

Объединенный институт ядерных исследований дубна Ę

A 62

P4-89-384

1989

И.В.Амирханов, О.Лхагва, И.В.Москаленко 1,

Л. Хэнмэдэх ²

ОБОБЩЕННЫЕ СИЛЫ ОСЦИЛЛЯТОРА И СЕЧЕНИЯ АСИММЕТРИЧНОЙ He(e,2e)He⁺ РЕАКЦИИ В РАЗЛИЧНЫХ МОДЕЛЯХ СТРУКТУРЫ АТОМА ГЕЛИЯ

Направлено в журнал "Вестник МГУ"

¹Научно-исследовательский институт ядерной физики МГУ, Москва

²Политехнический институт г.Улан-Батор, МНР

1.Введение

Современные совпадательные эксперименты, определяющие тройные дифференциальные сечения (ТДС) ионизации атомов ударом быстрых электронов, дают возможность осуществить детальную проверку теории и исследовать механизм процесса ионизации^[1]. Вместе с тем (е, 2е) реакции служат мощным средством для получения информации об электронной структуре атома-мишени^[2] и, в том числе, для изучения характеристик автоионизационных резонансов ^[3,4].

ТДС (e,2e) реакции характеризуют меру вероятности того, что при столкновении падающего электрона энергии E_0 и импульса k_0 с мишенью образуются два электрона с энергиями E_a, E_b и импульсами k_a, k_b , которые испускаются в телесные углы $d\Omega_a$ и $d\Omega_b$ [рис.1].

Рис.1. К_ои К_а-начальный и конечный импульсы пролетающего электрона. К_b- импульс эжектируемого электрона. Q = К_o- К_а -переданный импульс . θ_a и θ_b - углы рассеяния и эжекции

соответственно.

Обычно рассматривается реакция в компланарной геометрии, когда регистрируемые на совпадение рассеянный и выбитый электроны находятся в одной плоскости рассеяния.

В (е, 2е) реакции кинематика процесса ионизации полностью определена, так как при заданных энергии Е_о и импульсе k_о падающего (Е_а) и эжектируемого электрона энергии рассеянного (E_b) электронов, а также направления их импульсов строго фиксированы условиями эксперимента. По кинематическим условиям (е.2е) реакции делятся на симметричные и асимметричные. Реакции симметричной геометрии соответствуют следующим условиям на энергии и углы: E_a= E_b, $\theta_a = \theta_b$. В асимметричных (е,2е) реакциях быстрые рассеянные электроны попадают преимущественно внутрь узкого конуса вокруг направления падающего пучка, а медленные эжектируемые электроны (E_b« E_a) выходят под большими углами к падающему пучку и имеют пика в угловом распределении. Один ИЗ HHKOB называют два квазиупругим, он обусловлен прямым взаимодействием падающего

электрона с атомными и направлен примерно вдоль переданного импульса Q. Другой пик, направленный противоположно вектору Q, называют пиком отдачи, он определяется взаимодействием медленного испущенного электрона с остаточным ионом.

Болышинство экспериментов по асимметричным (е,2е) реакциям на атомах водорода^[5,6], атомах гелия^[7-11] и других провелены благородных газов^[12]. В них исследованы (е, 2е) реакции при сравнительно больших энергиях падающего электрона (сотни эВ) и импульса^[1]. значениях переданного Отметим, малых что при высоких энергиях падающего электрона большая доля (≥ 85%) ионизационных событий происходит^[13] в случаях столкновений с малым переданным импульсом (Q≤ 1 a.e.).

рассмотрение асимметричных Теоретическое (e,2e) реакций в рамках первого борновского приближения (ПБП) с проволилось использованием различных приближений лля волновых функций эжектируемого электрона^[1,14,15]. При этом отмечалось расхождение экспериментальных данных и теоретических оценок ТДС асимметричных реакций^[1,9]. Цилиндрическая симметрия, предсказываемая ПБП для квазиупругого пика и пика отдачи ТДС относительно оси-вектора переданного импульса Q, в экспериментальных данных [10,11] наблюдается, эти пики, как правило, смещены от оси Q в сторону больщих углов эжекции. При этом измеренный квазиупругий пик имеет заниженные, а пик отдачи - значительно завышенные значения по В ряде работ^[5,14,16,17] отношению к предсказаниям в ПБП. предложены модификации ПБП и продемонстрирована важность учета эффектов многократного рассеяния [5,14,16] и взаимодействия в конечных состояниях^[17]. Вместе с тем было показано^[18,19], что при высоких энергиях падающего электрона (8 кэВ) эффекты обмена и вклад высших порядков пренебрежимо малы.

Расчеты, проведенные для рассеяния электронов на атоме гелия при энергии 600 эв^[16], указывают на то, что обобщенная сила осциллятора асимметричной (e.2e) реакции очень чувствительна к выбору волновых функций мишени, особенно к учету корреляции электронов мишени как в начальном, так и в конечном состояниях.

анализ^[20] Критический результатов экспериментальных И исследований^[10,21], проведенных при теоретических высоких (8 кэВ) энергиях на атоме гелия и вызвавших сомнение в применимости в этом случае ПБП, привел к выводу о необходимости дальнейшего форсирования точных экспериментов, чтобы С тем, детально проверить существующие теоретические модели. В этом отношении большой интерес представляют проведенные недавно Ломамом-Беннани и др^[22,23]прецизионные эксперименты по асимметричной (е,2е) реакции

на атоме гелия для больших энергий падающего электрона при весьма узких условиях кинематики реакции. Благодаря повышению точности эксперимента (до 6-7%), этим авторам удалось получить в пике отдачи значительно заниженные (примерно на 30%), по сравнению с ранними измерениями^[10], данные и выявить симметрию ТДС по отношению к вектору переданного импульса Q. Наряду с этим было показано, что при энергиях 4 и 8 кэВ ТДОСО и ТДС становятся от электрона, независимыми энергии падающего и ИХ собой. Более того, экспериментальные значения совпадают между хорошо описываются^[22] значения этих величин экспериментальные расчетами в ПБП. Это означает, что ПБП можно применять для расчетов (е,2е) реакций при высоких энергиях, где эффекты высших порядков пренебрежимо малы. При этом считается, что имеющиеся расхождения между теорией и экспериментом в эти условиях обусловлены скорее неадекватностью представления волновых функций В этой связи отметим, что описание прецизионных атома-мишени. полученных Ломамом-Беннани и др. [22] возможно с данных, использованием достаточно точных волновых функций атома-мишени в начальном и конечном состояниях, учитывающих более широкий спектр корреляций, нежели функции, используемые для описания полных сечений ионизации. Такие точные функции необходимы и для описания процессов ионизации атома гелия в случаях, отличных от условий применимости ПБП, в частности для проведения исследования по прямым и резонансным (е, 2е) реакциям на атоме гелия при малых энергиях.

В данной работе обсуждается вопрос о чувствительности ТДОСО и ТДС асимметричной (е,2е) реакции к различным моделям структуры атома-мишени. Проведены расчеты ТДОСО и ТДС для всех рассмотренных эксперименте^[22] наборов в кинематических характеристик с использованием различных моделей структуры атома гелия. Лан комплексный анализ всех имеющихся теоретических И экспериментальных данных по асимметричной (е, 2е) реакции на гелии области высоких энергий падающих электронов и малых (Q ≤ la.e.) значений переданного импульса.

В наших расчетах ТДС и ТДОСО для выбитого электрона использовались решения уравнения Шредингера в кулоновском, статическом и статическом с учетом обмена^{*} потенциалах. В качестве функции начального состояния взяты четыре различных приближенных варианта^[9,27-29], в том числе функция Хиллерааса^[29], где учитываются корреляции, зависящие от взаимного

* В этом случае мы использовали программу из работы^[24]

расположения электронов. Поляризационное взаимодействие эжектируемого электрона с остаточным ионом, которое может оказаться заметным при низких энергиях эжекции, при этом не учитывалось.

Работа построена следующим образом. Во втором разделе изложен формализм, ипользуемый для описания ионизации атома быстрыми электронами в ПБП, приводятся выражения для ТДОСО и ТДС. В третьем разделе описывается процедура вычислений, проводится также сравнение наших результатов с даными из работы^[18] и их обсуждение.

в работе везде используются атомные единицы.

2. Сечения и обобщенные силы осциллятора

 а. Тройное дифференциальное сечение для (е,2е) реакции в ПБП можно представить в виде:

$$d^{3}\sigma/dEd\Omega_{a}d\Omega_{b} = k_{a}/k_{o} |T_{fi}|^{2}$$
(1)

здесь амплитуда перехода

$$T_{fi} = -2/Q^{2} < \Phi_{k_{b}}^{(-)} | \sum_{\alpha=1,2}^{iQr_{\alpha}} | \Phi_{0} > , \qquad (2)$$

где величины **k**₀,**k**_a,**k**_b и Q определены во введении (рис.1). В последнем выражении Ф₀ и Ф_кявляются волновыми функциями атома в начальном и конечном состояниях. Эти функции должны быть ортогональными, так как, вообще говоря, они являются решениями одного и того же уравнения Шредингера:

$$\langle \Phi \begin{pmatrix} \tilde{k} \\ \mathbf{k}_{b} \end{pmatrix} | \Phi_{0} \rangle = 0.$$
 (3)

Учитывая тождественность электронов мишени, представим волновую функцию атома в конечном состоянии в виде:

$$\Phi_{\mathbf{k}_{b}}^{(-)}(\mathbf{r}_{1},\mathbf{r}_{2}) = 1/4\bar{2} \{\Phi_{1s}(\mathbf{r}_{1})\bar{\Psi}_{\mathbf{k}_{b}}^{(-)}(\mathbf{r}_{2}) + (1 \leftrightarrow 2)\}.$$
(4)

Подставляя (4) в (2) и считая ортогональной волновую функцию электрона в основном состоянии остаточного иона к функции выбитого электрона, можно привести выражения (2) к виду

$$T_{fi} = -2\sqrt{2}/Q^2 < \psi_{k_b}^{(-)}(\mathbf{r}) \mid e^{iQ\mathbf{r}} \mid <\Phi_{ls}(\mathbf{r}') \mid \Phi_{o}(\mathbf{r},\mathbf{r}') >>.$$
(5)

Если $\Phi_0(\mathbf{r},\mathbf{r}') = \varphi_0(\mathbf{r})\varphi_0(\mathbf{r}')$, то перекрытие функций в (5) равно

$$\langle \Phi_{1s} | \Phi_0 \rangle = \langle \Phi_{1s} | \varphi_0 \rangle \varphi_0(\mathbf{r}).$$

Разложим функции e^{iQr} и ψ⁽⁻⁾ по сферическим гармоникам :

$$e^{iQr} = 4\Pi \sum_{LM} i^{L} j_{L}(Qr) \Upsilon^{*}_{LM}(\hat{Q}) \Upsilon_{LM}(\hat{r}), \qquad (6)$$

$$\Psi_{\mathbf{k}}^{(-)}(\mathbf{r}) = \sum_{lm} i^{l} e^{-i\delta} I U_{\varepsilon l}(\mathbf{r}) \Upsilon_{lm}^{\star}(\hat{\mathbf{k}}) \Upsilon_{lm}(\hat{\mathbf{r}}), \qquad (7)$$

где ј_L- функция Бесселя и 8₁ - фаза рассеяния. В качестве U_{E1} в настоящей работе используются решения радиального уравнения Шредингера следующего вида:

$$(d^2/dr^2 + k^2 - 1(1+1)/r^2 - V(r)) U_{c1} - \int_{0}^{\infty} dr' W(r,r') U_{c1}(r') = 0$$
, (8)
где V(r)и W(r,r') - локальный и нелокальный потенциалы взаимодействия
выбитого электрона с ионом. При больших г функция U_{c1}

удовлетворяет асимптотическому условию

$$U_{\epsilon l} \rightarrow 4 \Pi / kr \sin(k_b r - 1 \Pi / 2 + \delta_1),$$

Подставляя (6) и (7) в формулу (5) с учетом условия (3), получаем

$$T_{fi} = -2 \sqrt{2}/Q^2 \sum_{L} t_{L}(k_{b}, Q) P_{L}(\cos\theta_{b}) , \qquad (9)$$

где ось z выбрана вдоль вектора переданного импульса Q, Р_L(COSO_b) полином Лежандра, Ор-угол между направлением вектора к и осью Z.

$$t_{L}(k_{b},Q) = (2L+1) e^{i\delta_{L}} I_{\varepsilon L}(Q),$$
 (10)

где

$$I_{\varepsilon L}(Q) = 1/4\Pi \int_{Q}^{\infty} dr U_{\varepsilon L}(r) j_{L}(Qr) \langle \Phi_{1s}(r) | \Phi_{Q}(r, r') \rangle \quad (11)$$

Отметим, что функция Ф ⁽⁻⁾ в выражении (5), а следовательно, и U_{єL} в (11), должны быть выбраны так, чтобы выполнялось условие ортогональности (3).

б. Двойная дифференциальная ОСО (ДДОСО) связана с двойным дифференциальным сечением ионизации следующим соотношением:

$$f^{(2)}(Q,E) = K_{o}/2K_{a}E \sigma^{(2)},$$
 (12)

где $\sigma^{(2)} = d^2 \sigma / d\Omega dE$ - двойное дифференциальное сечение. В пределе Q → 0 ДДОСО в (12) стремится к оптической (дипольной) силе осциллятора f₀^[25, 26]:

$$f_0(E) = \lim_{Q \to 0} f^{(2)}(Q,E) = f^{(2)}(E).$$

Аналогично соотношению (12) можно определить тройную дифференциальную обобщенную силу осциллятора (ТДОСО) :

$$f^{(3)}(Q, E_{b}, \theta_{b}) = K / 2K_{a}E^{2}Q^{2} \sigma^{(3)}(\theta_{a}, E_{b}, \theta_{b}), \qquad (13)$$

где $\sigma^{(3)}(\theta_a, E, \theta_b) = d^3 \sigma / dEd\Omega_a d\Omega_b$ – тройное дифференциальное сечение ионизации, $E=E_0-E_a=E_B+I$ – потери энергии пролетающим электроном, I-потенциал ионизации атома гелия. В первом борновском приближении величина $f^{(3)}(Q, E_b, \theta_b)$ не зависит от энергии падающего электрона E_0 для фиксированных значений Q, E_b и θ_b . Кроме того, в пределе малых переданных импульсов ($Q \rightarrow 0$) ТДОСО как в квазиупругом ($\theta_b=0$) пике, так и в пике отдачи ($\theta_b=1$), стремится к одному и тому же пределу, пропорциональному онтической силе осциллятора $f_0^{[20]}$, т.е:

$$\lim_{Q \to 0} f^{(3)}(Q, E_{\vec{b}}, 0) = \lim_{Q \to 0} f^{(3)}(Q, E_{\vec{b}}, \Pi) = 3/4\Pi f_{0}(E).$$
(14).

3. Процедура вычисления и результаты

в работе вычислены ТДОСО в квазиупругом пике и пике отдачи, а также ТДС с использованием различных приближений для волновых функций начального и конечного состояний φ_0 и Ψ_{K_h} . Радиальные функции U, для эжектируемого электрона получены путем численного интегрирования дифференциального уравнения в случае статического потенциала, и интегродифференциального уравнения, когда движение электрона рассматривается в нелокальном потенциале с учетом обмена. Наряду с этим использована и кулоновская функция. В конечном состоянии взята невозмущенная функция основного состояния остаточного иона гелия. Для этих функций введем обозначения S,SE,C и U соответственно. Расчеты проведены с 4 различными начальными волновыми функциями : простой вариационной функцией^[27], одноконфигурационной двойной зета -функцией^[9], одноконфигурационной рутан-хартри-фоковской функцией Клементи и Ростти^[28] и Хиллерааса^[29]. шестипараметрической функцией Обозначим эти функции SV, DZ, CR и 6Н соответственно.

Комбинации упомянутых волновых функций начального и конечного состояний атома мишени приводят к различным моделям для описания рассматриваемой нами асимметричной (е,2е) реакции. В дальнейшем, следуя Твиду и Ланглоису^[18], введем для этих моделей компактные обозначения. В частности, когда в качестве основного состояния атома берется функция 6H, для остаточного иона функция U и для выбитого электрона SE, мы получаем модель 6H|U|SE. Тахим же

образом, комбинируя CR,U и S функции, получим CR|U|S модель; у нас таких комбинаций 12 .

Волновые функции атома в конечном состоянии ортогонализованы к функции основного состояния атома гелия по методу Шмидта.

В расчетах в зависимости от величины энергии эжектируемого электрона и переданного импульса учитывались от 6 до 12 парциальных волн. Точность расчетов контролировалась поэтапно разными способами. Численные значения ТДОСО в модели SV[U]Cпроверялись на совпадение с результатами расчета по аналитическим выражениям^[30]. При этом было достигнуто совпадение 4-5 значащих цифр, что достаточно для описания данных эксперимента. В случае DZ[U]S модели проведено также сравнение с данными расчетов Твида и ланглоиса^[18].

Основные результаты работы приведены в таблице и на рисунках 2-7. Зависимость ТДОСО от переданного импульса при малых значениях энергии эжекции сравнивается с соответствующими данными предыдущих авторов^[18,22,32] (см. табл.). Значения ТДОСО в модели работы^[18]и в нашей DZ U S из DZUS отличаются весьма незначительно. приведенная в таблице комбинация V1|U|SEP эксперимент^[22] описывает лучше моделей. использованных в работах^[18,22]. В последней модели в качестве V1 и SEP использованы : многоконфигурационная вариационная функция [18] в которой корреляция электронов учитывалась путем включения s², p², d² и f² термов и решение уравнения Шредингера с потенциалом, содержащим статическую, обменную и поляризационную компоненты. В таблице также джакобса^[32]. приведены данные из работы модели дают похожие зависимости ТДОСО от Сравниваемые здесь переданного импульса. Видно, что значения тдосо в моделях 6H[U]S и Viju|SEP близки, особенно это относится к квазиупругому пику. При энергии эжекции 19,4 эВ и переданном импульсе 0,8 а.е. данные в моделях 6H|U|S и V1|U|SEP слегка отличаются в пике отлачи.

Зависимость величины максимумов ТДОСО от переданного импульса в обоих ее пиках, а также их отношения, полученные в рассматриваемых нами моделях, изображены на рис. 2 и 3 вместе с соответствующими экспериментальными данными^[22] в интервале переданного импульса 0,1< Q <0,9. Модели CR,DZ,6H|U|S лучше описывают экспериментальные данные^[22] при энергии эжекции 20 эВ (рис.2a,S и 3a,S), а при 4,3 эВ лучшее согласие достигается в случае использования моделей CR,DZ,6H|U|SE (рис.26,SE и 36,SE).

Комбинации CR, DZ UC удовлетворительно описывают экспериментальные данные (рис. 26, С и 36, С). При энергии эжекции 4, 3 эв зависимость отношения R ТДОСО от переданного импульса Q весьма чувствительна к различным моделям структуры атома-мишени (рис. 36).

в непрерывном спектре атома гелия								
Е _b (эв)	2, 7		5,4		10		19,4	 1
Q(a.e.)	0,2	0,8	0,2	0,8	0,2	0,8	0,2	0,8
квазиупругий	й пик							
CR U S ⁺	0,439	0,373	0,400	0,472	0,313	0,554	0,211	0,516
Dz U S ⁺	0,441	0,376	0,400	0,476	0,311	0,558	0,209	0,517
6н ∪ s ⁺	0,456	0,386	0,415	0,487	0,321	0,572	0,212	0,530
Dz U S [*]	0,441	0,379	0,400	0,478	0,311	0,558	0,209	0,514
V1 U SEP*	0.451	0.396	0,418	0,542	0,323	0,540	0,217	0,537
джакобс*	0.438	0.383	0,404	0,493	0,322	0,580	0,224	0,539
пик отдачи								-
CRUS	0,322	0,149	0,258	0,116	0,178	0,079	0,112	0,051
Dz U S ⁺	0,322	0,149	0,256	0,115	0,176	0,079	0,111	0,050
6н U S ⁺	0,335	0.153	0,265	0,117	0,179	0,079	0,110	0,050
DZ U S*	0,322	0,150	0,256	0,115	0,165	0,078	0,111	0,051
V1 U SEP*	0,309	0.120	0,251	0,113	0,172	0,085	0.108	0,034
джакобс*	0,296	0,111	0,240	0,087	0,172	0,059	0,115	0,038

Таблица. Тройные дифференциальные обобщенные силы осциллятора

+ настоящие расчеты, * взяты из работы^[18].

Заметим, что расчеты в моделях 6H|U|C и SV|U|SE,S сильно отличаются от данных эксперимента. По-видимому, это указывает на необходимость более точного учета корреляции электронов одновременно в начальном и конечном состояниях.

Рассмотрим поведение тдосо вблизи оптического (Q → 0) предела. Численные значения ТДОСО во всех моделях, за исключением 6H|U|SE,S,C комбинаций, при Q → 0 весьма близки к оптическому пределу^[20,32], с правильным восстановлением отношения ($R \rightarrow 1$). Однако можно увидеть и их различия в зависимости от энергий эжекции. При Q = 0,002 а.е. и энергии эжекции 4,3 эВ численные в CR, DZ | U | SE значения тлосо моделях отличаются OΤ экспериментальных данных [31] примерно на 0.2%. а при энергии эжекции 20 эВ на 10-12%. При том же значении переданного импульса энергии эжекции 4,3 и 20 эВ CR, DZ U S модели отличаются от и эксперимента примерно на 1,1 и 1,5 процентов соответственно. Следовательно, комбинации CR, DZ функций с искаженными волнами SE, S общем правильно воспроизводят поведение ТДОСО вблизи иС в оптического предела. При энергии эжекции 4,3 эВ модели

Рис.2. Зависимость ТДОСО от переданного импульса Q. Верхние ветви соответствуют максимуму квазиупруго пика ($\theta_b^{=}$ 0), нижниемаксимуму пика отдачи ($\theta_b^{=}\Pi$). Энергии (эВ): а) $E_0^{=4106}$, $E_a^{=4061}$, $E_b^{=20}$ б) $E_0^{=4090}$, $E_a^{=4061}$, $E_b^{=4,3}$; \blacksquare - эксперимент Ломама-Беннани и др.(1987). Связь между символами и моделями:- SV|U|SE,S,C; ----- - 6H|U|SE,S,C. а ---- совнадающие результаты CR,DZ|U|SE,S,C моделей.

CR, DZ | U | SE, S , а при 20 ЭВ модели CR, DZ | U | S дают хорошее приближение оптического предела.

На рисунках 4 – 7 показаны полярные графики теоретических и экспериментальных^[22] значений ТДС для некоторых углов рассеяния при энергиях эжекции 4,3 и 20 эВ.

Прежде всего заметим, что рутан-хартри-фоковская функция Клементи и Роетти и двойная зета-функция в комбинации с каждой из функций непрерывного спектра для эжектируемого электрона SE,S и С дают почти совпадающие между собой значения в каждом рассмотренном нами варианте реакции. Как уже отмечалось, простая вариационная функция SV с любой из функций SE,S и С, в целом, приводит к оценкам, значительно отличающимся от эксперимента.

Рис.3. Отношение R интенсивностей ТДОСО в максимумах квазиупругого пика (θ_b =0) и пика отдачи (θ_b =П) в зависимости от переданного импульса Q. Энергии эжекции: a) 20 эВ,6) 4,3 эВ. Модели и символы такие же, как на рис.2. Здесь совпадающие результаты CR,DZ,6H|U|SE,S,C моделей обозначены - ________ ---____, а SV,CR,DZ|U|SE,S,C моделей ---...

Рис.4. ТДС (в а.е.) как функция угла эжекции при $E_a = 8000$ эв и $E_B = 20$ эв. Углы рассеяния $\theta_a = 0,41$ и $0,75^0$. Стрелки указывают направление Q. Символы и модели такие же, как на рис. 2 и 3.

Рассмотрим случай реакции при энергии эжекции 20 эВ (рис.4 и 5). Видно, что при малых углах рассеяния (до 1,48⁰ включительно) теоретические значения ТДС в моделях CR DZ, 6H|U|S проходят через экспериментальные точки (рис.4,S и 5,S,1,48⁰), a CR,DZ|U|C описывают экспериментальные данные с небольшими комбинации отклонениями (рис.4,С и 5). Комбинации CR,DZ,6H|U|SE приводят к несколько заниженным оценкам в обоих пиках. (рис.4.SE 5, SE, 1, 48⁰). Следовательно, при энергии эжекции 20 эв и малых углах рассеяния (Q_а≤ 1,48⁰) волновая функция выбитого электрона в статическом потенциале в сочетании с функциями CR, DZ и 6Н для основного состояния атома гелия весьма хорошо описывает процесс ионизации атома гелия ударом быстрых электронов.

При угле рассеяния 2⁰ модели CR, DZ, 6H |U|SE, C дают значения, достаточно хорошо описывающие экспериментальные данные в квазиупругом пике, в то же время модели CR, DZ, 6H |U|S приводят к результатам, отличающимся от эксперимента в обоих пиках (рис. 5, 2⁰). Значит, при больших углах рассеяния ($\theta_a = 2^{\circ}$) на значения ТДОСО и ТДС заметно влияют волновые функций атома -мишени (рис. 5, 2⁰). По-видимому, это особенно важно при описании

Рис.5. То же, что и на рис4. Углы рассеяния $\theta_n = 1,48$ и 2⁰.

конечного состояния. Можно полагать, что для малых значений переданного импульса в ТДОСО и ТДС доминируют дипольные переходы, которые оказываются менее чувствительными к выбору волновых функций атома-мишени. С увеличением переданного импульса Q, становятся существеннее эффекты корреляций, взаимодействия в конечном состоянии и эффекты кратного столкновения.

Переходя к случаю малой энергии эжекции (4,3 эВ), можно увидеть заметное отличие ТДС от случая, когда энергия выбитого электрона составляет 20 эΒ (рис. 6 И 7). В пределах экспериментальных ошибок модели CR, DZ, 6H|U|SE при углах рассеяния 0.75⁰, 1,51⁰, CR,DZ,6H|U|S при 1,51⁰, 2⁰, а CR,DZ,6H|U|C при угле 0,75⁰ неплохо описывают экспериментальные данные в обоих пиках При малых углах рассеяния (0_a=0,41⁰) и небольших энергиях тдс. эжекции все используемые нами модели пике отдачи дают в заниженные по сравнению с экспериментальными данными значения (рис.6, SE, S, C, O, 41⁰). При угле рассеяния 2⁰ значения ТДС, особенно в пике отдачи, оказываются чувствительными к выбору волновой (рис. 7, SE, S, C, 2⁰). функции конечного состояния мишени

Рис.6. То же,что и на рис.4. При Е_=4,3 эВ.

Рис. 7. То же, что и на рис. Углы рассеяния 0₂=1,51,2⁰

Расчеты ТДОСО и отношения R в моделях CR, DZ, 6H U S лучше описывают экспериментальные данные^[22], чем в модели V1|U|SEP при энергии эжекции 20эВ, а при 4,3 эВ модель VI|U|SEP дает более близкие к экспериментальным данным значения. чем модели CR, DZ, 6H|U|SE. Полярные графики ТДС, полученные в моделях CR, DZ, 6H|U|S при энергии 20 эВ, также описывают экспериментальные данные лучше, нежели расчеты в модели V1 U SEP. Это значит, что с увеличением энергии эжекции электрона уменьшается роль обменной и поляризационной компонент потенциала взаимодействия электрона с ионом гелия. С другой стороны, учет поляризационной добавки в ионэлектронном взаимодействии может оказаться важным при малых энергиях эжекции.

Затем, что при энергии эжекции 4,3 эВ значения ТДС в модели 6H/U/SE оказываются несколько ближе к экспериментальным данным, чем в V1/U/SEP модели, особенно это относится к малым углам

рассеяния. На наш взгляд, это скорее всего связано с различием учета корреляции электронов в 6Н и V1 функциях основного состояния атома гелия.

Заключение

Наши расчеты подтверждают вывод предыдущих авторов^[22] о применимости ПБП для описания Не(e,2e)Не⁺ реакции при энергии падающего электрона Е₀ ≥ 4кэВ для малых и средних значений переданного импульса.

В интервале переданного импульса 0,1<Q<0,9 модели 6H|U|SE,S хорошо описывают процесс ионизации атома гелия быстрыми электронами. При больших энергиях эжекции асимметричную He(e,2e)He⁺ реакцию с хорошей точностью могут описать модели 6H|U|S и CR,DZ|U|S.

Для описания реахции при энергиях эжекции (Е ≤ 4,3 эВ), по-видимому, необходимо улучшить функции начального и конечного состояний, что требует более точного описания межэлектронных корреляций в атоме-мишени, а также учета поляризационного взаимодействия эжектируемого электрона с остаточным ионом.

Для больших углов рассеяния ($\theta = 2^{0}$) значения ТДС и ТДОСО при разных энергиях эжекции чувствительны к выбору волновых функций конечного состояния атома гелия (рис.5,2⁰и 7,2⁰), что подчеркивает важность проблемы описания структуры непрерывного спектра гелия в рекциях (e, 2e).

Авторы благодарят проф. В.В.Балашова, а также С.И.Страхову и А.Н.Грум-Гржимайло за постоянный интерес и стимулирующие обсуждения. Один из авторов (О.Л.) признателен Т.Эрдэнэдэлгэру и А.Рийжээ за техническую помощь.

ЛИТЕ РАТУРА

- 1. Joachain C.J Few Body Systems, Suppl.2, (1987), 294
- 2. McCarthy I.E., Weigold E. : Rep.Rrog.in Phys.51, (1988), 299
- 3. Балашов В.В., et al. : Phys. Lett. 39A, (1972),103
- 4. Weigold E. et al. : Phys. Rev. Lett. 35, (1975), 209
- 5. Ehrhardt H., et al. : Phys. Lett.A110,(1985),92
- 6. Lohmam-Bennani A., et al.: Phys.Rev A30, (1984),758
- 7. Ehrhardt H., et al. : Phys.Rev.Lett.22, (1969),89
- 8. Ehrhardt H., et al. : Phys. Rev. Lett. 48,(1982),1807
- 9. Jung K., et al. : J.Phys B 18, (1985),2955
- 10. Lahmam-Bennani A., Wellenstein H.F., Dal Cappello C., Duguet A.: J.Phys. B17, (1984), 3159
- 11. Muller-Fielder R., Schlemmer P., Jung K., Ehrhardt H. : Z.Phys. A320, (1985), 89

```
12. Lahmam-Bennani A., et al. : J.Phys. B16, (1983), 121
13. Ehrhardt H., Fisher M., Jung K.: Z. Phys. A304, (1982), 119
14. Byron F.W., Joachain C.J., Piraux B.: J.Phys. B19, (1986), 1201
15. Balashov V.V., et al. J. Phys. B12, (1979), L27.
16. Franz A., Klar H.: Z. Phys.Dl, (1986), 33
17. Klar H., Franz A., Tenhagen H. : Z.Phys.Dl,(1986),373
18. Tweed R.J., Langlois J. : J.Phys. B20, (1987), 5213
19. Tweed R.J., Langlois J. : J.Phys. B20, (1987), L259
20. Lahmam-Bennani A., Cherid M., Duquet A.
             J. Phys. B20, (1987), 2531
21. Lahmam-Bennani A., et al. : J.Phys. B16.(1983),2219
22. Duguet Alain et al.:, J.Phys. B20, (1987), 6145
23. Cherid M., Duguet A ., Lahmam-Bennani A.,
             J. Phys.B20, (1987), L187
24. ДОЛИНОВ В.К., КОДЕНМАН Г.Я., МОСКАЛЕНКО И.В., ПОПОВ В.П.
    Труды международного симпиозиума по проблемам взаимодействия
    мюонов и пионов с веществом. Дубна, ОИЯИ, 1987, с. 413.
    Д14-87-799, с.413.
25. Ionokuti M.: Rev. Mod. Phys. 43, (1971), 297
26. Lassettre E. N.et al.: J.Chem. Phys. 50, (1969), 1829
27. Балашов В.В., Долинов В.К. Квантовая механика (1982)
               Москва, издательство МГУ, с. 181.
28. Clementi E., and Roetti C.: At. Data Nucl.
               Data tables 14,(1974),177
29. Stewart A.L., Webb T.G,: Proc. Phys. Soc. 82,(1963),532
30. ландау л.д., лифшиц Е.М. Квантовая механика, (1974)
              Москва, Наука, с. 713
31. Samson J.A. R.: Phys. Rep. 28, (1976), 303
32. Jacobs V.L. Phys. Rev. A10, (1974), 499
```

Рукопись поступила в издательский отдел 30 мая 1989 года.