

Объединенный институт ядерных исследований дубна

6.21

P4-88-539

Е.Б.Бальбуцев, И.В.Молодцова

СТАТИЧЕСКАЯ ДЕФОРМАЦИЯ АТОМНЫХ ЯДЕР И ГИГАНТСКИЙ КВАДРУПОЛЬНЫЙ РЕЗОНАНС

Направлено в журнал "Ядерная физика"

1988

1. ВВЕДЕНИЕ

В ^{/1,2/} разработан метод описания коллективного движения в атомных ядрах, основанный на динамических уравнениях для различных моментов функции Вигнера. Там изучались колебания вращающихся сферических ядер, в которых деформация возникала из-за вращения. Целью данной работы является обобщение подхода на случай ядер, имеющих статическую деформацию.

2. РАВНОВЕСНАЯ ФОРМА ЯДЕР

Следуя работам $^{\prime 1,2'}$, запишем систему динамических уравнений для тензора инерции ${f J}_{ii}$ и тензора давлений ${f \Pi}_{ij}$:

$$\frac{d^2 J_{ij}}{dt^2} - 2K_{ij} - 2U_{ij} - 2\Pi_{ij} - 2C_{ij} + 4\sigma_{ij} = 0, \qquad /2.1/$$

$$\frac{d \Pi_{ij}}{dt} + \frac{3}{\Sigma} \int (F_{ik} - \frac{\partial u_j}{\partial x_k} + F_{jk} - \frac{\partial u_i}{\partial x_k}) d\vec{i} = 0, \qquad (2.2)$$

где

$$J_{ij} = \int \rho \mathbf{x}_i \mathbf{x}_j d\vec{\mathbf{r}},$$

$$\Pi_{ij} = \int P_{ij} d\vec{\mathbf{r}}, \quad P_{ij} = \frac{1}{m} \int \mathbf{w}_i \mathbf{w}_j f(\vec{\mathbf{r}}, \vec{\mathbf{p}}, t) d\vec{\mathbf{p}},$$

 $\mathbf{w}_i = \mathbf{p}_i - \mathbf{m}\mathbf{u}_i$,

 $f(\vec{r}, \vec{p}, t)$ - функция Вигнера, $n(\vec{r}, t)$ - плотность числа частиц, m - масса нуклона, $\rho = m \cdot n$ - массовая плотность, $\vec{u}(\vec{r}, t) =$ $= \frac{1}{\rho} \int \vec{p} f(\vec{r}, \vec{p}, t) d\vec{p}$ - поле коллективных скоростей, $K_{ij} = \int \rho u_i u_j d\vec{r}$ - тензор кинетической энергии ядра, $U_{ij} = \delta_{ij} \int n(\vec{r}) U(\vec{r}) d\vec{r}$ - тензор объемной энергии, $U(\vec{r})$ - ядерный потенциал, $\sigma_{ij} =$ $= \frac{1}{2} \int x_j n(\vec{r}) U(\vec{r}) s_i d\vec{s}$ - тензор поверхностной энергии. В этом интеграле ядерный потенциал можно аппроксимировать поверхностным натяжением /см. $^{/1,2/}$.

Bharris	-			
WW SALAY LINE IN	•	•		ł
TROP I			· . k	
East.				

1.

$$C_{ij} = \frac{1}{2} \iint q(\vec{r}) q(\vec{r}') - \frac{(x_i - x'_i)(x_j - x'_j)}{|\vec{r} - \vec{r}'|^3} d\vec{r} d\vec{r}'$$

тензор кулоновской энергии $(q(\vec{r}) = n Ze_p / A - зарядовая плот ность, A - атомный вес, Z - число протонов, <math>e_p$ - заряд протона).

Равновесную форму ядра можно определить с помощью стационарных решений уравнений /2.1/, /2.2/. Рассмотрим простейший случай, когда в состоянии равновесия токи в ядре отсутствуют, т.е. $\vec{u}(\vec{r},t) = 0$. Тогда уравнение /2.2/ удовлетворяется тождественно, а из /2.1/ получаем:

$$\Pi_{ij} - 2\sigma_{ij} + C_{ij} + U_{ij} = 0.$$
 /2.3/

Будем считать ядро каплей идеальной жидкости с резким краем, имеющей форму эллипсоида с полуосями $a_1, a_2, a_3 \cdot a_3^2 = a_0^2(1 - a_3)$

 $-\frac{4}{3}\delta\cos\gamma$), $a_{1,2}^2 = a_0^2(1-\frac{4}{3}\delta\cos(\gamma \pm 120^\circ))$, δ - деформация, γ -

параметр неаксиальности, а, фиксируется условием сохранения

ядерного объема:

$$a_1 a_2 a_3 = R^3 = r_0^2 A$$
 $(r_0 = 1, 2 \Phi M)^{/1, 2/}$.

В этом случае все недиагональные компоненты уравнения /2.3/ удовлетворяются тождественно и /2.3/ приобретает вид:

$$\Pi_{ii} - 2\sigma_{ii} + C_{ii} + U = 0$$
 /2.4/

Формулы для С_{ii} и σ_{ii} получены в работах $^{/3,4/}$ и приведены так-же в $^{/1,2/}$.

В случае сферического ядра $/\delta = 0/$ все три уравнения /2.4/совпадают:

/2.5/ $\Pi_{0} - 2\sigma(0) + C(0) + \mathcal{U} = 0.$

Здесь $\sigma(0) = \frac{2}{2} \pi T R^2$, $C(0) = \frac{4}{3} X \pi T R^2$, $X = 2\pi q^2 R^3 / 15 T$ - параметр делимости, T - коэффициент поверхностного натяжения $^{/1/}$. Π_0 можно вычислить в простейшем приближении для функции распределения /ферми-ступенька/: Π_0 =

$$= \frac{1}{5} \operatorname{Am} v_{F}^{2} = \operatorname{Ah}^{2} (9\pi)^{2/3} / (20 \operatorname{mr}_{0}^{2}), \ rge v_{F}^{2} - скорость Ферми.$$

Вычитая уравнение /2.5/ из /2.4/, получаем:

$$\Pi_{ii} = 2(\sigma_{ii} - \sigma(0)) - (C_{ii} - C(0)) + \Pi_0.$$
 /2.6/

Это соотношение очень хорошо демонстрирует роль различных тензоров в возникновении статической деформации атомных ядер. Во-первых, отметим отсутствие тензора объемной ядерной энергии. Следовательно, он не имеет никакого значения при описании формы ядер. Более того, можно показать, что кулоновские и ядерные поверхностные силы также не являются определяющими для возникновения статической деформации. Действительно, рассмотрим разность каких-либо двух уравнений из /2.6/:

$$\Pi_{11} - \Pi_{33} = 2(\sigma_{11} - \sigma_{33}) - (C_{11} - C_{33}). \qquad (2.7)$$

Если положить тензор давлений изотропным, т.е. $\Pi_{11} = \Pi_{22} = \Pi_{33}$, то /2.7/ сводится к

$$2(\sigma_{11} - \sigma_{33}) - (C_{11} - C_{33}) = 0.$$
 (2.8/

В работе $^{/1}$ было показано, что кроме тривиального решения $\delta=0$. это уравнение имеет также решения с $\delta \neq 0$. Однако они возможны только при весьма экзотических значениях параметра делимо-

сти: Х > 1 для сплюснутых сфероидов и Х > 0.89 для вытянутых сфероидов. Таким образом, практически для всех существующих ядер предположение об изотропности тензора давлений однозначно ведет к сферической форме. Деформация возможна только при анизотропном тензоре давлений.

Принято считать, что первопричиной деформации являются оболочечные эффекты^{/5/}. Мы можем уточнить это положение, заметив, что в образовании самих оболочек главенствующую роль играет оператор кинетической энергии, так как диагональная часть тензора давлений есть не что иное, как среднее значение этого оператора.

Воспользовавшись какой-либо реалистической моделью основного состояния /скажем, схемой Нильсона/, можно было бы рассчитать П,, и потом из /2.7/ определить деформацию ядра. Но цель этой работы другая, поэтому мы будем брать δ из эксперимента, а зависимость II, от деформации будем определять из /2.6/.

3. СПЕКТР КВАДРУПОЛЬНЫХ КОЛЕБАНИЙ. РАСЩЕПЛЕНИЕ ГКР

В работах /1,2/ было показано, что для определения собственных частот квадрупольных колебаний ядра достаточно изучить вариации уравнений /2.1/. /2.2/:

$$\frac{1}{2} \ddot{V}_{ij} - \pi_{ij} + 2\sigma_{ij} - \delta C_{ij} - \delta U_{ij} = 0,$$

$$\cdot \frac{1}{\pi_{ij}} + \frac{5}{mA} \left(\Pi_{ii} - \frac{\dot{V}_{j,i}}{a_i^2} + \Pi_{jj} - \frac{\ddot{V}_{i,j}}{a_j^2} \right) = 0.$$
(3.1/

Здесь $V_{ij} = V_{i,j} + V_{j,i}$, $V_{i,j}(t) = \int \rho \xi_i \mathbf{x}_j d\mathbf{r}$, $\xi(\mathbf{r},t)$ - малое смещение элемента ядерной материи, $\pi_{ij} = \delta \Pi_{ij}$ - вариация тензора давлений. Тензоры $\delta \sigma_{ij}$ и δC_{ij} являются линейными комбинациями функций $V_{ij}^{\prime 1-4\prime}$.

Последнее уравнение показывает, что в системе имеется интеграл движения

$$\pi_{ij} + \frac{5}{mA} \left(\Pi_{ii} - \frac{V_{j,i}}{a_i^2} + \Pi_{jj} - \frac{V_{i,j}}{a_j^2} \right) = \text{const.}$$
 /3.2/

Его толкование очевидно: деформация ядра в конфигурационном пространстве ($V_{i,j}$) неизбежно ведет к деформации в импульсном пространстве (π_{ij}), которую принято называть деформацией поверхности Ферми^{/6/}. Нас интересуют периодические во времени решения $V_{i,j}(t) = V_{i,j} e^{i\nu t}$, $\pi_{ij}(t) = \pi_{ij} e^{i\nu t}$, поэтому можно положить const = 0.

Для аксиально-симметричных ядер $(a_1 = a_2)$ система /3.1/ распадается на три независимых подсистемы.

Две первые определяют моды положительной сигнатуры, γ -моду:

$$-\frac{1}{2}(\ddot{V}_{11} - \ddot{V}_{22}) - a_1(V_{11} - V_{22}) - 2(\delta\sigma_{11} - \delta\sigma_{22}) + (\delta C_{11} - \delta C_{22}) - 0.$$

$$-\ddot{V}_{12} - 2a_1V_{12} - 4\delta\sigma_{12} + 2\delta C_{12} = 0,$$
(3.3)

и β-моду:

$$-\frac{1}{2}(\ddot{V}_{11} + \ddot{V}_{22} - 2\ddot{V}_{33}) - a_1(V_{11} + V_{22}) + 2a_3V_{33} -$$

$$-2(\delta\sigma_{11} + \delta\sigma_{22} - 2\delta\sigma_{33}) + (\delta C_{11} + \delta C_{22} - 2\delta C_{33}) = 0, \qquad /3.4/$$

$$-\frac{1}{2}\ddot{V}_{33} - a_{3}V_{33} - 2\delta\sigma_{33} + \delta C_{33} + \delta \mathcal{U} = 0.$$

Третья подсистема описывает моду отрицательной сигнатуры - назовем ее *а*-модой:

$$-\ddot{V}_{13} - (a_1 + a_3) V_{13} - 4 \delta \sigma_{13} + 2 \delta C_{13} = 0,$$

$$-\ddot{V}_{23} - (a_1 + a_3) V_{23} - 4 \delta \sigma_{23} + 2 \delta C_{23} = 0.$$

(3.5/

Здесь введены обозначения:

$$a_1 = \frac{5 \prod_{11}}{m A a_1^2}, \quad a_3 = \frac{5 \prod_{33}}{m A a_3^2}$$

Последнее уравнение системы /3.4/ нужно лишь при описании мод сжатия. В случае несжимаемой ядерной материи оно заменяется соотношением $\sum_{i=1}^{3} V_{ii} / a_i^2 = 0$, которое следует из условия несжимаемости /1/. Выражая δa и 80 новое V

Выражая $\delta \sigma_{ij}$ и δC_{ij} через V $_{ij}$, получаем формулы для частот $lpha^-,\ eta^-$ и у-колебаний

$$\begin{aligned} \nu_{a}^{2} &= 2\sigma + a_{1} + a_{3}, \\ \nu_{\beta}^{2} &= 2\left\{a_{1} + \frac{2R^{3}}{\rho}\left[\frac{15T}{4a_{1}^{2}}\left(\hat{d}_{1} + \hat{\pi}_{13} - 2\hat{\pi}_{11}\right) - \right. \right. \\ &- \pi q^{2}\left(2B_{11} - B_{13}\right)\right] + \left[2a_{3} + \frac{2R^{3}}{\rho}\left[\frac{15T}{4a_{3}^{2}}\left(2\hat{d}_{3} - \frac{3.7}{4a_{3}^{2}}\right) - \frac{3\hat{\pi}_{33}}{a_{1}^{2}}\right] - \pi q^{2}\left(3B_{33} - B_{13}\right)\right] \frac{a_{3}^{2}}{a_{1}^{2}} \left[\frac{1(1 + 2\frac{a_{3}^{2}}{a_{1}^{2}})}{a_{1}^{2}}\right], \\ \nu_{\gamma}^{2} &= \sigma_{1} + 2a_{1}, \\ r_{Ae} \hat{q}_{1}, \hat{q}_{1j}, \hat{\pi}_{1j}, B_{1j} - \mu_{H} qekchue символы, выписанные в ра-\\ c = \frac{2R^{3}}{a} \left(15T\right) c = 2R^{3} \left(15T\right) c = 2R$$

$$= \frac{2R^{3}}{\rho} \left(\frac{15T}{4} \hat{\mathbf{G}}_{13} - \pi q^{2} \mathbf{B}_{13} \right), \quad \sigma_{1} = \frac{4R^{3}}{\rho} \left(\frac{15T}{4} \hat{\mathbf{G}}_{11} - \pi q^{2} \mathbf{B}_{11} \right).$$

На рис.1 показана зависимость спектра a^- , β^- , γ^- колебаний от деформации ядра δ для сплюснутых ($a_3 < a_1 = a_2$) и вытянутых ($a_3 > a_1 = a_2$) сфероидов. Как видно, наличие деформации приводит к расщеплению гигантского квадрупольного резонанса /ГКР/. Известно, что статическая квадрупольная деформация не снимает вырождения состояний ГКР полностью: моды с проекциями углового момента на ось симметрии, равными К и -К/|К| = 1,2/, имеют одинаковую энергию. Поэтому мы наблюдаем три ветви в спектре ГКР, каждой из которых можно поставить в соответст-

Таблица.	Ушпрепие	FKF	за счет	деформации	$0 - 3\epsilon/(2(3-\epsilon))^{2}$	<i>'</i> .
	·		30		• • • • • • • • • • • • • • • • • • • •	

Элемент	Деформация є ^{/ 5/}	Ширина ГКР _{эксп} МэВ	Уширение ГКР ГКР _{эксп} МэВ	Уширение ГКР _{теор} МэВ
96 _{M0} 100 _{M0} 142 _{Nd} 150 _{Nd} 144 _{Sm}	0 0,19 0 0,23 0	4,8±0,6 /7/ 5,1±0,5 /7/ 3,8 /7/ 5,0±0,2 /7/ 3,9±0,2 /8/ 5,4 /7/	0,3 1,2±0,2	- 1,0 - 1,0 -
¹⁵² Sm ¹⁵⁴ Sm	0,26 0,28	2,4±0,2 ^{/9/} 4,3±0,2 ^{/8/} 4,7±0,3 ^{/8/} 5,5 ^{/7/}	0,4±0,3 0,8±0,3 0,1	1,2 1,3
¹⁶⁴ Dy 174Hf 230U	0,28 0,25 0,22	3,7±0,3'9'	1,3±0,3	1,3 1,1 0,9

Расщепление ГКР за счет деформации экспериментально проявляется в его уширении. Величина уширения, полученная в наших расчетах, слабо меняется от ядра к ядру /см. таблицу/ и составляет в среднем 1 МэВ, что совпадает с экспериментальными данными./7-9/.

4. ВЕРОЯТНОСТИ Е-2 ПЕРЕХОДОВ

Для расчета приведенных вероятностей электромагнитных пере-ходов используем теорию линейного отклика $^{/10/}$. В случае возму-щения $W(t) = \hat{Q}_{0,1} e^{-i\nu t} + \hat{Q}_{9,1}^{+} e^{+i\nu t}$ имеем:

$$B(E2; E_n \to E_0) = |\langle \psi_n | \hat{\mathbf{Q}}_{2\mu} | \psi_0 \rangle|^2 =$$

$$= \lim_{\nu \to \nu_n} \hbar(\nu - \nu_n) \langle \psi_0' | \hat{\mathbf{Q}}_{2\mu} e^{-i\nu t} | \psi_0' \rangle.$$
(4.1/

Здесь ψ_0 и ψ_n - невозмущенные волновые функции основного и воз-бужденных стационарных состояний; ψ_0 -возмущенная волновая функ-ция основного состояния; $\nu_n = (E_n - E_0)/\hbar$ - нормальные частоты системы, черта означает усреднение по интервалу времени, много большему, чем $1/\nu$, ν - частота внешнего поля.

$$\hat{G}_{2\mu} = \frac{e_p Z}{A} r^2 \Upsilon_{2\mu}$$
 опоратор квадрупольного электрического момен-

та, $\mathbf{Y}_{2\mu}$ - сферические функции. Матричный элемент $<\psi_0'|\hat{\mathbf{Q}}_{2\mu}|\psi_0'>$ можно определить, не вычисляя волновых функций системы:

$$\langle \psi'_0 | \hat{\mathbf{Q}}_{2\mu} | \psi'_0 \rangle = \int \psi'_0 (\vec{\mathbf{r}}, t) \psi'_0 (\vec{\mathbf{r}}, t) \hat{\mathbf{Q}}_{2\mu} d\vec{\mathbf{r}}.$$

Заметим, что $\psi'^*(\vec{r},t) \psi'(\vec{r},t) = n'$ /из определения матрицы плот-ности/, $n' = n_0^0 + \delta n$; n_0^0 - плотность в равновесном состоянии. Тогда

$$\langle \psi_{0}' | \hat{\Theta}_{2\mu} | \psi_{0}' \rangle = \int n_{0}(\vec{r}) \hat{\Theta}_{2\mu} d\vec{r} + \int \delta n(\vec{r}, t) \hat{\Theta}_{2\mu} d\vec{r}.$$
 (4.2)

Первый интеграл в этом выражении при усреднении по времени зануляется. Таким образом, матричный элемент
 $\langle \psi_0' | \hat{\mathbf{Q}}_{2\mu} | \psi_0' >$ записьвается в терминах наших коллективных переменных:

$$<\psi'_{0}|\hat{\mathbf{Q}}_{2\mu}|\psi'_{0}> = \delta \mathbf{Q}_{2\mu}$$
, /4.3/
 $\delta \mathbf{Q}_{2\mu}$ является линейной комбинацией $\mathbf{V}_{i,j}^{\prime 1\prime}$. Например,
 $\delta \mathbf{Q}_{20} = -\sqrt{\frac{5}{\pi}} \frac{\mathbf{Z} \mathbf{e}_{p}}{4\mathbf{m}\mathbf{A}} (\mathbf{V}_{11} + \mathbf{V}_{22} - 2\mathbf{V}_{33}).$

Наличие внешнего поля приводит к тому, что уравнения движения /3.1/ становятся неоднородными:

ния 73.17 становятся неоднородными:

$$V_{ij} - 2\pi_{ij} + 4\delta\sigma_{ij} - 2\delta C_{ij} - 2\delta U_{ij} = (4.4)$$

$$= -\int n \left(x_{j} - \frac{\partial W(t)}{\partial x_{i}} + x_{i} - \frac{\partial W(t)}{\partial x_{j}}\right) d\vec{r}.$$
Уравнения /3.3/-/3.5/ приобретают вид:

$$-\frac{1}{2} (\vec{V}_{11} - \vec{V}_{22}) - ... = 2\kappa a_{1}^{2} \cos \nu t,$$

$$-\vec{V}_{12} - ... = 2\kappa a_{1}^{2} \sin \nu t;$$

$$-\frac{1}{2} (\vec{V}_{11} + \vec{V}_{22} - 2\vec{V}_{33}) - ...$$

$$= 2\sqrt{\frac{2}{3}} \kappa (a_{1}^{2} + 2a_{3}^{2}) \cos \nu t;$$

$$-\vec{V}_{13} - ... = -\kappa (a_{1}^{2} + a_{3}^{2}) \cos \nu t,$$

$$\ddot{V}_{13} - \dots = -\kappa \left(a_{1}^{2} + a_{3}^{2} \right) \cos \nu t ,$$

$$\ddot{V}_{23} - \dots = -\kappa \left(a_{1}^{2} + a_{3}^{2} \right) \sin \nu t ; \qquad (4.7)$$

$$= Z e_{p} \sqrt{\frac{3}{10 \pi}} .$$

Уравнения /4.5/-/4.7/ отличаются от /3.3/-/3.5/ лишь неоднородностью в правой части. Разрешая /4.5/-/4.7/ относительно V_{ij}, находим матричные элементы $\langle \psi'_0 | \hat{\mathbf{Q}}_{2\mu} | \psi'_0 > \mu$ определяем приведенные вероятности E2-переходов для a^2 , $\beta^0 \mu \gamma$ -мод:

$$B(E2; E_{a} \rightarrow E_{0}) = |\langle \psi_{a} | \Psi_{0} \rangle| =$$

$$= \frac{3}{8\pi} \frac{Z^{2} e_{p}^{2} f_{1}}{mA_{\nu_{a}}} (a_{1}^{2} + a_{3}^{2}),$$
(4.8/

$$B(E2; E_{\beta} + E_{0}) = |\langle \psi_{\beta} | \hat{Q}_{20} | \psi_{0} \rangle|^{2} = \frac{1}{4\pi} \frac{Z^{2} e_{p}^{2} \hbar}{M \nu_{\beta}} (a_{1}^{2} + 2a_{3}^{2}), \qquad (4.9)$$

$$B(E2; E_{\gamma} \rightarrow E_{0}) = |\langle \psi_{\gamma} | \hat{Q}_{22} | \psi_{0} \rangle|^{2} =$$

$$= \frac{3}{4\pi} \frac{Z^{2} e_{p}^{2} \hbar}{mA_{\nu}} a_{1}^{2}.$$
(4.10/

На рис.2 показана зависимость приведенных вероятностей Е2переходов от деформации ядра.

ГКР, рассчитанный в рамках нашей модели, исчерпывает 100% энергетически взвешенного правила сумм ^{/11/}. Ничего удивительного в этом нет, поскольку уравнения движения были написаны именно для квадрупольного момента ядра.

5. ЗАКЛЮЧЕНИЕ

Предложенная в работах $^{/1,2/}$ модель дает динамические соотношения для различных интегральных характеристик ядра, таких, как электромагнитные моменты, тензор давления и т.д. Анализ стационарных решений этих уравнений позволяет сделать выводы

ĸ

о равновесной форме атомных ядер. В работе проведен такой анализ и показано, что существование статической деформации возможно только при анизотропном тензоре давлений. Предположение о его изотропности неизбежно приводит к сферической форме. На основании этого сделан вывод о решающей роли оператора кинетической энергии в возникновении ядерных оболочек.

В рамках модели вычислены энергетический спектр и приведенные вероятности Е2-переходов, в зависимости от деформации ядра, для вытянутых и сплюснутых форм.

Модель предсказывает расщепление ГКР из-за деформации на три ветви, соответствующие трем проекциям углового момента на ось симметрии ядра. Экспериментально этот эффект проявляется в соответствующем уширении ГКР в деформированных ядрах.

ЛИТЕРАТУРА

- Bulbutsev E.B., Mikhailov I.N., Vaishvila Z. Nucl.Phys., 1986, v.A457, p.222.
- 2. Бальбуцев Е.Б., Вайшвила З., Михайлов И.Н. ЯФ, 1982, т.35, с.836.
- Чандрасекхар С. Эллипсоидальные фигуры равновесия. М.: Мир, 1973.
- 4. Rosenkilde C.E. J.Math.Phys., 1967, v.8, p.98.
- 5. Соловьев В.Г. Теория сложных ядер. М.: Наука, 1971.
- Bertch G.F. In: Nucl.Phys. with Heavy lons and Mesons. V.I. 1977. Les Houches Lectures (ed Balian R., et al.). North - Holland, Amsterdam. 1978, v.1, p.175.
- 7. Bertrand F.E. Ann.Rev.Nucl.Sci., 1976, v.26, p.457.
- Satchler G.R. Proc.Intern.School of Phys. "Enrico Fermi". Course LXIX. Elementary Modes of Exitation in Nuclei. North-Holland, Amsterdam - New York - Oxford. 1977, p.271.
- 9. Youngblood D.H. et al. Phys.Rev., 1981, v.C23, p.197.
- 10. Лейн А. Теория ядра. М.: Атомиздат, 1967.
- 11. Бор О., Моттельсон Б. Структура атомного ядра. М.: Мир, 1977, т.2.

Рукопись поступила в издательский отдел 19 июля 1988 года. Бальбуцев Е.Б., Молодцова И.В. Статическая деформация атомных ядер и гигантский квадрупольный резонанс P4-88-539

С помощью метода моментов рассчитаны энергии и B/E2/факторы гигантских квадрупольных резонансов /ГКР/ в зависимости от деформации. Вычисленное расщепление энергии ГКР хорошо согласуется с наблюдаемым экспериментально уширением ГКР. Показана определяющая роль оператора кинетической энергии в возникновении статической деформации атомных ядер.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного ииститута ядерных исследований. Дубна 1988

Перевод О.С.Виноградовой

Balbutsev E.B., Molodtsov I.V. The Static Deformation of Atomic Nuclei and Giant Quadrupole Resonance P4-88-539

The energies and B(E2)-factors of giant quadrupole resonances (GQR) in dependence on deformation are calculated in the framework of the method of moments. Splitting of GQR energy obtained here is in good agreement with the experimental values of broadening of GQR. The leading role of operator of kinetic energy in originating of static deformation of atomic nuclei is demonstrated.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1988