90-226

Объединенный институт ядерных исследований дубна

B 253

P4-90-226

А.И. Вдовин, Р.Р. Сафаров*, В.Ю. Пономарев

МАГНИТНЫЕ МОМЕНТЫ КВАДРУПОЛЬНЫХ СОСТОЯНИЙ ЧЕТНЫХ ИЗОТОПОВ ОЛОВА

Направлено в журнал "Известия АН СССР, серия физическая"

*Институт ядерной физики АН УзССР, Ташкент

1990

Теоретическое и экспериментальное изучение статических электромагнитных моментов атомных ядер ведется на протяжении многих лет. В последние годы достигнут значительный прогресс в экспериментальной технике их измерения^[1], что позволило существенно расширить и область исследуемых ядер и спектр доступных изучению возбужденных состояний этих ядер. В результате объем и качество экспериментальной информации значительно возросли (см.последнюю компиляцию⁴²¹). Это создает определенный стимул для более детального анализа статических ядерных моментов в рамках современных моделей ядра.

В настоящей работе рассматриваются магнитные моменты низколежащих состояний четных изотопов олова. Имеющиеся для этих ядер экспериментальные данные относятся главным образом к нижайшим квадрупольным вибрационным состояниям, а также к относительно долго живущим высокоспиновым состояниям (5 < J < 10).

Аля гиромагнитного отношения в (2_1^+) вибрационных квадрупольных состояний известна классическая феноменологическая оценка $g = Z/A^{[3]}$. Известно также, что наблюдаются заметные отклонения от этой величины. В ядрах, где коллективность 2_1^+ -состояний ярко выражена (Ru, Pd, Те и т.д.), значения $\tilde{g}(2_1^+)$ и их изменение от ядра к ядру хорошо описываются в рамках MBБ- $2^{[4]}$. Но следует иметь в виду, что эта феноменологическая модель наряду с другими параметрами использует входящие непосредственно в оператор магнитного момента гиромагнитные факторы протонного и нейтронного d-бозонов, связь которых с гиромагнитными факторами нуклонов не ясна. А в изотопах олова, где величина g(J)не только наиболее замётным образом отклоняется от значения Z/A, но и меняет знак при изменении числа нейтронов, MBБ неприменима.

Магнитные моменты 2⁺-уровней изотопов олова исследовались на базе микроскопического подхода в приближении случайной фазы (ПСФ) в роботах^{15,61}. Но вследствие довольно схематического характера использованных моделей ряд важных эффектов в этих расчетах учтен не был.

Generel and the unchary anshing in consonauau Chillion States

Для описания структуры возбужденных состояний в четных изотопох олова мы используем квазичастично-фононную модель ядра (КФЦ). Подробное изложение основ модели можно найти в монографии 71 и обзорах^{18,91}. Исходный гамильтониан КФМ для сферических ядер. записанный в нуклонных переменных, содержит члены ответственные за движение нейтронов и протонов в соответствующих средних полях. нейтрон--нейтронное и протон-протонное монопольное спаривательное взаимодействие в канале частица-частица и сепарабельные мультипольные и спин-мультипольные силы в канале частица-дырка. Этот гамильтониан посредством хорошо известных приемов (см.,например, 10) преобразуется в Гамильтониан системы взаимодействующих фононов с различными моментами, четностями и энергиями возбуждения. В первом приближении фононы трактуются как идеальные бозоны. Их энергии и структура находятся в результате решения известных уравнений приближения случайной фазы (ПСФ) для квазичастиц с сепарабельными силами. В ПСФ гамильтониан КФМ для четно-четного ядра имеет вид гамильтониана системы невзаимодействующих фононов. Оператор взаимодействия фононов Нать (его называют также оператором взаимодействия квазичастиц с фононами) смешивает состояния с разным их числом, причем в первом приближении отличен от нуля лишь матричный элемент Нара между состояниями, отличающимися на один фонон.

В настоящей работе в волновой функции возбужденного состояния мы будем учитывать смешивание одно- и двухфононных компонент. Основное состояние ядра 40₀, как и в ПСФ, по-прежнему рассматриваем как фононный вакуум. Итак,

$$\frac{\mathcal{H}_{v}(\mathbf{J}\mathbf{M})}{\mathcal{Q}_{\lambda\mu i}^{\dagger}} = \left\{ \sum_{i}^{N} \mathcal{R}_{i}(\mathbf{J}v) \mathcal{Q}_{\mathbf{J}\mathbf{H}i}^{\dagger} + \sum_{\substack{\lambda_{1} i \\ \lambda_{2} i_{1}}}^{N} \mathcal{D}_{\lambda_{2} i_{2}}^{\lambda_{1} i_{1}}(\mathbf{J}v) \left[\mathcal{Q}_{\lambda_{1} \mu_{1} i_{1}}^{\dagger} \mathcal{Q}_{\lambda_{2} \mu_{2} i_{2}}^{\dagger} \right]_{\mathbf{J}\mathbf{M}} \right\} \frac{\mathcal{H}_{o}}{\mathcal{H}_{o}}, (1)$$

$$\frac{\mathcal{Q}_{\lambda\mu i}^{\dagger}}{\mathcal{Q}_{\lambda\mu i}} = \frac{1}{2} \sum_{\substack{j \neq j_{2}}}^{N} \mathcal{H}_{jjj2}^{\lambda_{1}} \left[\mathcal{Q}_{jj}^{\dagger} \mathcal{M}_{i} \mathcal{Q}_{jj2}^{\dagger} \right]_{\lambda_{j}\mu_{i}} - (-1)^{\lambda_{j}\mu_{j}} \mathcal{H}_{jj2}^{\lambda_{1}} \left[\mathcal{Q}_{jj}^{\dagger} \mathcal{M}_{i} \mathcal{Q}_{jj2}^{\dagger} \right]_{\lambda_{j}\mu_{i}} \right]_{\lambda_{j}\mu_{i}} . (2)$$

2

В (1), (2) использованы следующие обозначения: $Q^+_{\lambda\mu 1}$, $Q^-_{\lambda\mu 1}$ -операторы рождения и уничтожения фонона с моментом λ , его проекцией μ и номером 1 (энергией $W_{\lambda 1}$); \mathcal{A}^+_{jm} , \mathcal{A}^-_{jm} -операторы раждения и уничтожения квазичастицы на уровне среднего поля с квантовыми числами j,m=nlj, m; квадратные скобки означают связь угловых моментов.

Волновую сункцию (1) можно использовать для описания структуры состояний, у которых главная компонента однофононная, в тех ядрах, где взаимодействие фононов не слишком сильно, т.е. в первую очередь в ядрах полумагических. Здесь можно надеяться, что влияние трехфононных и более сложных компонент будет не очень заметным. Конечно, энергии изучаемых состояний не должны превышать 3-4 МэВ. В полумагических ядрах оказываются невелики и поправки, связанные с принципом Паули, действующим между квазичастицами в двухфононных компонентах волновой функции (1)¹¹¹. В этих же ядрах $W(2^+_1) \simeq \Delta$ (Δ -энергетическая шель в подсистеме нуклонов с развитым спариванием). Поэтому при изучении свойств состояний с энергиями возбуждения E, ≥ 2 W(2⁺₁) необходимо учитывать смешивание коллективных и неколлективных ветвей возбуждений, что и достигается включением в (1) нескольких однофононных компонент с данными λ^{T} [12]. Заметим, что расчеты структуры И НЕКОТОРЫХ ХАРАКТЕРИСТИК НИЗКОЛЕЖАЩИХ СОСТОЯНИЙ ИЗОТОПОВ Sn И СОССАних с ними изотопов Са и Те с волновой функцией (1) уже проводились [13]. Однако в 131 использовался сильно обрезанный одночастичный базис, и. кроме того, остаточное мультипольное взаимодействие не содержало изовекторной компоненты, т.е. в частично-дырочном канале nn-, pp- и пр-взаимодействия совпадали. Уже в своей современной формулировке модель использовалась для описания низколежащих возбуждений в изотопах 106-112_{Sn} 14 и 142_{Nd} 15 В этих работах рассматривались электрические характеристики состояний (В(Е入)-факторы, зарядовые переходные плотности) и были получены вполне удовлетворительные результаты.

Магнитныйдипольный оператор в КФМ, если его считать одночостичм оператором, выраженный через операторы квазичастиц и фононов,

$$\mathfrak{M}(M1\mu) = \frac{\sqrt{4\pi}}{3} \sum_{j_1 j_2} M_{j_1 j_2}^{(1)} (-)^{j_1 - j_2} \left\{ \mathcal{V}_{j_1 j_2}^{(+)} \left[\mathcal{A}_{j_1 m_1}^+ \widetilde{\mathcal{A}}_{j_2 m_2} \right]_{4\mu} + (3) + \frac{1}{2} \mathcal{U}_{j_1 j_2}^{(-)} \sum_{i} \left(\mathcal{U}_{j_1 j_2}^{1i} - \mathcal{U}_{j_1 j_2}^{1i} \right) \left(\mathcal{Q}_{4\mu_i}^+ + (-)^{\mu} \mathcal{Q}_{4-\mu_i} \right) \right\} \\
\widetilde{\mathcal{A}}_{j_2 m_2} = (-)^{d_2 - m_2} \mathcal{A}_{j_2 - m_2}.$$

В (3) введены следующие новые обозначения: $U_{j_1 j_2}^{(-)}$, $v_{j_1 j_2}^{(+)}$ -известные билинейные комбинации коэффициентов преобразования Боголюбова; $M_{j_1 j_2}^{(1)}$ приведенный одночастичный матричный элемент магнитного дипольного оператора, в который входят гиромагнитные факторы нуклонов.

Выпишем теперь выражение для магнитного момента μ_{J} состояния (1) $\mu_{J} = \langle \underline{\Psi}_{v}(JJ) | \mathcal{M}(M40) | \underline{\Psi}_{v}(JJ) \rangle \equiv \mu_{4} + \mu_{2} + \mu_{3}$, где

$$\mu_{4} = \sqrt{\frac{4\pi(2T+4)}{3}} < I J 10 | J J > \sum_{i i'} \sum_{j i j 2 j} R_{i}(J_{v}) R_{i'}(J_{v}) M_{j 1 j 2}^{(4)} U_{j 1 j 2}^{(+)} \times \\
\times (-)^{j_{1} - j_{2}} \left\{ \begin{array}{c} 1 J J \\ \frac{1}{3} \\ \frac{$$

$$\mu_{2} = \frac{4}{3} \sqrt{n} < J J 10 | J J > \sum_{i,i'} \sum_{j \neq j_{2}} R_{i}(J_{\nu}) P_{1i'}^{Ji}(J_{\nu}) M_{j \neq j_{2}}^{(1)} U_{j \neq j_{2}}^{(1)} (\Psi_{j \neq j_{2}}^{1i'} - \varphi_{j \neq j_{2}}^{1i'}).$$

Слагаемое μ_1 связано с вкладом однофононной части волновой функции (1) в μ_J .В случае, если взаимодействие фононов слабое и в (1) доминирует одна однофононная компонента, зночение μ_1 будет близко к тому, что получалось в ПСФ.

Член μ_2 отличен от 0 лишь в том случае, если в двухфононную часть волновой функции (1) включены фононы с $\lambda^{T} = 1^+$. Он отражает влияние на μ_J связи низколежащих возбуждений с резонансными магнитными состояниями (магнитным дипольным резонансом), расположенными при энергиях возбуждения $E_x \simeq 7-11$ МэВ. Другими словами, член μ_2 ответственен за магнитную поляризацию ядра. По своему происхождению он аналогичен поляризационному слагаемому в выражении для μ_J состояния нечетного ядра [10]. Обо поляризационных слагаемых связаны с одним и тем же членом $H_{\rm qph}$ в гамильтониане КФМ и одним и тем же членом в операторе $\mathcal{M}(M1\mu)$ ($\sim U_{\rm j1j2}^{(-)}$).

Мы не включили в (4) выражение для μ_3 . Этот член связан с вкладом в μ_J двухфононных компонент волновой функции (1). Слагаемое $\mu_3 \approx 2^{\circ} P \cdot P'$ и в настоящих расчетах не учитывается вследствие малости.

Прежде чем перейти к обсуждению результатов расчетов, остановимся на параметризации модельного гамильтониана и других технических деталях. Общие принципы выбора параметров КФМ описаны в^[8]. Потенциалы среднего поля для протонов и нейтронов взяты в форме Вудса-Саксона (параметры см. в^[17]для A=115,121). Радиольный формфактор частично-дырочных сил одинаков для всех мультиполей и имеет форму производной по радиусу от центральной части потенциала Вудса-Саксона. Отношение изовекторной и изоскалярной констант мультипольных сил $\mathscr{U}_1^{(\lambda)}/\mathscr{U}_0^{(\lambda)} = -1,5$ получено на основе экспериментальных данных о положении E1-резонанса в изотопах. Sm и предполагается не зависящим от λ . Значения $\mathscr{U}_0^{(\lambda)}$ и $\mathscr{U}_1^{(\lambda)}$ определялись в каждом ядре таким образом, чтобы воспроизвести с точностью $\simeq 100-200$ кэВ эксперимен-

5 🔆

тальные энергии нижайших состояний с данными $J^{\mathcal{T}}$ с учетом взаимодействия фононов. При этом оказалось, что полученные значения $\mathfrak{B}_{0,1}^{(\lambda)}$ слабо зависят от λ и не сильно изменяются от ядра к ядру.

При определении константы изовекторного спин-спинового взаимодействия $\mathscr{U}_{1}^{(01)}$ мы ориентировались на экспериментальные данные работ^[18] о М1-резонансе в ¹²⁰Sn. Для изоскалярной константы $\mathscr{U}_{0}^{(01)}$ было выбрано значение $\mathscr{U}_{0}^{(01)}=0,1$ $\mathscr{U}_{1}^{(01)}$. Такое значение основано на результатах анализа в рамках КФМ данных об изоскалярных 1⁺-уровнях в ²⁰⁶,208_{Pb}[19].

В волновую функцию (1) были включены фононы электрического типа с $2 \leq \lambda \leq 6$ и магнитного типа с $\lambda^{\overline{h}} = 1^+$. В однофононную часть (1) входили пять нижайших 2^+ -состояний, в двухфононную – все двухфононные состояния с $\mathcal{W}_{\lambda,c_1} + \mathcal{W}_{\lambda_2,c_2} \leq 6$ МэВ ($\overline{\lambda}_{1+} + \overline{\lambda}_{2} = \overline{2}$), а двухфононные состояния, содержащие 1^+ -фононы, с энергиями до 15 МэВ. Последнее условие гарантировало вклад в \mathcal{M}_2 всех резонансных 1^+ -состояний.

Входящие в $\mathcal{M}(M1\mu)$ гиромагнитные факторы нуклонов \mathcal{B}_{s} и \mathcal{B}_{1} являются в нашей модели параметрами. Все расчеты в настоящей работе выполнены со значениями \mathcal{B}_{s} и \mathcal{B}_{1} свободных нуклонов. Влияние перенормировки \mathcal{B}_{s} и \mathcal{B}_{1} на значения μ_{3} будет обсуждаться при изложении результатов.

Обсуждение результатов начнем с расчетов в рамках ПСФ (табл.1), которые составляют отправную точку для последующего анализа. Выражение для $\mathcal{M}(2_{i}^{*})$ в ПСФ получается из выражений (4), если положить в них \mathcal{M}_{2} =0 и $\mathbf{R_{i}} \cdot \mathbf{R_{i}}$, = δ_{ii} . Как видно из табл.1, качественная тенденция изменения $\mathcal{M}(2_{1}^{*})$ от изотопа к изотопу воспроизводится уже в ПСФ. Выпадает из этой картины значение $\mathcal{M}(2_{1}^{*})$ в ¹¹⁶Sn , где $\mathcal{M}_{\text{теор}}$ и $\mu_{\rm эксп.}$ имеют разние знаки *). Уменьшение абсолютной величины $\mu(2_1^+)$ при увеличении числа нейтронов в изотопе от 62 до 68 связано с возрастанием вклада в структуру 2_1^+ -состояния нейтронных конфигураций $(\ln_{11/2} \ln_{11/2}) \sim u(3s_{1/2} 2d_{3/2}) \sim u$, имеющих значения $\mu_{qp} < 0.$ Эти конфигурации начинают доминировать в структуре 2_1^+ -уровня в 1^{20} Sn и более тяжелых изотопах, что и приводит к изменению знака $\mu(2_1^+)$. В легких изотопах доминируют конфигурации $(1s_{7/2} 1s_{7/2}) \sim u$ $(1s_{7/2} 2d_{3/2}) \sim c$ положительными значениями μ_{qp} . Этот факт отмечался и в работе 120.

Аругие теоретические расчеты^[5,6], результаты которых мы также привели в тобл.1, тоже предсказывают смену знака μ (2⁺₁) в цепочке изотопов Sn, хотя и при другом значении A, нежели впоследствии показал эксперимент^[20]. Различия в количественных результатах нашей работы и работ^[5,6] связаны, помимо естественной разницы в структуре одночастичного спектра, с не вполне адекватным учетом вклада протонных конфигураций в структуру 2⁺₁-состояний в работах^[5,6]. Так же как и мы,авторы^[5,6] использовали сепарабельное квадрупольное взаимодействие в канале частица-дырка, которое, однако, содержало только изоскалярную компоненту. Помимо этого, одночастичный базис в ^[5] был ограничен уровнями незаполненной нейтронной оболочки, т.е вклад протонов в структуру 2⁺₁-состояния не учитывался совсем. в^[6] одночастичный базис был расширен до 2-3 главных оболочек,

*) Необходимо сделать замечание относительно экспериментальных данных о µ(2⁺₁) в изотопах Sn. Все эти данные были получены в работе^[20], откуда и были взяты (с соответствующей ссылкой) в компиляции^[2,21]. Но в ^[21] значения µ(2⁺₁) в изотопах ^{116,122,124}Sn приведены со знаками, противоположными оригинальной работе ^[20].

расчеты были проведены не в ПСФ, а в приближении Таима-Данкова.

Между тем, как показывают наши расчеты, вклад протонных конфигураций весьма ощутимо влияет на $\mu(2_1^*)$. Несмотря на то, что протанные оболачки в Sn замкнуты и энергия нижайших протонных конфигураций с $J^{T} = 2^+$ больше 5 МэВ, их вклад в нормировку однофононной волновой функции 2_1^+ -состояния составляет $10_{=}15\%$. Наибольший вклад, приблизительно одинаковый во всех изотопах, дает конфигурация $(1g_{9/2}^{-1} 2a_{5/2})_{T}$, имеющая большую величину $\mu_{qp} \approx 2,2 \,\mu_{\bullet} > 0$. Именно ее вклад, на наш взгляд, в большой степени абъясняет разницу результатов работ $|5|_{u}|6|$. Дополнительное возрастание $\mu(2_1^+)$ в|6|связано с отбрасыванием вклада обратных амплитуд Ψ , которые в Sn составляют 20-30% от соответствующих амплитуд Ψ (для наиболее, важных конфигураций).

На вклад протонных компонент в структуру 2_1^+ -уровней в изотопах Sn большое влияние оказывает изовекторная компонента остаточных сил в канале частица-дырка. В Sn она увеличивает вклад протонных компонент, что приводит к значительному увеличению теоретических значений B(E2,0_{g.s.}^+ -> 2_1^+)^{181}. Такой же эффект имеет место и для $\mathcal{M}(2_1^+)$. Так, при $\mathcal{H}(2_1^+) = 0$ значение $\mathcal{M}(2_1^+)$ в 116 Sn получается почти в два раза меньше, чем указано в табл. 1, а в 120 Sn – по абсолютной величине в два раза бальше. Это явно связано с уменьшением вклада конфигурации $(1g_{9/2}^{-1} 2d_{5/2})_{T}$

В ПСФ структура 2_2^+ -состояний получается неколлективной, в ней доминируют 1-2 нейтронные двухквазичастичные компоненты. В отличие от 2_1^+ -состояний, у которых в изотопах Sp знаки амплитуд Ψ и Ψ для ведущих двухквазичастичных компонент совпадают, у состояний 2_2^+ знаки разных амплитуд розличаются, что ведет к сильным колебаниям в значениях $\mu(2_2^+)$ и довольно нерегулярнай перемене его знака от изотопа к изотопу. Изовекторная составляющая сепарабельных квадрупольных сил практически не влияет на $\mu(2_2^+)$.

8

Результаты расчетов с учетом взаимодействия фононов представлены в табл.2. Оно двояким образом сказывается на значениях $\mu(2_{1,2}^{+})$. Во-первых, в структуре 2_{i}^{+} -состояний возникает смешивание разных однофононных компонент. Этот эффект можно рассматривать как перенормировку вклада различных двухквазичастичных компонент в структуру соответствующего состояния. Во-вторых, за счет включения в двухфононную часть волновой функции (1) фононов с $\lambda^{\tilde{u}} = 1^{+}$ появляется вклад поляризации остово (член μ_2 в (4)).

Обсудим роль указанных эффектов детальнее. В структуре 2_1^+ -состояний не появляется заметных примесей квадрупольных фононов более высоких энергий, поэтому абсолютная величина поправок к значениям $\mathcal{M}(2_1^+)$, рассчитанным в ПСФ, невелика (≤ 0 , 1 μ_0). Однако в тех изотопах Sn, где | $\mathcal{M}(2_1^+)$ |мал, относительные изменения $\mathcal{M}(2_1^+)$ получаются значительными. Например, в ¹¹⁸Sn значение $\mathcal{M}_1(2_1^+)$ оказывается по абсолютной величине в 3 раза меньше значения $\mathcal{M}(2_1^+)$, рассчитанного в ПСФ (ср. табл.2 и табл.1).

Противоположная ситуация имеет место для магнитных моментов сосостояний 2_2^+ . В изотопах Sn среднее расстояние между нейтронными двухквазичастичными состаяниями, построенными на уровнях незаполненной оболочки, меньше 100 кэВ. В то же время максимальные матричные элементы взаимодействия $H_{\rm qph}$ типа $U_{212}^{211}(21) = \langle Q_{21} | |H_{\rm qph} | | [Q_{211}^+ Q_{212}^+]_2 \rangle$ имеют величину парядка 500 кэВ. Поэтому различные однафононные компоненты в волновых функциях 2_{-}^+ -состояний с N > 1 смешиваются очень сильно. Другими словами, двухквазичастичная структура состояний 2_{+}^+ с $\vee =2,3...$ сильно отличается от структуры соответствующих однофононных состояний $Q_{21}^+ H_0(1=2,3...)$. Отражением этих изменений и являются значительные отличия $\mathcal{M}_1(2_2^+)$ (табл.2) и $\mathcal{M}(2_2^+)$ (табл.1). Заметное влияние на $\mathcal{M}(2_{+}^+)$ оказывает и спиновая поляризация

Таблица 1 Маснитные моменты (в ял. магн. И.) 2 ⁺ о-состояний четных										
ИЗОТОПОВ	Sn, p	ассчита	інные в	ПСФ ^{*)}	-1,2					
Ядро	112 _{Sn}	114 _{Sn}	116 _{Sn}	118 _{Sn}	120 _{Sn} 122 _{Sn}	124 _{Sn}				
w(2 ⁺) _{теор}	0 , 49	0,38	0,29	0,02	-0,06 -0,12	-0,10				
u(21)[5] Teop	0,02	-0,04	-0,18	-0,28	-0,30 -0,28	-0,20				
и(2 <mark>†</mark>)[6] теор	0,32	0,22	0,15	0,12	0,03 -0,07	-0,15				
и(2 <mark>†</mark>) 2 эксп	0,74	0	-0,32	0,04	-0,28 -0,14	-0,30				
м(2 <mark>2</mark>) _{теор}	0,60	0,67	-0,70	-0,62	0,17 1,25	1,24				

Значения гиромагнитных факторов взяты как у свободных нуклонов.
 остова. В изотопах Sie c A ≤ 116 поляризация остова гораздо заметнее
 влияет на μ(2⁺₁), чем на μ(2⁺₂), а начиная со ¹¹⁸Sn, μ₂(2⁺₁) и
 μ₂(2⁺₂) становятся одного порядка, но малыми по абсолютной величине.
 Трудно проследить, как конкретно игра тех или иных структурных
 факторов сказывается на величине μ₂, но влияние двух из них представляется несомненным: 1)положение и структура резонансных М1-состояний;
 2)степень коллективности однофононных квадрупольных возбуждений.

Главную роль в формировании однофононных резонансных М1-состояний в изотопах олова играют конфигурации $(1\epsilon_{9/2}^{-1}\epsilon_{7/2})_{\pi}$, $(1\epsilon_{9/2}\epsilon_{7/2})_{\vee}$ и $(1\epsilon_{11/2}\epsilon_{9/2})_{\vee}$ Относительное расположение соответствующих двухквазичастичных состояний и характер их смешивания спин-спиновым взаимодействием определяют распределение вероятности В(М1) по спектру возбуждений ядра, а это, в свою очередь, влияет на величину μ_2 . Положение протонного частично-дырочного состояния $(1\epsilon_{9/2}^{-1}\epsilon_{7/2})_{\pi}$ в цепочке изотопов :Sn

Таблица 2

Вклад различных составляющих (см.ф-лу(4)) в магнитные моменты 2⁺ 2⁺_{1.2}-состояний изотопов Sn *)

Ядро	J ^{ʻli} i	M1	μ_2	$\mu_{\rm J}$	$\mu_{\mathfrak{I}_{\mathfrak{F}_{\mathfrak{F}}}^{\mathfrak{I}_{\mathfrak{F}}}}$	μ(2 ⁺) 2,20 1 ^{3KCΠ}
112 _{Sn}	21	0,39	0,17	0,56	0,54	+0,74 <u>+</u> 0,26
	22	0,41	-0,003	0,41	0,36	
114 _{Sn}	21	0,31	0,12	0,43	0,41	>0
	22	0,35	-0,01	0,33	0,29	
116 _{Sn}	21	0,20	0,12	0,33	0,32	-0,32 <u>+</u> 0,2
	22	-0,16	0,003	-0,15	-0,13	
118 _{Sn}	21	0,006	0,04	0,04	0,06	+0,04 <u>+</u> 0,2
	22	-0,39	-0,01	-0,40	-0,35	
120 _{Sn}	21	-0,03	-0,06	-0,09	-0,06	-0,28 <u>+</u> 0,14
	22	-0,47	-0,08	-0,55	-0,48	
122 _{Sn}	21	-0,08	-0,08	-0,16	-0,12	-0,14 <u>+</u> 0,22
	22	-0,06	-0,12	-0,18	-0,16	
124 _{Sn}	21	-0,04	-0,01	-0,05	-0,02	-0,3 <u>+</u> 0,2
	22	-0,11	-0,06	-0,17	-0,15	

*) Значения μ₁, μ₂ и μ_J рассчитаны с гиромагнитными факторами свободных нуклонов. Значения μ_J^{эфф} рассчитаны с перенормированными в_ви в_и (см. ^[16]и текст настоящей статьи).

11

практически стабильно. Систематическим образом меняются энергии нейтронных двухквазичастичных конфигураций $(1g_{9/2} \ 1g_{7/2})_{\vee}$ и $(1h_{11/2} \ 1h_{9/2})_{\vee}$. С ростом А энергия первой из них растет, а ее вклад в B(M1) падает изза уменьшения сверхтекучего коэффициента $U_{j_1j_2}^{(-)}$; со второй конфигурацией ситуация обратная. В легких изотопах конфигурации $(1g_{9/2}^{-1} \ 1g_{7/2})_{\rm T}$ и $(1g_{9/2} \ 1g_{7/2})_{\vee}$ сильно смешиваются, в результате этого основная сила M1-переходов (~ 15 μ_0^2) концентрируется на одном однофононном состоянии с энергией $\omega_{1+} \sim 8$ МэВ. В тяжелых изотопах Sn смешивание вышеперечисленных конфигураций слабое и большие значения B(M1) (~ 8--10 μ_0^2) имеют два состояния с энергиями $\omega_{\chi} \sim 7,5$ МэВ и 9,5 МэВ. В целом центроид распределения M1-силы слегка растет с ростом А.

Конечно, конкретные число зависят и от величины изовекторной констонты спин-спинового взаимодействия. Как отмечалось, $\mathscr{X}_{1}^{(01)}$ была выбрана по положению центра тяжести M1-резонанса в 120 Sn и имеющиеся данные о распределении M1-силы в этом ядре^[18] не противоречат ношим расчетам. От ядра к ядру величина $\mathscr{X}_{1}^{(01)}$ не изменялась.

Качественно близкие картины распределения силы резонансных М1--переходов получались и у других авторов^[22], только энергии соответствующих 1⁺-уровней в ^[22] выше, чем у нас, на величину ≲ 1 МэВ.

Резонансные М1-состояния сильнее других 1⁺-состояний примешиваются к низколежащим квадрупольным состояниям. Сам матричный элемент взаимодействия невелик U_{11}^{21} , $(2_1^+) \leq 0,05\pm0,1$ МэВ. Значения U максимальны (~0,1 МэВ)для состояний 2_1^+ . В легких изотопах Sn они несколька больше, чем в тяжелых, и, что даже более важно, имеют одинаковый знак для всех учитывавшихся нами М1-состояний (U >0). Последнее обстаятельство обусловило, по-видимому, их когерентный вклад в M_2 и его относительно большую величину в $^{112-116}$ sn. В более тяжелых изотопах эта когерентность исчезает, знаки матричных элементов U, отвечающих разным 1_1^+ -состояниям, оказываются разными, в результате чего M_2 уменьшается. . Матричные элементы $U_{11}^{22}(2_2^+)$, определяющие величину поляризационных примесей в структуре 2_2^+ -состояний, в среднем на порядок меньше $U_{11}^{21}(2_1^+)$. Но в тяжелых ядрах, где в структуре $4_2(2^+)$ велико смешивание однофанонных компанент $Q_{22}^+ Q_0$ и $Q_{23}^+ Q_0$, поляризационные эффекты для состояния 2_2^+ определяются также и связью компоненты $Q_{23}^+ Q_0$ с компонентами $[Q_{23}^+ Q_{11}^+]_{2^+} Q_0$, чта приводит к сложной интерференции разных слагаемых в M_2 и довольно высокой чувствительности $M_2(2_2^+)$ к параметрам гамильтониана.

Открытым остается вопрос о влиянии на $\mathcal{A}(2_1^*)$ принципа Паули, действующего между квазичастицами, входящими в фононы. В работе [11] показано, что значения U_{21}^{21} .(21'') в Sn изменяются под действием принципа Паули незначительно. Что касается члена $\mathcal{M}_2(2_1^*)$, то его изменения также, скорее всего, будут невелики. Косвенным свидетельством в пользу такого предложения можно считать результат работы [23], где исследовалось влияние принципа Паули на магнитные моменты состояний нечетных изотопов олова. Согласно результатам [23] изменения \mathcal{M}_2 не превышали 10%, причем абсолютная величина \mathcal{A}_2 возрастала.

Несколько слов о перенормиравке нуклонных гиромагнитных факторов. Степень согласия теоретических и экспериментальных значений $\mathcal{M}(2_1^+)$ (табл.2) не позволяет сделать никаких определенных выводов относительно возможных значений $g_s^{3\phi\phi}$ и $g_1^{3\phi\phi}$. Мы рассчитали $\mathcal{M}_T^{3\phi\phi}(2_1^+)$ с перенормированными значениями $g_s(n)$ и $g_s(p)$, которые были определены в рамках расчетной схемы КФМ в работе [16] по магнитным моментам состояний $s_{1/2}$ нечетных ядер Sn и T1 ($g_s^{3\phi\phi}(n)=0,88g_s^{free}(n); g_s^{3\phi\phi}(p)=0,91g_s^{free}(p)$ Результаты расчета приведены в табл.2 (6- я колонка). Изменения $\mathcal{M}(2_1^+)$ незначительны и не влияют заметным образом на степень согласия теории и эксперимента.

Итак, мы рассчитали в рамках КФМ значения магнитных дипольных моментов 2⁺₁- и 2⁺₂-уровней в четно-четных изотопах ^{112–124}sn. Заметное влияние на значение *м*(2⁺₁) оказывает спиновая поляризация остова. Ее

12

13 .

влияние на μ (2⁺₂) не так важно. Для этих состояний более важным оказывается смешивание разных однофононных компонент. В целом μ (2⁺₂) аказываются чувствительными к тонким деталям смешивания конфигураций. Теоре тические значения μ (2⁺₁) качественно согласуются с экспериментом, хотя количественное согласие оставляет желать лучшего. Экспериментальные значения μ (2⁺₁) довольно резко меняются от изотопа к изотопу и, строго говоря, дважды меняют знак по мере роста А. Изменения теоретических значений μ (2⁺₁) более плавны, а изменение знака происходит только один раз. Эти черты характерны и для результатов других авторов^{15,61}. Поэтому весьма желательным представляется и уточнение экспериментальных значений μ (2⁺₁).

Литература

- Левон А.И., Немец О.Ф.-Электромогнитные моменты возбужденных и родиооктивных ядер, Киев: Ноуково думка, 1989.
 Raghavan P.-At. Data and Nucl. Data Tables, 1989, V.42, P.189.
 Бор О., Моттельсон Б.-Структуро отомного ядро. Т.2, М.: Мир, 1977.
 Sambataro M., Dieperink A.E.L.-Phys.Lett.B, 1981, V.107, P.249.
 Kişslinger L.S., Sorensen R.A.-Rev.Mod.Phys., 1963, V.35, P.853.
 Lombard R.J.-Nucl.Phys.A, 1968, V.114, P.449.
- 7. Соловьев В.Г.-Теория атомного ядра. Квазичастицы и фононы. М.: Энергоатомиздат, 1989.
- 8. Вдовин А.И., Соловьев В.Г.-ЭЧАЯ, 1983, Т.14, С.237.
- Э. Воронов В.В., Соловьев В.Г.-ЭЧАЯ, 1983, Т.14, С.1380.
- 10. Соловьев В.Г.-Теория сложных ядер. М., Наука, 1971.
- 11. Соловьев В.Г. и др.-Изв. АН СССР (сер.физ.), 1983, Т.47, С.2082.
- 12. Вдовин А.И., Стоянов Ч.-Изв. АН СССР (сер.физ.), 1973, Т.37, С.1750. Митрошин В.Е.-Изв. АН СССР (сер.физ.), 1974, Т.38, С.811.
- 13. Вдовин А.И., Стоянов Ч.-Изв. АН СССР (сер.физ.), 1974, Т.38, С.2604.
- 14. Andrejtscheff W. et al.-Nucl.Phys.A, 1989, V.505, P.397.
- 15. Sandor R.K.J. et al.-Phys.Lett.B, 1989, V.233, P.54.

16. Левон А.И. и др.-ЯФ, 1986, Т.43, С.1416.

- 17. Ponomarev V.Yu. et al.-Nucl.Phys.A, 1979, V.323, P.446.
- 18. Djalali C. et al.-Nucl.Phys.A, 1982, V.388, P.1.
 - Alarcon R. et al.-Phys.Rev.C, 1989, V.40, P.R1097.
- 19. Dao Tien Khoa et al.-JINR, E4-86-198, Dubna, 1986. Ponomarev V.Yu. et al.-J.Phys.G:Nucl.Phys., 1987, V.13, P.1523.
- 20. Hass M. et al.-Phys.Rev.C, 1980, V.22, P.97.
- 21. Rico F.J., Rossi-Alvarez C.-Preprint Istituto Nazionale di Fisica Nucleare, Sezione di Padova, INFN/BE-87/3, 1 Ottobre, 1987.
- 22. Čwiok S., Wygonowska M.-Acta Phys. Pol.B, 1973, V.44,P.477. Борзов И.Н. и др.-ЯФ, 1976, Т.24, С.715.
- 23. Сафаров Р.Р. и др.-Изв. АН СССР (сер.физ.), 1988, Т.52,С.2146.

Рукопись поступила в издательский отдел 30 марта 1990 года.