СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

26/0-75

C341,12 ¢-951

P4 - 8734

1893/2-75 В.И.Фурман, С.Г.Кадменский, С.Холан

а - РАСПАД КОМПАУНД-СОСТОЯНИЙ и силовая функция а -частиц

P4 - 8734

В.И.Фурман, С.Г.Кадменский, С.Холан

α - РАСПАД КОМПАУНД-СОСТОЯНИЙ И СИЛОВАЯ ФУНКЦИЯ α -ЧАСТИЦ

.

I. К настоящему времени накоплены интересные экспериментальные данные по реакции (n, ∞) на резонансных нейтронах для ряда средних и тяжелых ядер (64 $\leq A \leq$ 178). Как правило, известны только полные \propto -ширины нейтронных резонансов $/I_{,2}/.$ В наиболее благоприятных случаях из анализа \propto - спектров удается получить зарциальные вероятности \propto -переходов на фиксированные состояния дочерних ядер /3.4.5/. Таким образом, в отличие от других реакций с образованием \propto -частиц для средних и тяжелых ядермишеней изучение реакцих (n, \propto) на резонансных нейтронах предоставляет уникальную возможность изучить \propto -распад индивидуальных высоковозбущенных уровней ядер в условиях, когда известны спины начального и конечного состояний.

Из-за чрезвычайной сложности структуры начальных состояний их ~-ширины статистически фликтуируют, подчиняясь χ^2 распределению с числом степеней свободы $\mathcal{V}_{\partial \Phi}$. / I /. Цель данной работы - рассмотреть свойства усредненных ~-ширин компаунд-состояний, образующихся после захвата резонансных нейтронов.

2. Для анализа экспериментальных данных по 🗠 -ширинам удобно ввести парциальную силовую функцию соотношением:

$$S_{L_{f}} = \overline{D}_{L_{f}} / \overline{D}_{L_{f}^{\pi}} . \qquad (1)$$

Здесь $\overline{I_{L_f}}$ - усредненная по резонансам парциальная ширина \sim -распада из состо*рля*я со спином и четностью $I_{L_f}^{\overline{L_f}}$ на (риксированное конечное состояние с характеристиками $I_f^{\overline{L_f}}$, причем вылетахирая \sim -частица имеет орбитальный момент L_f и энергию Q_{if} .

Величина $\overline{D}_{I_i} \hat{x}_i$ - среднее расстояние между компаунд-состояниями с данными значениями $\mathcal{I}_i^{\cdot \tilde{x}_i}$. / \mathcal{I}_{L_fKA} -ширина \ll -кластерного резонансного уровня, образуемого при рассеянии \ll -частицы с энергией \mathcal{Q}_{if} и моментом \mathcal{L}_f на вещественной части соответствующего оптического потенциала. Эти ширины, рассчитываемые по методу работы / 6 /, определяются только параметрами оптического потенциала, которые выбираются из анализа сечений реакции и упругого рассеяния \ll -частиц на ядрах / 7 /. Ниже в расчетах используется следующий оптический потенциал / 7 /:

$$V(R) = V_0 \left\{ 1 + \exp[(R - z_{ov} A^{1/3})/\alpha] \right\}^{-1}$$
(2)

 $V_{o} = 177 M_{3} b$ $r_{ov} = 1.34 \, qpepmu \, \alpha = 0.569 \, qpepmu$.

Как показано в работе / 6 / (см. также / 8 /), ширина Г_{сулл} может быть представлена в виде:

$$\int_{L_{fKK}} = 2 P_{L_{f}}(R) g_{L_{fK}}^{2}(R) , \qquad (3)$$

где $P_{L_f}(R)$ - фактор проницаемости, учитывающий ядерные взаимодействия. Если радиус R выбрать из соотношения

$$R_{o} = \left[\gamma_{or} A^{1/3} + 1.5 \right] q p e p m u , \qquad (4)$$

то величина приведенной кластерной ширини $\int_{L_{fKA}}^{2} (R_o)$ слабо зависит от Q_{if} и L_{f} и может быть апроксимирована как / 9 /

$$\gamma_{L_{f^{KA}}}^{2}(R_{o}) \simeq 3 t^{2}/2m_{e}R_{o}^{2}$$
 (5)

Заметим, что обычно силовая функция определяется на радиусе канала R_{a} выражением / 10, 14 /:

$$S_{L_{f}}(R_{o}) = \frac{\overline{\Gamma_{L_{f}}}}{2P_{L_{f}}(R_{o})\overline{D}_{I}\pi_{o}} \equiv \frac{Y_{L_{f}}^{-1}(R_{o})}{\overline{D}_{I}\pi_{o}}$$
(6)

и является безразмерной, стличаясь от величины $S_{2,r}$ из формулы (I) фактором $\left[X_{2,r**}^{2}(R_{o}) \right]^{-1}$. Использование силовой функции $S_{2,r}$ часто предпочтительнее, ввиду отсутствия явной завискмости от радиуса канала.

Для случаев, когда известны только полные — — ширины, определим полнур силовур датачими:

$$S_{\alpha} = \sum_{f, \ell_{f}} \overline{f_{\ell_{f}}} / \left(\overline{I_{I_{\ell}}}_{I_{\ell}}^{\overline{\tau}} \overline{f_{\ell_{f}}}_{\ell_{\ell}}^{\overline{\tau}} \right) .$$
(7)

Если справедлива статистическая гипотеза о том, что парциальная силовая функция S_{ℓ_F} не зависит от момента \perp_F и состояния f, то полная силовая функция S_{ς} совпадает с величиной S_{ℓ_F} .

3. В таблицах I и 2 приведены известные на сегодняшний день / I-5 / данные по средним парциальным и полным ~ -пиринам нейтронных резонансов. Для ядер Z_{π}^{68} , M_0^{96} , T_e^{124} и \mathcal{N}_{c} ^{I44} проводились измерения только полных ~ -ширин, однако из-за больших энергетических целей между основными и первыми возбужденными состояниями соответствующих дочерних

m_ d		-
າສດ	лита	
100	erenter.	-

•

Составное ядро (i)	$I_i^{\pi_i}$	<u>Л</u> г. МэВ	Na	\mathcal{V}_{3qp}	Lg	(<u>Z</u> Г ₄)экс МэВ	Г _{теор} МэВ	<i>S _L,</i> Мэ в ^{-I}
⁶⁸ Zn	3-	(0,96 <u>+</u> 0,4)(-3)	I	I	3	(I,6 ^{+I,6}) (-9) -I,5	(0,7 <u>+</u> 0,3) (-9)	0,076 ⁺ 0,076 0,070
96 Mo	2+	9,I (-5)	3	I	2	(2,2 ⁺¹ ,5) (-II)	(3,I <u>+</u> 0,4) (-II)	0,028 ^{+0,021} -0,019
$^{124}T_e$	0+	(1,05 <u>+</u> 0,16)(-1)	4	I	0	$(3+^{+2}_{-1}, 1)$ (-12)	(3,I±0,3) (-I2)	0,042+0,029
144 Nd	3-	7,3 (-5)	7	I	3	(I,7 <u>+</u> 0,7)(-II)	(I,I <u>+</u> 0,I)(-II)	0,063 <u>+</u> 0,027
146 _{Nd}	3	4,6 (-5)	3	I	3	(2,6 <u>+</u> 0,7)(-I3)	(I,2 <u>+</u> 0,I)(-I3)	0,085 <u>+</u> 0,022
			7	I	3	(2,7 <u>+</u> 0,9)(-I2)	(3,4 <u>+</u> 0,3)(-I2)	0,034 <u>+</u> 0,0II
I48 ~	3	I,7 (-5)	12	I,5	1,3,5	(4,8±1,5)(-13)	(1,2+1,2)(-13)	0,0I7 <u>+</u> 0,005
DM			2	I,5	1,3,5	(I,4 <u>+</u> I) (-I3)	(1,3 <u>+</u> 0,15)(-13)	0,046 <u>+</u> 0,03

S

Taomma 2

Составное ядро (i)	$I_i^{\pi_i}$	$\overline{D}_{I_i^{oldsymbol{\pi}_i}}$ Məb	\mathcal{N}_{α}	V ₃₉₀	(Z TLy) JKC JLY MaB	Г _{теор} МаВ	ິ~ M∋B ^{−I}
106 Pd	2+	2,9 (-6)	3	I,5	< 4,0 (-13)	(4,1±0,4)(-13)	< 0,039
148 Sm	3	I,7 (-5)	25	I , 8	(2,5±0,8)(-12)	(4,85 <u>+</u> 0,5)(-12)	0,022 <u>+</u> 0,005
	4	I,3 (-5)	19	2,5	(0,4 <u>+</u> 0,I)(-I2)	(0,44 <u>+</u> 0,04)(-I2)	0 ,04<u>+</u>0,0 I
150 Sm	3-	5,25(-5)	13	2,4	(2,I <u>+</u> 0,5)(-I3)	(4 <u>+</u> 0,4) (-I3)	0,023 <u>+</u> 0,006
Dm	4-	4,I (-5)	15	2,5	(2,8 <u>+</u> 0,6)(-14)	(5,65±0,6)(-14)	0,022 <u>+</u> 0,005
152 E γ	34	(I,2 <u>+</u> 0,4)(-6)	I	2,5	$(2,5^{+2},5)(-16)$ -2,4	(1,0 <u>1</u> 0,2)(-I6)	0,105 ^{+0,105} -0,090
156 Gd	1-	(4,8 <u>+</u> 0,6)(-6)	I	2,6	(7 ⁺⁷)(-I6) -5	(19 <u>+</u> 3)(-16)	0,0I6 ^{+0,0I6} -0,0II
	2	(2,9 <u>+</u> 0,6)(-6)	3	Ι,6	(7 <u>+</u> 4) (-16)	(5,3 <u>+</u> 0,8)(-I6)	0,057 <u>+</u> 0,033
158 Gd	2-	I,35 (-5)	3	2,0	(3,3 <u>+</u> 1,9)(-15)	(0,68 <u>+</u> 0,07)(-15)	0,21 <u>+</u> 0,12
172 YB	I_	7,7 (-6)	4	4,4	(2,2 <u>+</u> 0,8)(-I4)	(6,3 <u>+</u> 0,66)(-14)	0,017±0,006
178 Hf	3-	5,5 (-6)	3	4,7	(2,5 <u>+</u> I) (-I')	(I,7 <u>+</u> 0,2) (-I4)	0,067 <u>±</u> 0,027
	4-	4,25(-6)	3	3,7	(2,3 <u>+</u> I) (-I4)	(0,6 <u>+</u> 0,2) (-I4)	0,175 <u>+</u> 0,08

ядер можно с хорошей точностью полагать, что в этих случаях

 $\sum_{i,j} \overline{f_{ij}} \cong \left(\sum_{i} \overline{f_{ij}} \right)_{i \neq j} \cos \omega c r \quad .$

Значения спинов и четностей $\overline{L_{I}}^{\alpha}$ и расстояний $\overline{D_{I}}^{\alpha}$ взяты из компиляции / II /, а для ядер S_{α} ^{I48} и S_{α} ^{I50} из расот /I2, I3/, причем погрешности для величин $\overline{D_{I}}^{\alpha}$ показаны только в том случае, когда они превышают уровень IO%. Приведенные в таблицах погрешности экспериментальных α -ширин, кроме обычной статистической ошибки, включают ошибку усреднения по N_{α} - уровням. При вычислении последней принято во внимание, что дисперсия распределения α -ширин индивидуальных компаунд-состояний равна / I /:

3(F2)=2F2/Vigo .

На рис. І^а (см. также таблицы I и 2) показаны значения силовых функций $S_{-\mu}$ и $S_{-\mu}$ (точки и кружки, соответственно), вычисленные по формулам (I) и (7). Как видно из рис. І^а, величины $S_{+\mu}$ и $S_{-\mu}$ для исследуемой области массовых чисел A варьируются не сильно, так что их разброс от среднего значения не превосходит фактора 4. Отметим, что для ядер $S_{2\mu}^{-148}$ и $S_{-\mu}^{-150}$, где погрещности усреднения минимальны, значения $S_{-\mu}$ и $S_{-\mu}$ ложатся в достаточно узкий интервал. Разброс значений силовых функций для остальных ядер может быть связан как с недостаточной статистикой усреднения (см. таблицы I и 2), так и с возможным проявлением эффектов гигантских резонансов / I4 /. При сбсущении величин $S_{-\mu}$ для ядер G d [59, Y U [72 и H f [78

необходямо иметь в выду, что эти ядра обладают эна-интельной равновесной деформацией (по крайней мере, для основных состояний). Тем не менее кластерные цирины, входящие в определения для силовых функций, рассчитывались без учета деформации. Поэтому стклонения соответствуютих величин S_{\propto} от среднего для сферических ядер можно рассматривать в качестве коспенной оценки влияния несферичности ядра на вероятности \propto -распада высоковозбужденных состояний.

Недавно в работе / 15 / быля впервые обнаружены задержанные ~ -частицы, испускаемые после /3 -распада ядра A_{u}^{I8I} . Интересно отметить, что приведенная в этой работе оценка для ееличины $S_{\propto} = 0,02I$ МэВ ^{-I} хорошо коррелирует со значениями силовых функций, полученными выше (см. рис. I⁸). Сравнение абоолютных значений силовых функций вполне правомерно, поскольку раднусы канала R_0 и соответствущие факторы проницаемости, использованные в работе / 15 /, близки к нашим;

Из анализа рис. I^a следует важное заключение, что в пределах экспериментальных потрешностей средние значения полных и парциальных силовых функций практически совпадают.

Таким образом, подтверждается справедлевость статистической гилотезы.

Подводя итог обсуждению, отметим, что резброс значений —частичных силовых функций оказывается удивительно малым, несмотря на то, что величины $\overline{D}_{I_i}\pi_i$ и средние экспериментальные \sim -ширины меняются для исследуемой области ядер более чем на три и шесть порядков, соответственню. На рис. I^D показащи спектроскопические факторы, равные по определению^{/6}, 6/ поличинам отношений

 $\sum_{fL_f} \overline{\int_{i_f} \int_{I_f \kappa_A}} \int_{I_f \kappa_A} ($ точки и кружки, соединённые сплошной линией), а значения отношений $\overline{D}_{I_i}\pi_i / D_o$ (кресты, соединённые пунктиром, $D_o \approx 25$ Мэв). Очевидная корреляция в ходе спектроскопических факторов и величин $\overline{D}_{I_i}\pi_i$ обеспечивает приближённое постоянство \ll частичных силовых рупкций, отмоченное выше. Абсолютные значения спектроскопических ракторов и ризлический смысл величин D_o обсуждаются ниже.

4. Проведём теоретические оценки для \propto – частичных силовых рункций. Ввиду сильного поглощения \propto – частиц в ядре в качестве первого приближения воспользуемся моделью черного идра / IG /. В этом случае для величины S_{Lp} имеем :

$$S_{L_{f}}^{\mu} = 1/D_{\kappa\Lambda}^{L_{f}}, \qquad (8)$$

где $D_{\kappa_A}^{L_f}$ соответствует расстоянию между резонансными уровнями с фиксированным моментом L_f при рассеянии на потенциале, описывающем взаимодействие \ll - частицы с дочерним ядром.

На рис. Г^а сплошной линией показаны теоретические оценки силовой функции \propto - частиц, расчитанные по формуле (8) с нотенциалом (2), для которого величина D_{rac}^{42} (2) - 35 (3).

Видно, что модель черного ядра удовлетворительно воспроизволит средние значения экспериментальных силовых функций $S_{L_{L_{x}}}$.

Рис. I^а. Зависимость X -частичных силовых функций от массового числ. A (величины X₂ и X₁ показаны точками и кружками соответственно). Оценка силовой функции в модели черного ядра изображена прямой линией. Символом показана силовая функция из работы / ^(C)/.

Рис. ^{IB}. Зависимость от массового числа *А* отношений $\overline{D}_{T,\overline{r_{i}}} \neq \overline{L'_{o}} = крестики, соединенные пунктиром, -$ $\overline{L_{i}} \neq \overline{L'_{i+A}} = (\sum_{\overline{I_{i+A}}} \overline{L_{i}}) \neq \sum_{\overline{I_{i+A}}} \overline{L_{i+A}} = точки и кружки,$ соединенные спак шной линией. Воли теперь допустить, что варяации величин силовых функций на рис. I² определяются гигантскими резонансами, то для силовой функции можно воспользоваться приближенной формулой:

$$S_{Lp} = \Gamma_{sp} / 2\pi \left[\left(Q_{if} - Q_0 \right)^2 + \left[\Gamma_{sp}^2 / 4 \right], \tag{9}$$

где \int_{Sp} - "спрэдовая" ширина, характеризующал раздачу кластерного состояния по компаундным уровным и в надбарьерном случае приблименно совпадающая с величиной С W (W - глубина мнимой части оптического потенциала в случае объемного потлощения).

Из рассмотрения рис. I^a следует, что величина 5ρ в этом случае имеет значение \simeq IO M₂B, которое хорошо коррелирует со значенияти: W, используемыми для описания упругого рассеяния \propto -частиц в случае надбарьерных эпергий.

При использовании для анализа спловых функций оптических потенциалов из работы / 7 /, отличающихся в силу дискретной и изпрерывной неоднозначностей от потенциала (2), можно придти снова к результатам, аналогичным показанным на рис. I^а, однако в этом случае отношение средних значений силовых функций $S_{4/}$ и оклових функций, рассчитащных по формуле (8), будет отличаться от I и меняться от 0.5 до 2.

В теоретическом анализе, проведенном выте, при расчете кластерных ширин использовалось представление о существовании \propto -частиц во всем объеме ядра. Имеются сильные теоретические аргументы в пользу поверхностной \propto -кластеризации / 18 /. Допустим, что адерный потенциал, характеризующий поверхностную потенциальную яму для \propto -частиц, совпадает с рассмотренным выше объемным потенциалом в области кулоновского барьера и отличается от него наличием отталкивания во внутренней области ядра. Тогда \propto -шарина

для случая поверхностной \propto -кластеризации $\int_{C_{AA}}^{NOS}$ определяется прежней формулой (3), приблизительно теми же, что и раньше, значениями R_0 и $P_2(R_0)$, а величина $\int_{L_{AAA}}^{2} (R_0) \int_{NOS}^{NOS}$ может вограсти при этом в несколько раз в зависимости от конкретной форми отталкивательного потенциала. В силу этого значение силовой функции $S_{L_f}^{NOS} = \overline{l_{L_f}} / \overline{D}_{L_f} \int_{M_{AA}}^{NOS}$ уменьшится в несколько раз по сравнению со значениями силовой функции S_{L_f} (1). Полученное уменьшение $S_{L_f}^{NOS}$ можно качественно понять в модели "черного ядра", если учесть, что для поверхностной ямы средние расстояния нежду \propto -кластерными уровниями с данными L_f могут оказаться существенно большими, нежели для аналотичной объемной ямы,

Такин образом, проведенное выше сопоставление экспериментальних и теоретических силовых функций в предположении объемной -кластеризации принизицально не изменлется при пережоде к идеологии поверхностной - кластеризации.

5. Возвращалсь к обсуж, чило рис. I^{B} , заметим, что крести, соединенные пунктиром, соответствуют значениям $D_{o} = D_{\kappa a}^{\ell \ell}$, равны: расстояниям между \ll -кластерными уровнями с дачным ℓ_{ℓ} в объемном потенциале (2). Ввиду близости абсолютных значений спектроскопических факторов и величии $\overline{D}_{I_{a}}^{\pi}$, $/D_{o}$ на рис. I^{B} , для средних парциальных \ll -ширин компаунд-состояний оказывается справедливым следующее приближенное соотношение :

$$\overline{\int_{L_{f}}} \simeq \int_{L_{f}\kappa_{h}} \overline{D}_{I_{i}}^{\kappa_{i}} / D_{\kappa_{h}}^{\ell_{f}}$$
(10)

Аналогичная формула имеет место и для полних \ll -ширин, поскольку $S_{L_{\varphi}} \simeq S_{\infty}$. В предпоследних колонках таблиц I и 2 приведсни величины \ll -ширин, вигисленные по формуле (IO). Ошибки теоретических \ll -ширин связаны с погрешностями в определении всличин $\overline{D}_L F_l$. Анализ таблиц I и 2 показывает, что формула (IO)

полезна для оценок ожидаемых экспериментальных значений \propto -ширин, особенно имея в виду ее простоту и отсутствие подгоночных параметров (за исключением параметров оптического потенциала для \propto -частиц, которые должны быть фиксировану из независимых экспериментов).

Для выяснения фисического смысла соотношения (IO) вспомним, что аналогичное соотношение с точностью до порыдка величины справедляво для средних парциальных нейтронных и радиационных (с E_{χ} близкой к энергии связи нейтрона) ширин компаунд-состояний / I6 /. При этом величины $\int_{L_{f} \times A}$ и $D_{\kappa A}^{L_{f}}$ заменяются на одночастичную нейтронную (радиационную) ширину и соответствующее расстояние $D_{o\delta}$ между уровнями в оболочечном потенциале ($D_{o\delta} \approx 15$ МэВ).

Таким образом, спектроскопические факторы / 8, 6 / для распада компаунд-состояний по различным каналам оказываются близкими между собой, что подтверждает качественный вывод работы / 19 /, сделанный в рамках оболочечной модели *). С другой стороны, в полной аналогии с нейтронным каналом справедливость соотношения (11) можно интерпретировать как указание на реальное существование <-кластерных уровней в ядрах, фрагментированных по компаунд-состояниям с большой "спрадовой" шириной.

¥)

Как легко показать, близость спектроскопических факторов означает, что экспериментальные приведенные \propto -ширины / 10 / (на радиусе канала R_o) меньше соответствующих нейтронных ширин в 4-6 раз. Последнее утверждение находится в согласии с выводами работы / 4 /.

Отметим в закличение, что полученные в настоящей работе спектроскопические факторы для \propto -распада из изолированных компаунд-состояний являются полезным и важным репером при анализе реакций типа (n, \propto) и (p, \propto) для высоких энерічій надетакцих частиц, когда уровни составного ядра существенно перекрываются. В вод о сильной фрагментации \propto -кластерных уровней по уровням составной системы, возможно, потребует дополнительного исследованыя законности используемых в литературе / 20 / гипотез о плотности \propto -экситонных состояний и вероятностях формирования < -частиць в сильновозбужденных компаунд-ядрах.

Авторам приятно поблагодарить Ю.П.Попова и сотрудников его группы за полезные и стимулирующие обсуждения.

ЛИТЕРАТУРА

I. Ю.П.ПОПОВ, М.ПШИТУЛА, Р.Ф.Руми, М.Стэмпински, М.Флорек, В.И.Фурман, Nuclear Data for Reactors

CN -26/125, v.I, p.669, IAEA, Vienna , 1970.

- н.п.Балабанов, Ю.М.Гледенов, Пак Хон Чер, Ю.П.Попов, В.Г.Семенов. Препринт ОИНИ, Р4-8653, Дубна, 1975.
- Yu.P.Popov, M.Przytula, R.F.Rumi, M.Stempinsky and M.Frontasyeva. Nucl.rnys.<u>A148</u>, (1972), 212.
- Ю.П.Попов, М.Пшитула, К.Р.Родионов, Р.Ф.Руми, М.Стэмпински, В.И.Фурман, НФ, <u>13</u>, (1971), 913.
- П.Винисартер, К.Недведик, Ю.П.Попов, Р.Ф.Руми, В.И.Салацкий, В.И.Фурман, ЯФ, <u>20</u>, (1974), 3.
- С.Г. Кадменский, В.И. Фурман, С.Холан, В.Г. Хлебостроев.
 Сообщение ОМЯМ, Р4-8731 Дубна, 1975.
- 7. L.Mc.Fadden, G.R.Satchler, Nucl. Phys. 84, (1966), 177.
- 8. L.Scherk and E.W.Vogt. Canau.J.Phys. <u>46</u>, (1968), 1119.
- 9. A.Arima, H.Horiuchi, K.Kubodera, N.Takigawa. Advances in Nuclear Physics <u>5</u>, (1972), 449.
- А.Лейн, Р.Томас. Теория адерных реакций при низких энергиях, ИЛ, Москва, 1960.
- II. S.F.Mugnabghab and D.I.Garber, Neutron Cross Sections, v.I,1973.
- Э.Н.Каржавина, Ким Сек Су, А.Б.Попов. Препринт ОИЯИ
 РЗ-6237, Дубна 1972.
- I3. P.Becvar, R.S.Chrien, O.A.Wasson, JINK Communication. B3-3-7830, Dubna, 1973.

Л.Алдеа, Ф.Бечвари и др. Препринт ОИЯИ РЗ-7885, Дубна, 1974 г.

- 14. В.И.Фурман, Ю.П.Попов, в сб. Нейтронная физика, ч.І, стр. 159, Наукова думка. Кнев. 1972.
- I5. P.Hornshøj, K.Wilsky, F.G.dansen, B.Jonson. rhys.Lett. <u>B55</u>(1975)53.
- Дж.Блатт, В.Вайскопф, Теоретическая ядерная физика, ИЛ, Москва, 1954.
- I7. E.W.Vogt et al., Phys.Rev. CL. (1970), 864.
- 18. А.И.Базь. Материалы УП зимней школы ЛИЯФ по физике ядра и элементарных частиц. Часть I, Ленинград, 1971.
- В.И.Фурман. О.П.Попов. Программа и тезиси докладов XXII совещания по ядерной спектроскопии и структуре атомного ядра. стр. 176, Тоилиси, Наука, 1973.
- G.M.Braga Marcazzan, E.Gadioli Erba, L.Milazzo-Colli, F.G.Sona. Phys. Rev. C6, (1972), 1398.

Рукопись поступила в издательский отдел 26 марта 1975 года.