описываются неплохо. Величины $\mu(2_1^+)$ имеют положительные значения и не сильно меняются при переходе от одного изотопа к другому. Причина такого поведения в следующем. Состояния 2_1^+ в изотопах Cd и Te

Таблица 1. Магнитные моменты (в ед. магн. μ_0) 2^+_1 — состояний четных изотопов Те, рассчитанные в ПСФ и с учетом взаимодействия фононов

Ядро	ПСФ		Q ⁺ + Q ⁺ Q ⁺		Q ⁺		
	μ	μ /6/	μ ₁	μ2	$\mu = \mu_1 + \mu_2$	^{<i>µ</i>} эксп.	
¹²⁰ Te	0,68	0,82	0,64	-0,07	0,57	+0,58(6)	81
						+0,78(14)	_85
¹²² Te	0,58	0,64	0,56	-0,09	0,47	+0,66(4)	88
	•			,		+0.68(4)	85
						+0,72(4)	88
						+0,66(4)	81
						+0,56(11)	85
1 94							
Te	0,53	0,56	0,53	-0,12	0,41	+0,52(6)	81
						+0,56(6)	88
						+0,66(6)	88
						<u>+0,62(8)</u>	88
¹²⁶ Te	0.50	0 59	0.48	0 1 2	0.95	+0.68 (8)	95
	0,00	0,02	0,40	-0,15	0,55	+0,00(0)	90
						+0.38(6)	Q1
						.0,00(0)	01
¹²⁸ Te	0.51	0.52	0.45	-0.10	0.35	+0.50(6)	88
	- ,			-,		+0.62(8)	81
						+0,70(8)	85
1 90							
Te	0,57	0,62	0,48	-0,13	0,35	+0,58 (10)	88
						+0,58 (12)	83
						+0,66(16)	85

3

взаимодействия фононов							
Ядро	ПСФ		$Q^+ + Q^+Q^+$				
	μ	μ /8/	μ ₁	μ2	$\mu=\mu_1+\mu_2$	^µ эксп.	
¹⁰⁶ Cà	0,85	0,82	0,64	0,08	0,72	+0,80(20)	80
¹⁰⁸ Cd	0,97	0,88	0,71	0,06	0,77	+0,68 (18)	80
¹¹⁰ Cd	1,01	0,94	0,75	0,04	0,79	+0,57 (11) +0,62 (14) +0,56 (10)	80 79 78
¹¹² Cd	1,00	0,96	0,75	0,02	0,77	+0,64 (16) +0,72 (12)	80 79
¹¹⁴ Cd	0,92	0,94	0,69	0,05	0,74	+0,58(14) +0,60(8)	80 79
¹¹⁶ Cd	0,84	0,90	0,65	0,03	0,68	+0,60 (14)	80

Таблица 2. Магнитные моменты (в ед. магн. μ_0) 2^+_1 -состояний четных изотопов Cd , рассчитанные в ПСФ и с учетом взаимодействия фононов

являются коллективными. Значительный вклад в структуру 2_1^+ -состояний дают как нейтронные, так и протонные двухквазичастичные конфигурации. Рассмотрим сначала роль протонных конфигураций. Здесь главную роль играют конфигурация $(1g_{9/2} 1g_{9/2})_{\pi}$ в Сd и конфигурация $(2d_{5/2} 2d_{5/2})_{\pi}$ в Te, которые имеют большие значения амплитуд ψ и, следовательно, дают большой вклад в нормировку 2_1^+ -состояния (20-30%). Значения ψ меняются слабо при переходе от одного изотопа к другому в обеих цепочках изотопов. Магнитные моменты этих ведущих протонных двухквазичастичных компонент имеют большие положительные значения:

 $\mu \left(1 g_{9/2} \ 1 g_{9/2} \ \right)_{\pi} = + 2,26 \mu_{0}, \qquad \mu \left(2 d_{5/2} \ 2 d_{5/2} \ \right)_{\pi} = + 1,53 \mu_{0}.$

Если рассматривать нейтронные подсистемы, то основной вклад в структуру 2⁺-состояний дают конфигурации (1g_{7/2} 1g_{7/2}).

 $(1g_{7/2} 2d_{3/2})_{\nu}$, $(1h_{11/2} 1h_{11/2})_{\nu}$ для Cd и $(1h_{11/2} 1h_{11/2})_{\nu}$, $(1g_{7/2} 2d_{3/2})_{\nu}$, $(3s_{1/2} 2d_{3/2})_{\nu}$ для Te. При увеличении числа нейтронов в изотопах вклад их в структуру 2_1^+ -состояния меняется. Например, вклад конфигурации $(1g_{7/2} 1g_{7/2})_{\nu}$ меняется с 23% для 106 Cd до 3% для 116 Cd. Но из-за того, что $\mu_{q.p.}$ этих нейтронных конфигураций в несколько раз меньше, чем протонных, эти изменения не сильно отражаются на $\mu(2_1^+)_{nc\phi}$. Поэтому те изменения (~20%) величин $\mu(2_1^+)$ в ПСФ, которые происходят вдоль цепочек изотопов Te и Cd, связаны в основном с колебаниями вклада в структуру 2_1^+ -состояний протонных конфигураций.

Заметим, что для изотопов Sn наблюдалась обратная картина^{/1/}. Основную роль в формировании $\mu(2_1^+)_{nc\phi}$ в этих ядрах играли нейтронные двухквазичастичные компоненты, а роль протонных была не очень значительна. Именно за счет изменения вклада различных нейтронных конфигураций в структуру 2_1^+ -состояний в изотопах Sn и происходили сильные изменения величины $\mu(2_1^+)$.

Сравнивая результаты, полученные в ПСФ для обеих цепочек изотопов, хотелось бы отметить, что $\mu(2_1^+)$ в Сd получились заметно больше (в 1,5 — 2 раза), чем в Те. Экспериментальные значения $\mu(2_1^+)$ для этих изотопов близки.

Результаты других теоретических расчетов $^{/6/}$ также представлены в табл.1 и 2. Хотя эти расчеты были выполнены в более схематической модели, чем наша, они также предсказывают положительные величины магнитных моментов в 2_1^+ -состояниях, при этом тенденции в поведении $\mu(2_1^+)$ как функции A совпадают с нашими результатами.

Рассмотрим теперь, как влияют на $\mu(2_1^+)$ взаимодействие фононов и поляризация ядра. Согласно нашим расчетам для изотопов олова^{/1/}, примеси неколлективных квадрупольных фононов $Q_{2i}^+ \Psi_0$ (i > 1) в волновой функции нижайшего квадрупольного состояния Ψ_1 (2M) малы (R_i (21) << 1 для i >1). Эти примеси заметно влияют на $\mu(2_1^+)$ лишь в тех ядрах, где $\mu(2_1^+)_{nc\phi} \leq 0,1 \mu_0$. Как видно из наших расчетов в ПСФ, в изотопах Те и Сd значения $\mu(2_1^+)_{nc\phi}$ велики. Это позволяет нам ограничить наше фононное пространство нижайшим квадрупольным фононом $Q_{21}^+ \Psi_0$ и магнитными дипольными фононами $Q_{1i}^+ \Psi_0$ с энергиями $\omega_{1i} \leq 15$ МэВ. Последнее условие гарантирует вклад в поляризационное слагаемое всех 1⁺-состояний с большими вероятностями B(M1, $O_{g. s.}^+ +1_1^+)$.

Выражение для магнитного момента состояния (1) было получено в работе^{/1/}. При принятых нами ограничениях на число и типы фононов, включенных в волновую функцию возбужденного состояния, это выражение примет вид

5

$$\mu_{\rm J} = \langle \psi_1(22) | \mathfrak{M}(M10) | \psi_1(22) \rangle = \mu_1 + \mu_2, \tag{4}$$

где

$$\mu_{1} = \sqrt{\frac{20\pi}{3}} < 2210 | 22 > \sum_{j_{1}j_{2}J'} \mathbb{R}_{1}^{2}(21) \mathbb{M}_{j_{1}j_{2}}^{(1)} v_{j_{1}j_{2}}^{(+)} \times \\ \times (-1)^{j_{1}-j_{2}} \left\{ \frac{1}{J'} \frac{2}{j_{2}} \frac{1}{j_{1}} \right\} (\psi_{J_{1}J'}^{21} \psi_{J'J_{2}}^{21} + (-1)^{j_{1}+j_{2}} \phi_{j_{1}J'}^{21} \phi_{J'j_{2}}^{21}) ,$$

$$\mu_{2} = \frac{4}{3} \sqrt{\pi} < 2210 | 22 > \sum_{j_{1}j_{2}J'} \mathbb{R}_{1}(21) \mathbb{P}_{1i'}^{21}(21) \mathbb{M}_{j_{1}j_{2}}^{(1)} \times$$
(5)

 $\times \mathbf{u}_{j_{1}j_{2}}^{(-)}(\psi_{j_{1}j_{2}}^{1i'}-\phi_{j_{1}j_{2}}^{1i'}).$

Слагаемое μ_1 связано с перенормировкой магнитного момента $\mu(2_1^+)$, рассчитанного в ПСФ за счет взаимодействия фононов.

⁴Лен μ_2 отражает влияние на μ_3 связи низколежащих возбуждений с резонансными магнитными состояниями (магнитным дипольным резонансом). Другими словами, член μ_2 ответственен за магнитную поляризацию ядра.

Прежде чем перейти к обсуждению результатов, укажем, что схема и детали расчетов были такими же, как в рабсте¹¹. Константы квадрупольных сил определялись в каждом ядре таким образом, чтобы воспроизвести экспериментальные энергии 2^+_1 состояний с учетом взаимодействия фононов. Константа спин-изоспинового взаимодействия $\kappa_1^{(01)}$ была взята такой же, как в работе¹¹ для изотопов олова, так как отсутствует экспериментальная информация о M1-резонансах в Те и Cd. Наши расчеты показали, что вариация константы в пределах ~ 50% не приводит к существенным изменениям результатов.

Входящие в $\Re(M1\mu)$ гиромагнитные факторы нуклонов g_s и g_ℓ являются в нашей модели параметрами. Мы полагали их совпадающими, со значениями g_s и g_ℓ свободных нуклонов.

Результаты расчетов с учетом взаимодействия фононов представлены также в табл.1 и 2. Влияние первого эффекта на значения $\mu(2_1^+)$ изотопов Те невелико. Оно заметнее для изотопов Cd, это отражает факт усиления взаимодействия фононов для этих изотопов по сравнению с изотопами Te, из-за чего $\mathbb{R}^2(Cd) < \mathbb{R}^2(Te)$. Слагаемое μ_2 оказалось в целом одного порядка величины, как для изотопов Te, так и для изотопов Cd. С увеличением числа нейтронов μ_2 возрастает по модулю для изотопов Te и уменьшается для изотопов Cd. Это связано с изменением силы взаимодействия резонансных M1-состояний с низколежащими квадрупольными состояниями. Соответствующие матричные элементы ьозрастают по абсолютной величине в первом и уменьшаются во втором случае с увеличением числа нейтронов. Сам матричный элемент взаимодействия невелик U²¹₁₁(2¹) ~ ~ $\pm (0,06 \div 0,05)$ МзВ для обеих цепочек изотопов и его знак отражается на знаке μ_2 . Величины U²¹₁₁(2⁺), связывающие наиболее коллективные резонансные M1-состояния с 2⁺ состояниями, имеют положительные значения для изотопов Cd и отрицательные для изотопов Te.

Хорошо известно ⁷⁷⁷, что магнитные моменты коллективных состояний, согласно гидродинамической оценке, равны $\mu(J) = \frac{Z}{A}J$, и что наблюдаются сильные отклонения от этой оценки. Наиболее яркий пример — значения $\mu(2_1^+)$ в четно-четных изотопах Sn. Возникает вопрос: какова будет ситуация с другими коллективными состояниями, например, октупольными вибрациями? Экспериментальная информация о $\mu(3_1^-)$ практически отсутствует. Нам неизвестны и систематические теоретические расчеты $\mu(3_1^-)$. Единственное исключение — значение $\mu(3_1^-)$ в ¹¹⁶ Sn, рассчитанное в ⁶⁶⁷. Поэтому мы рассчитали $\mu(3_1^-)$ в изотопах ¹¹⁰⁻¹²²Sn в рамках КФМ. Схема и детали расчетов были такими же, как в работе^{/17} для $\mu(2_1^+)$, поэтому не будем здесь на них останавливаться.

Значения $\mu(3_1)$, выполненные в ПСФ, а также с учетом взаимодействия фононов, представлены в табл.3. Главную роль в формировании структуры 3_1^- состояния играют конфигурации $(2d_{5/2}lh_{11/2})_{\nu}$, $(1g_{7/2} lh_{11/2})_{\nu}$ и $(1g_{7/2}lh_{11/2})_{\pi}$, $(2p_{1/2} 2d_{5/2})_{\pi}$. Несмогря Ра то, что протонная оболочка в изотопах Sn замкнута и энергии нижайших протонных конфигураций с $J^{\pi} = 3^-$ больше 6 МэВ, их вклад в нормировку однофононных волновых функций 3_1^- состояний составляет ~20%. В структуре 3-состояний важную роль играют перехсды в соседнюю оболочку, в отличие, нагример, от 2_1^+ -состояний, где эсновной вклад в структуру дают переходы внутри валентной оболочкк (в частности, для изотопов Sn вклад от протонных конфигураций с $J^{\pi} = 2^+$ в пормировку 2_1^+ -состояния меньше 10%).

Магнитные моменты ведущих протонных частично-дырочных компонент велики:

$$\mu (\log_{9/2} \ln_{11/2})_{\pi} = -4.3 \mu_0, \ \mu (2p_{1/2} 2d_{5/2})_{\pi} = -4.5 \mu_0.$$

Но из-за разницы в знаках амплитуд ψ этих компонент суммарный вклад их в $\mu(\overline{3}_1)_{nech}$ оказался малым.

<i>a</i> .	ПСФ	Q ⁺ +		
ндро	μ	μ1	μ2	$\mu = \mu_1 + \mu$
¹¹⁰ Sn	0,79	0.64	-0.41	0,23
112 Sn	0.73	0.60	-0.35	0.25
¹¹⁴ Sn	0,15	0.18	0,08	0,26
¹¹⁶ Sn	0,02	0,046	-0.048	-0,002
118 _{Sn}	0.11	0 1 1 2	-0.117	-0.005
120 Sn	0.31	0.30	-0,45	-0.15
¹²² Sn	0,36	0,37	-0,45	0,08

Таблица 3. Магнитные моменты (в ед. магн. μ_0) 3⁻-состояний четных изотопов Sa, рассчитанные в ПСФ и с учетом взаимодействий фононов

Основной вклад в $\mu(3_1)_{nc\phi}$ дают магнитные моменты двухквазичастичных нейтронных компонент

$$\mu (2d_{5/2} \ln_{11/2})_{\nu} = + 0,28 \mu_0, \qquad \mu (1g_{7/2} \ln_{11/2})_{\nu} = + 1,81 \mu_0.$$

С увеличением числа нейтронов эклад этих компонент в структуру 3_1^- состояния возрастает. Именно из-за увеличения вклада компоненты $(1g_{7/2} 1h_{11/2})_{\nu}$, для которой амплитуда ψ принимает отрицательное значение, прэтивоположное по знаку амплитуде ψ компоненты $(2d_{5/2} 1h_{11/2})_{\nu}$, и происходит уменьшение абсолютной величины $\mu(3_1^-)_{nc\varphi}$. Начиная с 118 Sn, вес компоненты $(1g_{7/2} 1h_{11/2})_{\nu}$ уменьшается быстрее, чем компоненты $(2d_{5/2} 1h_{11/2})_{\nu}$, что приводит к дальнейшему увеличению значения $\mu(3_1^-)_{nc\varphi}$. Значение $\mu(3_1^-) = +0,12 \mu_0$ в 116 Sn, полученное в $^{/6/}$, совпадает по знаку с вычисленным нами, но его абсолютная величина примерно в 6 раз больше.

Абсолютная величина поправок, связанная со смешиванием различных однофононных конфигураций, к эначениям $\mu(3_1^-)_{nc\phi}$ невелика. Однако в тех изотопах Sn, где $|\mu(3_1^-)|$ мал, относительные изменения $\mu(3_1^-)$ получаются значительными. Например, в ¹¹⁶ Sn $\mu_1(3_1^-)$ примерно в 2,5 раз больше значения $\mu(3_1^-)_{nc\phi}$. Заметное влияние на $\mu(3_1^-)$ оказывает спиновая поляризация осто-

Заметное влияние на µ(3) оказывает спиновая поляризация остова, которая зависит от положения и структуры рэзонансных М1-состояний, а также от степени коллективности однофононных октупольных возбуждений. Резонансные М1-состояния сильнее других 1⁺-состояний

8

ï

примешиваются к низколежащим октупольным 3₁⁻-состояниям. Матричные элементы $U_{1i}^{31}(3_1)$ оказались довольно большими (-0,15÷0,25 МэВ), и для большинства изотопов Sn они принимают отрицательные значения (исключением является ¹¹⁴Sn, для которого $U_{13}^{31}(3_1^-) \rightarrow +0,1$ МэВ). Значения U максимальны ($\sim -0,4$ МэВ) для легких изотопов ¹¹⁰⁻¹¹²Sn. С увеличением A U по абсолютной величине начинает уменьшаться. Начиная с N = 66, |U| возрастает, а знак U становится отрицательным для всех учитываемых M1-состояний. Их когерентный вклад в $\mu_2(3_1^-)$ и приводит к его большой отрицательной величине в ^{120,122} Sn.

Итак, мы рассчитали в рамках КФМ значения магнитных дипольных моментов 2_1^+ уровней в четно-четных изотопах Te, Cd и 3_1^- уровней в четно-четных изотопах Sn. Полученные нами значения $\mu(2_1^+)$ изотопов Te лежат несколько ниже $\mu(2_1^+)_{3\kappa\in\Pi}$. Для изотопов Cd ситуация обратная, здесь $\mu(2_1^+)$ несколько выше экспериментальных и проходят по верхней границе экспериментальных погрешностей. Как показали расчеты, для этих изотопов значительна перенормировка $\mu(2_1^+)_{nc\phi}$ за счет взаимодействия фононов. Вклад от поляризации остова оказался не столь уже существенным.

В целом полученные в КФМ результаты для $\mu(2^+_1)$ удовлетворительно согласуются с экспериментом. Конечно, в рамках МВБ-2^{'8'} для этих изотопов получено лучшее описание значений $\mu(2^+)$. Но следует иметь в виду, что эта феноменологическая модель наряду с другими параметрами использует входящие непосредственно в оператор магнитного момента гиромагнитные факторы протонного и нейтронного d-бозонов, связь которых с гиромагнитными факторами нуклонов не ясна.

Для $\mu(3_1)$ в изотопах Sn наши расчеты предсказывают такое же сильное отклонение от гидродинамических оценок, какое наблюдалось и для $\mu(2_1^+)$. Вычисленные в рамках КФМ $\mu(3_1^-)$ получились небольшими, много меньше величины $\frac{3Z}{A}$, они изменяют знак при переходе от ядра к ядру. Расчеты также показали, что вклад от поляризации остова в $\mu(3_1^-)$ оказался существенным, а для более тяжелых изотопов Sn именно он определяет знак $\mu(3_1^-)$. Этот результат заметно отличается от того, что был получен для $\mu(2_1^+)$ в тех же ядрах.

Авторы выражают благодарность В.Ю.Пономареву и Е.И.Корнилову за предоставление некоторых материалов и интерес к работе.

Литература

1. Сафаров Р.Р. и др. – Изв. АН СССР, сер.физ., 1990, т.54, с.1816.

2. Соловьев В.Г. — Теория атомного ядра. Квазичастицы и фононы. М.: Энергоатомиздат, 1989.

- 3. Вдовин А.И., Соловьев В.Г. ЭЧАЯ, 1983, т.14, с.237.
- 4. Воронов В.В., Соловьев В.Г. ЭЧАЯ, 1983, т.14, с.1380.
- 5. Raghavan P. Atomic Data and Nucl. Data Tables, 1989, v.42, p.189.
- 6. Lombard R.J. Nucl. Phys. A, 1968, v.114, p.449.
- 7. Бор О., Моттельсон Б. Структура атомного ядра, М.: Мир, 1977, т.2.
- 8. Sambarato M., Dieperiuk A.E.L. Phys. Lett. B, 1981, v.107, p.249.

Рукопись поступила в издательский отдел 26 октября 1990 года.