90-220

5955

Объединенный институт ядерных исследований

дубна

P4-90-220

В.М.Быстрицкий, В.А.Столупин

К ВОПРОСУ ОБ ЭКСПЕРИМЕНТАЛЬНОМ ОПРЕДЕЛЕНИИ ПАРАМЕТРОВ ПРОЦЕССА ПЕРЕЗАРЯДКИ µ-АТОМОВ ИЗОТОПОВ ВОДОРОДА НА ЯДРАХ Не

Направлено в "Журнал экспериментальной и теоретическрой физики"

После экспериментального обнаружения /1/ предсказанного теоретически /2/ нового явления молекулярной перезарядки (находящихся изотопов водорода B OCHOBHOM мю-атомов состоянии) на ядрах Не

$$H\mu + He \rightarrow [(H\mu He)^{*}e]^{+}+e^{-} \rightarrow (H\mu He)^{++}e^{-}]+\gamma (6,85 k \rightarrow B), (16)$$

$$(H\mu He) \rightarrow He\mu + H. (1B)$$

 $(H\mu He) \rightarrow He\mu + H,$

 $H \equiv H, D, T, He \equiv {}^{3}He, {}^{4}He, He$

возбужденных обнаружения перехвата мюонов ИЗ также мезоводорода 3,4, состояний резко возрос интерес к исследованию таких процессов. Это обусловлено, в основном, следующими обстоятельствами.

а) Знание параметров процесса перехвата мюонов от мю-атомов изотопов водорода, находящихся как'в основном, так возбужденных состояниях, позволяет корректно в интерпретировать результаты по измерению характеристик мюонного катализа ядерных реакций синтеза в смеси D_+T_ и в то же время дает возможность произвести оценку периодичности и степени необходимой очистки смеси D-+T от накопившегося гелия в течение экспозиций на пучке мюонов. (Появление Не в мишени происходит как за счет естественного распада трития, так и в результате протекания ядерных реакций dd-, tt- и dt-синтеза. Это приводит к тому, что мюоны, перехватившиеся к ядрам Не, выбывают из цепочки дальнейшего мюонного катализа ядерных реакций синтеза изотопов водорода).

б) Необходимостью описания кинетики каскадных переходов мю-атомов изотопов водорода в смесях изотопов водорода с гелием.

Экспериментальные и теоретические значения скоростей перехвата мюонов. от ри-, du- и tu-атомов к ядрам Зне и 4не. полученные к настоящему времени, приведены в таблице. Данная работа посвящена рассмотрению особенностей кинетики процессов, протекающих в смеси изотопов водорода с гелием, для корректной обработки необходимо учитывать ronue

экспериментальных данных. В первую очередь это касается учета канала выбывания мюонов из цепочки мюонного катализа за счет перехвата мюонов из возбужденных состояний к ядрам гелия. Следует отметить, что в зависимости от экспериментальных условий и методики определения параметров процесса перехвата вклад данного канала будет проявлять себя по-разному.

Таблица

	· · · · · · · · · · · · · · · · · · ·				1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
Работа	рµ→ ⁴ Неµ	dµ→ ³ Heµ	dµ→ ⁴ Heµ	tµ→ ³ Heµ	tµ→ ⁴ Heµ
Быстрицкий и др. [1]	0,36±0,10	$(d^{2})^{-2} = (d^{2})^{-2}$			
Jacot-Guil- larmod e.[5]	0,88±0,09				
von ARB et al. [6]	0,032±0,01	13			
Балин и др. [7]	an a	1,27±0,11	3,68±0,18	an an an an	
Jones et al. [8]		2 ± 1			
Bertin _et_al. [9]			≤ 0,2		
Matsuzaki _et al. [10]			13,1±1,2 (т=20 к)		
Caffrey et al. [11]				15,0±2,5	
	Теория				
Ivanov et al. [12]	0,34	1,34	3,22	8,7 (24,9±2, T=50 K)	2 1,32

Скорости перехвата мюснов от изотопов водорода к ядрам Не при $T=300 \text{ K} (10^8 \text{ c}^{-1})$

Ниже будет рассмотрена аналитика, используемая при обработке экспериментальных данных с целью определения характеристик процесса перехвата мюонов от мю-атомов изотопов водорода к ядрам не в смесях Н + не, D + не и Т + не.

> Орусаниесные унститут BEUERON- W. S-HONSDAG

Схема процессов, происходящих после остановки отрицательного мюона в смеси H₂+He, приведена на рис.1. Для определения параметров процесса перехвата возможно использование двух методик.

Рис.1. Схема мю-атомных и мю-молекулярных процессов, происходящих в смеси H₂+He.

а) Методики, основанной на измерении выходов и временных распределений электронов от распада мюонов и у-квантов мезорентгеновского излучения Zµ-атомов (возникающего в результате перехвата мюонов от рµ-атомов к ядрам примеси Z, используемой в качестве небольшой добавки), измеренных в экспозициях с чистым водородом и со смесями H₂+Z, H₂+Z+He (подробное описание методики приведено в работе^{/17}).

б) Методики регистрации у-квантов с энергией ~6,85 кэВ, 631 возникающих в результате радиационного перехода мюмолекулярного комплекса (рµНе), находящегося в возбужденном в несвязанное основное состояние системы, состоянии, состоящей из иона Неµ и протона (канал (1в)). Регистрация у-квантов указанного перехода является прямым подтверждением теоретически механизма существования предсказанного молекулярной перезарядки мю-атомов изотопов водорода на ядрах не. Выражения, описывающие временное распределение и выход у-квантов, имеют вид:

$$\frac{dN}{dt}\gamma = WK\varepsilon_{\gamma}\lambda_{\mu_{e}}^{P}\phi C_{\mu_{e}} e^{-(\lambda_{0}+\lambda_{PP}\mu\phi+\lambda_{He}^{P}C_{He}\phi)t}, \qquad (2)$$

$$N_{\gamma} = WK \varepsilon_{\gamma} \lambda_{He}^{P} \phi C_{He} / (\lambda_{0} + \lambda_{PP} \phi + \lambda_{He}^{P} C_{He} \phi), \quad W = W_{H} W_{0}, \quad (3)$$

где W_и, W - вероятности образования ри-атома и перехода его в основное состояние соответственно; ε_{γ} - эффективность регистрации γ -квантов с энергией 6,85 кэВ; $\lambda_{u_n}^p$ - скорость перехвата мюонов от ри-атомов, находящихся в основном состоянии, к ядрам Не; λ - скорость распада свободного мюона, $\lambda_{o}=0,455\times10^{6}$ с⁻¹; λ_{nnll} - скорость образования рри-молекул; С_{на} - атомарная концентрация Не; ф - плотность смеси Н₂+Не, приведенная к плотности жидкого водорода, n =4,25×10²² см⁻³, К -относительная вероятность радиационного перехода мезомолекулярного комплекса (рµНе) из возбужденного состояния (2рб) в основное (15б). Как видно, использование данной методики позволяет определить величину $\lambda_{u_{2}}^{P}$ из наклона временного распределения у-квантов (показатель экспоненты в выражении (2)), используя известные значения $\lambda_{\text{рр} \mu}$. Кроме этого, может быть также найдено произведение WK при условии знания эффективности регистрации у- квантов с энергией Е_≈ 6,85 кэВ.

II. D_+He, T_+He

На рис.2, 3 приведены схемы мю-атомных и мю-молекулярных процессов, происходящих после остановки мюонов в смесях D_2 +Не и T_2 +Не. Наиболее приемлемой методикой определения параметров процесса перехвата мюонов от $d\mu$ - и $t\mu$ -атомов к ядрам Не является методика анализа последовательно зарегистрированных продуктов реакций ядерного синтеза в $dd\mu$ - и $tt\mu$ -молекулах соответственно. Что касается методики регистрации γ -квантов с энергией 6,85 кэВ (1б) и методики (а), используемой в опыте со смесью H_2 +Не, то области их применения определяются экспериментальными условиями, о чем будет сказано ниже.

1) CMECb D₂+He

Для чистого дейтерия^{/13,14/} и смеси D₂+Не выражения, описывающие выходы и временные распределения k-х зарегистрированных нейтронов, имеют вид: чистый дейтерий-

$$\frac{dN_{n}^{k}}{dt} = \left(\varepsilon_{n}\beta\lambda_{dd\mu}\phi\right)^{k}\left(1-\omega_{d}\right)^{k-1}\frac{t^{k-1}}{(k-1)!}e^{-\lambda_{1}t}, \qquad (4)$$

$$N_n^k = (\varepsilon_n \beta \lambda_{dd\mu} \phi)^k (1 - \omega_d)^{k-1} / \lambda_1^k, \qquad (5)$$

$$\lambda_{1} = \lambda_{0} + (\varepsilon_{n} + \omega_{d} - \varepsilon_{n}\omega_{d})\beta\lambda_{dd\mu}\phi; \qquad (6)$$

смесь D_+He-

$$\frac{\mathrm{d}N_{n}^{k}}{\mathrm{d}t} = \left(W\varepsilon_{n}\beta\lambda_{\mathrm{dd}\mu}\phi\right)^{k}\left(1-\omega_{\mathrm{d}}\right)^{k-1}\frac{t^{k-1}}{(k-1)!}e^{-\lambda_{2}t},$$
(7)

$$N_{n}^{k} = (W \varepsilon_{n} \beta \lambda_{dd\mu} \phi)^{k} (1 - \omega_{d})^{k-1} / \lambda_{2}^{k}, \qquad (8)$$

$$\lambda_{2} = \lambda_{0} + (\varepsilon_{n} + \omega_{d} - \varepsilon_{n} \omega_{d}) W \beta \lambda_{dd\mu} \phi + (1 - W) \lambda_{dd\mu} + \lambda_{He}^{d} \phi C_{He}, \qquad (9)$$

 $W = W_{A}W_{A}$

где N_n^k число k-х зарегистрированных нейтронов; W_p , W_o вероятности образования dµ-атома и перехода его в основное состояние соответственно; ε_n - эффективность регистрации нейтронов dd-синтеза с энергией $E_n=2,45$ МэВ; $\lambda_{dd\mu}$ - скорость образования ddµ-молекул; β - относительная вероятность канала реакции dd-синтеза в ddµ-молекуле с образованием нейтрона; ω_d - коэффициент "прилипания" мюона к ядру ³Не, образующемуся в реакции dd-синтеза; λ_{He}^d - скорость перехвата мюонов от dµ-атомов, находящихся в основном состоянии, к ядрам Не.

Рис. 2. Схема мю-атомных и мю-молекулярных процессов, происходящих в смеси D₂+He.

Формулы (4)-(9) получены в предположении, что скорость синтеза в $dd\mu$ -молекуле $\lambda_c^{dd} \gg \lambda_c$, $\lambda_{dd\mu}\phi$.

Согласно выражениям (6) и (9), величина λ_{He}^{d} определяется следующим образом:

$$\lambda_{He}^{d} = \frac{(\lambda_2 - \lambda_1) - (1 - W)\lambda_{dd\mu}\phi + (1 - W)(\lambda_1 - \lambda_0)}{\phi C_{He}}.$$
 (10)

Нетрудно видеть, что в случае 1007-й эффективности регистрации продуктов обоих каналов реакции dd-синтеза (наклоны временных распределений первых зарегистрированных событий (³He, ³Heµ, t, p) равны: $\lambda_1 = \lambda_0 + \lambda_{dd\mu}\phi$; $\lambda_2 = \lambda_0 + \lambda_{dd\mu}\phi$ + $\lambda_{He}^{d}\phi C_{He}$) выражение (10) принимает вид:

$$\lambda_{\rm He}^{\rm d} = (\lambda_2 - \lambda_1) / \phi C_{\rm He} \,. \tag{11}$$

Реализация такого метода определения скорости перехвата мюонов имела место в эксперименте^{/7/}, выполненном с использованием ионизационной камеры высокого давления. С целью извлечения информации о характеристиках процесса перехвата для случая, когда регистрируются только нейтроны последовательных актов синтеза с эффективностью $\varepsilon_n < 1$, предлагается следующий алгоритм анализа экспериментальных данных.

1. Опыт с чистым D_2 . Путем аппроксимации временных распределений 1-х зарегистрированных нейтронов выражением (4) и используя измеренное отношение выходов 2-х и 1-х зарегистрированных нейтронов (см. выражение (5)) определяются величины λ_1 и A = $(1-\omega_d) \varepsilon_n \beta \lambda_{ad\mu} \phi$.

2. Опыт со смесью D_2 +Не. Используя такую же процедуру, как и в опыте с чистым дейтерием, определяем величины λ_2 и B = $(1-\omega_d)W\varepsilon_p \beta \lambda_{ddl} \phi$ = AW.

3. Подставляя значение А в выражение для величины В, определяем произведение W_nW_n = W.

4. Используя выражения (6) и (9), а также найденное значение W, находим скорость перехвата мюонов от dμ- атомов, находящихся в основном состоянии, к ядрам Не. При вычислениях λ^d используется известное из литературы экспериментальное значение $\lambda_{dd\mu}$, соответствующее определенной температуре смеси D₂+He.

Следует отметить, что для анализа данных, полученных в области низких температур смеси D_2 +Не (T~20 K) при любых значениях концентрации Не и плотности дейтерий-гелиевой смеси, использование формулы (11) вполне обоснованно (вклад величины (1- W) $\lambda_{dd\mu}\phi$ - (1- W)($\lambda_1 - \lambda_0$) в разность ($\lambda_2 - \lambda_1$) пренебрежимо мал).

Теперь остановимся на анализе результатов экспериментов, выполняемых с использованием методики регистрации γ-квантов перехода (dµHe)^{*}→(dµHe). Временное распределение и выход зарегистрированных γ-квантов с энергией перехода 6,85 кэВ имеет вид:

$$\frac{\mathrm{d}N}{\mathrm{d}t}\gamma = WK\varepsilon_{\gamma}\lambda_{He}^{d}\phi C_{He} e^{-\lambda_{3}t}, \qquad (12)$$

$$N_{\gamma} = WK \varepsilon_{\gamma} \lambda_{He}^{d} \phi C_{He} / \lambda_{3}, \qquad (13)$$

$$\lambda_{3} = \lambda_{0} + \omega_{d} W \beta \lambda_{dd\mu} \phi + (1 - W) \lambda_{dd\mu} \phi + \lambda_{He}^{d} \phi C_{He}. \qquad (14)$$

Из выражения (14) видно, что корректное определение параметров процесса перехвата WK и λ_{He}^{d} в смеси D_2 +Не возможно лишь при условии: $\omega_{d} \lambda_{dd\mu} \phi$, $(1 - W) \lambda_{dd\mu} \phi \ll \lambda$. Это условие выполняется при достаточно низких температурах смеси D_2 +Не ~20 K ($\lambda_{dd\mu}$ (20 K) \approx 0,04×10⁶ c⁻¹ /15/). В этом случае скорость перехвата мюонов $\lambda_{\mu_0}^{d}$ можно определить как

$$\lambda_{\rm He}^{\rm d} = (\lambda_3 - \lambda_0)/\phi C_{\rm He}. \qquad (15)$$

Используя измеренные значения λ_3 и N_{γ} , а также эффективность регистрации γ -квантов ε_{γ} , найденную расчетным либо экспериментальным путем, можно определить величину WK. При более высоких температурах правильное извлечение информации о характеристиках процесса перехвата становится возможным лишь с одновременным использованием методики регистрации продуктов реакции dd-синтеза.

2) CMECb T_+He

Для определения параметров процесса перехвата мюонов от tµ-атомов к ядрам Не с использованием методики регистрации нейтронов последовательных актов tt-синтеза необходим следующий алгоритм проведения опытов и анализа полученных экспериментальных данных.

Рис. 3. Схема мю-атомных и мю-молекулярных процессов, происходящих в смеси Т₂+Не.

1. Опыт с чистым тритием. Согласно работе $^{/16/}$ определяется величина $\varepsilon_n \lambda_{tt\mu} \phi \lambda_f^{tt}$ из анализа временного распределения 1-х зарегистрированных нейтронов и отношения выходов 2-х и 1-х зарегистрированных нейтронов:

$$\frac{|\mathbf{N}_{\mathbf{h}}^{\mathbf{h}}|}{|\mathbf{t}|} = 2\varepsilon_{\mathbf{n}}\lambda_{\mathbf{t}\mathbf{t}\mathbf{\mu}}\phi\lambda_{\mathbf{f}}^{\mathbf{t}\mathbf{t}}(\mathbf{e}^{-\mathbf{s}_{\mathbf{t}}\mathbf{t}} - \mathbf{e}^{-\mathbf{s}_{\mathbf{t}}\mathbf{t}})/\Delta, \qquad (16)$$

$$\frac{N_{n}^{2}}{Nn} = \varepsilon_{n} \lambda_{tt\mu} \phi \lambda_{f}^{tt} (1-\omega_{t}) / [\Lambda_{t} \Lambda_{f} - (1-\omega_{t}) (1-\varepsilon_{n}) \lambda_{tt\mu} \phi \lambda_{f}^{tt}], \qquad (17)$$

$$\Delta = \sqrt{(\Lambda_f - \Lambda_t)^2 + 4(1 - \omega_t)(1 - \varepsilon_n)\lambda_{tt\mu}\phi\lambda_f},$$

$$S_1 = \frac{1}{2}(\Lambda_t + \Lambda_f + \Delta), \quad S_2 = \frac{1}{2}(\Lambda_t + \Lambda_f - \Delta),$$

$$\Lambda_f = \lambda_0 + \lambda_f^{tt}, \quad \Lambda_t = \lambda_0 + \lambda_{tt\mu}\phi,$$

$$S_1 + S_2 = \Lambda_t + \Lambda_f, \quad S_1 - S_2 = \Delta,$$

где $\lambda_{tt\mu}$ - скорость образования tt μ -молекул; λ_f^{tt} - скорости

tt-синтеза в ttμ-молекуле; ω_t – коэффициент "прилипания" мюонов к ядру ⁴Не, образующемуся в результате реакции ядерного синтеза в ttμ- молекуле; N¹n, N²n- числа 1-х и 2-х зарегистрированных нейтронов.

Значения S₁ и S₂ есть результат аппроксимации временных распределений 1-х зарегистрированных нейтронов tt- синтеза выражением (16).

Величину $\varepsilon_{\gamma} \lambda_{ttu} \phi \lambda_{f}$ можно определить двумя способами:

а) подстановкой измеренных значений S₁ и S₂ в уравнение (16):

$$\varepsilon_{n}\lambda_{tt\mu}\phi\lambda_{f}^{tt} = [(N_{n}^{1}) \Delta]/2[\frac{1}{S_{2}} - \frac{1}{S_{1}}];$$

б) подстановкой измеренных величин (N²_n/N¹_n), а также табличных значений λ₀, λ_{ttμ}, λ^{tt}, ω_t в уравнение (18):

$$\varepsilon_{n}\lambda_{tt\mu}\phi\lambda_{f}^{tt} = N_{n}^{2}/N_{n}^{1}[\Lambda_{t}\Lambda_{f} - (1-\omega_{t})\lambda_{tt\mu}\phi\lambda_{f}^{tt}]/(1-\omega_{t})(1-N_{n}^{2}/N_{n}^{1}).$$
(18)

2. Опыты со смесью T₂+ He. Выражения, описывающие временное распределение 1-х зарегистрированных нейтронов ttсинтеза и отношение выходов 2-х и 1-х зарегистрированных нейтронов имеют вид^{/16/}:

$$\left(\frac{\mathrm{d}N_{n}^{1}}{\mathrm{d}t}\right)^{\mathrm{T}/\mathrm{He}} = 2\varepsilon_{n}W\lambda_{\mathrm{tt}\mu}\phi\lambda_{\mathrm{f}}^{\mathrm{tt}}(\mathrm{e}^{-\mathrm{S}_{2}\mathrm{t}}-\mathrm{e}^{-\mathrm{S}_{2}\mathrm{t}})/\Delta, \qquad (19)$$

$$\frac{(N_n^2)^{T/He}}{(N_n^1)^{T/He}} (1-\omega) \varepsilon_n W \lambda_{tt\mu} \phi \lambda_f^{tt} / [\Lambda_t^{T/He} \Lambda_f^{-} (1-\omega) (1-\varepsilon) W \lambda_{tt\mu} \phi \lambda_f^{tt}, \qquad (20)$$

$$S_{1,2} = \frac{1}{2} \left[\left(\Lambda_t^{T/He} + \Lambda_f \right) \pm \sqrt{\left(\Lambda_f - \Lambda_t^{T/He} \right)^2 + 4 \left(1 - \omega_f \right) \left(1 - \varepsilon_h^2 W \lambda_{tt\mu} \phi \lambda_f^{tt} \right)} \right], \qquad (21)$$

$$\Lambda_{t}^{T/He} = \lambda_{0} + \lambda_{tt\mu} \phi + \lambda_{He}^{t} C_{He} \phi; \qquad \Lambda_{f} = \lambda_{f}^{tt} + \lambda_{0};$$

$$S_{1} + S_{2} = \Lambda_{t}^{T/He} + \Lambda_{f} = 2\lambda_{0} + \lambda_{tt\mu} \phi + \lambda_{He}^{t} \phi C_{He} + \lambda_{f}^{tt}; \qquad W = W_{T}W_{0}. \qquad (22)$$

Показатели экспонент S₁ и S₂ определяются путем аппроксимации временного распределения 1-х зарегистрированных нейтронов выражением (19). Скорость перехвата мюонов от tµатомов, находящихся в основном состоянии, можно найти из выражения (22), используя табличные значения величин λ_0^{tt} , λ_{ttu}^{tt} ;

$$\lambda_{He}^{t} = [(S_{1} + S_{2}) - 2\lambda_{0} + \lambda_{tt\mu}\phi + \lambda_{f}^{tt})]/\phi C_{He}, \qquad (23)$$

а величину W – из выражения (20) путем подстановки в него значения $\varepsilon_n \lambda_{tt\mu} \phi \lambda_f^{tt}$ (найденного в опыте с чистым тритием) и значения $(1-\omega_t)(1-\varepsilon_n)W\lambda_{tt\mu}\phi \lambda_f^{tt} = \frac{1}{4}[(S_1 - S_2)^2 - (\Lambda_f - \Lambda_t)^2]$ (полученного в опыте со смесью T_2 + Не) :

$$W = \left\{ \left(\frac{N_{n}^{2}}{N_{n}} \right)^{\frac{T}{He}} \left[\left(1 - \left(\frac{N_{n}^{2}}{N_{n}} \right)^{T} \right) \left(\Lambda_{t}^{\frac{T}{He}} \Lambda_{f} - \frac{1}{4} \left(\left(S_{1}^{\frac{T}{He}} - S_{2}^{\frac{T}{He}} \right)^{2} - \left(\Lambda_{f}^{-} - \Lambda_{t}^{\frac{T}{He}} \right)^{2} \right) \right] \right\} / \left\{ \left(N_{n}^{2} / N_{n}^{1} \right)^{T} \left[\Lambda_{t}^{T} \Lambda_{f}^{-} - \lambda_{tt} \mu \phi \lambda_{f}^{tt} \left(1 - \omega_{t} \right) \right] \right\}$$
(24)

(значения с индексами Т и Т/Не измерены в опытах с чистым тритием и со смесью Т₂+Не соответственно). Проводя измерения при одной и той же концентрации гелия, но при разных температурах, можно исследовать зависимость W(T) и тем самым получить информацию об энергетическом распределении tµ- атомов в процессе их девозбуждения.

Рассмотрим возможность применения других методик для исследования процесса перехвата мюона в смеси Т,+Не. Использование ионизационной камеры, как в случае опыта смесью D_+He, практически исключено ввиду высокой CO радиоактивности трития. Применение же методики регистрации уквантов перехода (1б) позволяет прямым образом наблюдать механизм молекулярной перезарядки tµ- атомов на ядрах Не, но для корректного определения параметров данного процесса необходимо также одновременное использование и нейтронной методики. Это обусловлено тем, что показатели экспонент в выражении, описывающем временное распределение у- квантов с энергией 6,85 кэВ, содержат член типа (1-W)A_{ttII}, который, в отличие от опыта со смесью D₂+He, необходимо учитывать даже в области низких температур, т.к. скорость образования ttuмолекул носит нерезонансный характер, λ_{ttµ}(20К)≈ 2.10⁶с^{-1/17/}. что касается методики регистрации 8квантов

11

10

мезорентгеновского излучения $Z\mu$ - атомов и электронов от распадов мюонов в тройной смеси T_2 +He+Z, то она также применима и позволяет однозначно определить искомые параметры процесса перехвата мюонов. Однако следует отметить одно важное обстоятельство. Использование в качестве небольшой добавки, как правило, элементов с большим Z (ксенон, криптон и т.д.) накладывает определенные ограничения на температурный диапазон исследований процесса перехвата (это связано с тем, что температура тройной точки данных веществ существенно выше ~20 К).

Резюмируя изложенное в данной статье, можно сделать следующие выводы.

1. Применение методики регистрации нейтронов последовательных актов dd- и tt- синтеза позволяет проводить исследования мю-атомных и мю-молекулярных процессов в смесях D₂+He и T₂+He в широких диапазонах давлений, температур и концентраций гелия.

2. Совместное применение нейтронной методики и методики регистрации у- квантов с энергией E_y= 6,85 кэВ позволяет определить относительную вероятность К радиационного перехода мезомолекулярных комплексов (dµHe), (tµHe) из возбужденного состояния в основное.

3. Исследование мю-атомных процессов в смеси Н_+не в области высоких давлений и температур (Т>120 К) целесообразно проводить с использованием методики регистрации у- квантов мезорентгеновского излучения Zµ- атомов (Хеµ, Кгµ), а в области низких давлений и температур (T<120 K) - c использованием методики регистрации у- квантов перехода (puHe) ~→ (рµНе). Одновременное использование этих двух методик в области температур Т>120 К позволяет также определить величину К.

Проводя исследования мю-атомных и мю-молекулярных процессов с использованием указанных методик в смесях H₂+He, D₂+He, T₂+He в широких диапазонах давлений, температур и концентраций гелия, можно получить информацию (согласно работе /18/): a) о зависимости скорости перехвата мюонов из основного состояния мю-атомов изотопов водорода к ядрам Не от температуры; б) об абсолютных значениях скоростей перехвата мюонов из основного и возбужденных состояний мезоводорода к ядрам гелия; в) о вероятности перехода рµ (dµ, tµ)- атомов из возбужденных состояний в основное; г) о существовании либо отсутствии изотопической зависимости прямой посадки мюонов; д) о процессе термализации возбужденного мезоводорода в водород-гелиевой смеси.

В заключение следует отметить, что проведение такого рода исследований желательно осуществлять в газовой смеси изотопов водорода с гелием, чтобы исключить неопределенность, связанную с неточным знанием концентрации Не, растворенного в жидком или твердом водороде.

Литература

1. В.М.Быстрицкий, В.П.Джелепов, В.И.Петрухин и др.-ЖЭТФ, 1983, Т.84, С.1257.

2. Ю.А.Аристов, А.В.Кравцов, Н.П.Попов и др.∸ ЯФ, 1981,
 Т.33,С.1066.

3. В.М.Быстрицкий, В.П.Джелепов, В.И.Петрухин и др.-Мезоны в веществе. Труды международного симпозиума по проблемам мезонной химии и мезомолекулярных процессов в веществе, ОИЯИ, Д1,2,14-10908, Дубна, 1977, С.220.

4. A.Bertin, A.Vitale and E.Zavattini - Lettere al Nuovo Cimento, 1977, V.18, P.381.

5. R.Jacot-Guillarmod, F.Bienz, M.Bochung et al. Phys.Rev., 1988, V.36, P.6151.

6. H.P. von ARB, F.Dittus, H.Hofer et al.-Muon Catalyzed Fusion, 1989, V.4, P.61.

7. Д.В.Балин, А.А.Воробьев, Ан.А.Воробьев и др.- Письма в ЖЭТФ, 1985, Т.42, С.236.

13

12

8. S.E.Jones, A.N.Anderson, A.J.Caffrey et al.-Phys.Rev.Lett., 1983, V.51, P.1757.

9. F.Bertin, A.Vitale and E.Zavattini.-Lettere al Nuovo Cim. 1977,V.18,P.3817.

10. T.Matsuzaki, K.Ishida, K.Nagamine et al.- Muon Catalyzed Fuzion, 1988,V.2,P.217.

11. A.J.Caffrey, A.N.Anderson, C.De W.Van Siclen et al.-Muon Catalyzed Fuzion, 1987, V.1, P.53.

12. В.К.Иванов, А.В.Кравцов, А.И.Михайлов и др.- ЖЭТФ, 1986, Т.91, С.358.

13. M.Bubak, V.M.Bystritsky and A.Gula - Acta Physica Polonica, 1985, V.B16, P.575.

14. V.V.Filchenkov, L.N.Somov and V.G.Zinov - Nuclear Inst. and Meth., 1984, V.228A, P.174.

L.I.Ponomarev -Muon Catalyzed Fusion, 1988, V.3, P.629.
 M.Bubak, V.M.Bystritsky -JINR, E1-86-107, Dubna, 1986.

17. W.H.Breunlich, M.Cargnelli, P.Kammel et al.- Muon

Catalyzed Fusion, 1987, V.1, P.121.

18. В.М.Быстрицкий, А.В.Кравцов и Н.П.Попов – Препринт ОИЯИ, Р4-89-561, Дубна, 1989.

Рукопись поступила в издательский отдел 28 марта 1990 года.