СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

ДУБНА

26/0-75

P4 - 8730

1892/2-75

C341.12

K-134

С.Г.Кадменский, В.И.Фурман, С.Холан, В.Г.Хлебостроев

КЛАСТЕРНЫЕ АСПЕКТЫ **Q** -РАСПАДА ТЯЖЕЛЫХ СФЕРИЧЕСКИХ ЯДЕР

P4 - 8730

С.Г.Кадменский, В.И.Фурман, С.Холан, В.Г.Хлебостроев

КЛАСТЕРНЫЕ АСПЕКТЫ **Q** -РАСПАДА ТЯЖЕЛЫХ СФЕРИЧЕСКИХ ЯДЕР

I. Основной формализм

Как показано в работах I - 3 I, в случае глубоко подбарьерного \sim -распада сферических здер формула для паримальной ширины $I_c \sim$ -перехода из состояния родительского ядра $\psi_{\tau_i}^{\Gamma I_i M_i}$ со спином и проекцией $I_i M_i$ и прочими квантовыми числами τ_i в состояние конечного канала C, характеризующегося квантовыми числами ($L \tau_f I_f$), имеет вид:

$$\int_{c}^{c} = 2\pi \left| \langle \hat{\mathcal{A}} \{ \mathcal{F}_{c}(\mathbf{R}) \mathcal{U}_{c}^{I,M_{i}} / \mathcal{U}_{A-4} \} / \mathcal{V}_{c}^{I,M_{i}} \rangle \right|^{2}$$
(1)

Оператор *A* осуществляет антисимметризацию в конечном ка-

$$\mathcal{U}_{c}^{I,M_{i}} = \mathcal{U}_{L_{of}I_{f}} = \sum_{m_{i}m} C_{m_{f}M_{i}}^{I_{f} \perp I_{i}} + \sum_{\sigma_{f}} Y_{\sigma_{f}}^{I_{f}M_{f}} Y_{L_{M}} (SL_{f}^{-1}) .$$
(2)

Здесь \mathscr{Y}_{∞}^{r} - внутренняя функция \propto -частиць, а \mathcal{R}^{r} - расстояние между центрами тяжести дочернего ядра в \propto -частиць. В формулах (I) и (2) подразумевается, что волновые функции родительского и дочернего ядра полностью антисимметризованы. Радиальная функция $\mathcal{F}_{c}(\mathcal{R})$ нормирована на \mathcal{O} -функцию по энергии и связана сърегулярной кулоновской функция $\mathcal{F}_{L}(\mathcal{R})$ соотношением:

$$\mathcal{F}_{c}(R) = \sqrt{\kappa_{c}/\pi Q_{c}} F_{c}(R)/R.$$
(3)

Величина $K_c = \sqrt{2m_c Q_c}/k^2$, где m_c — пратведенная масса, а Q_c — экергия относительного движения \prec —частицы и дочернего ядра. Ядерный потенциал взаимодействия \prec -частицы с дочерним ядром

$$\int_{-\infty}^{\infty} \frac{d}{dx} \frac{d}{dx} = \int_{-\infty}^{\infty} \frac{d}{dx} \int_{-\infty}^{\infty} \frac{d}{dx} \frac{d}{dx}$$
(4)

выражается через парные потенциалы ядерного взаимодействия нуклонов

В кулоновской подбарьерной области функция начального состояния $\frac{V_{2}^{J_{1},M_{1}}}{M_{2}}$ имеет следующую асимптотику / 3 /:

$$\frac{1}{2} \int \frac{1}{R} \frac{$$

 $\mathbb{C}_{ABCE}(x_{i}, x_{i})$ — нерегулярная кулоновская функция, а точка \mathcal{R}_{r} расположена вблизи и слева от внешней кулоновской точки поворота, причем

$$G_L(R_*) \gg F_L(R_*)$$

Удобно ввести ради 175ную функцию канала С :

$$\zeta_{L}^{T}(R) = {\binom{2}{2}}^{\binom{N_{2}}{2}} {\binom{N_{2}}{2}}^{\frac{N_{2}}{2}} R < \mathcal{U}_{c}^{T,M_{i}} / \mathcal{V}_{\sigma_{i}}^{-T,M_{i}} >$$
(6)

и соответствующий эффективный потенциал :

$$V_{c} \mathcal{D} = \langle \hat{\mathcal{H}} [\mathcal{U}_{c}^{I, M_{i}} / \mathcal{U}_{c, A-4}] / \mathcal{V}_{\sigma_{i}}^{I, M_{i}} \rangle / \mathcal{V}_{c}(R).$$
⁽⁷⁾

Используя введенные величины, формулу (1) перепишем в виде:

$$\Gamma_{c} = 2\pi \left/ \int_{0}^{k} \mathcal{F}_{c}(R) V(R) \Psi_{c}(R) R dR \right/^{2}.$$
(8)

С помощью формулы (8) удобно проводить оценку вкладов в величину / различных остастей переменной $\mathcal R$. Введем величину

$$\int_{c} (R) = 2\pi / \int_{R}^{R} \sqrt{(R')} \sqrt{(R')} \mathcal{F}(R') R' \mathcal{A} R' / \mathcal{L}^{(8]}$$
(8¹)

и определим безразмерное отношение

$$\alpha_c^2(R) = \sqrt{c}(R)/\sqrt{c} .$$
(9)

Величина $\propto_c^2(R)$ дает относительный вклад ь значение \propto -ширины областей от R до R.

Заметим, что выражение для ширины / (8) го форме совпадает с выражением для ширины распада одночастичного квазистационарного состояния / 2 /.

В области, которую ниже будем называть кластерной областью ~ -распада, где ~ -частицу и дочернее ядро можно считать пространственно разделенными, это совпадение имеет прямой физический смысл. Действительно, эффективный потенциал (7) переходит в реальную часть обычного ситического потенциала / 4,5 /

$$V(R) = V_{\rho\rho}(R) = \langle \Psi_{\alpha} / \mathcal{V}_{\alpha A-4} / \Psi_{\alpha} \rangle$$
 (10)

Радиальная функция канала $\Psi_c^{\kappa s}(R)$ описывает относительное движение разлетающихся фрагментов и удовлетворяет следующему уравнению Шредингера:

 $\left[-\frac{k^{2}}{2m}\frac{\partial^{2}}{\partial R^{2}}+\frac{k^{2}}{2m}\frac{L(L+1)}{R^{2}}+V_{00}(R)+V_{KM}(R)-Q_{c}\right]\Psi_{c}^{K}(R)=0$ (II)

с граничным условием, внтекающим из формул (5) и (6):

$$\Psi_{c}^{\kappa \wedge}(R \to R_{*}) = \Psi_{c}^{\kappa} \kappa_{c}/2 Q_{c} G_{L}(R) .$$
 (12)

2. Оценка вклада кластерной области в абсолютные

ширины 🗠 - распала

Введенная выше функция $\Psi_c^{\kappa n}(R)$ представляет собой попытку реконструировать истинкую радиальную функцию канала $\Psi_c^{\tau}(R)$ в область действия ядерного потенциала, исходя из точной асимитотики (12).

Эта попытка имеет шансы на успех вплоть до расстояний между центрами тяжести \prec -кластера и дочернего ядра $\mathcal{R} \ge \mathcal{R}_{sa}$, где еще выполнены следующие условия:

 а) искажающее влияные принцица Паули на внутренние состояния фрагментов мало;

б) перенормировка взаимодействия между нуклонами фрагментов,
 связанная с влиянием соседнего фрагмента, несущественяя;

 в) искажение внутренних волновых функций фрагментов из-за действия потенциала (4) мало.

В совокупности указанные условия могут быть удовлетворены в случае слабого перекрывания нуклонных плотностей фрагментов / 6/.

Примем, что радиальная зависимость плотности нуклонов в ядрах совпадает с распределением заряда. Тогда из данных по рассеянию быстрых электроноч на тяжелых ядрах следует, что для расстояний $R \ge R_o + 4\delta$ плотность нуклонов уменьшается более чем в 50 раз по сравнению с плотностью нуклонов в центре ядра. Здесь $R_o = 1.1 (A-4)^{1/3}$ ферми – расстояниз, где плотность заряда падает вдвое, $\delta = 0.54$ ферми – параметр длфузности.

Таким образом, в качестве нижней оценки величины $\mathcal{R}_{\star,\star}$ определяющей "внутреннюю" границу кластерной области, примем:

$$R_{kk} = R_0 + 4\mathcal{E}. \tag{13}$$

Величина $\mathcal{R}_{\star\star}$ из формулы (13), например, для ядра ²⁰⁸ру составляет 8,7 ферми.

Заметим, что понятие о кластерной области широко используется в трациционных вариантах теории ~ -распада / 8,9 /, в которых вводится фактор проницаемости, определяющий вероятность выхода сформировавшейся ~ -частицы через потенциальный барьер.

Крайним примером использования идеи об 🗠 -кластеризации является оптическая модель, успешно применяемая для описания сечения реакции и упругого рассеяния 🛛 🗠 -частиц на ядрах. В этой модели вводится комплексный оптический потенциал Vom (R) + + *iW_{ом}(R)*, который по построению сводит многотельную задачу взаимолействия 🗹 -частицы с ядром к одночастичной задаче движения ее центра тяжести в потенциальном поле. При этом, как празило, принимается, что потенциал $V_{out}(R)$ имеет объемный характер, и внутренняя функция 🛛 🗠 -частиць не искажается во всей области. а многочастичный характер запачи апроксимируется путем ввецения в оптический потенциал мнимой добавки и Wom(K) . Успех оптической модели при интерпретации широкого круга экспериментальных ланных / 10,11 /. несмотря на некорректность ее основных посылок – 🛛 -частица не может реально существовать во внутренней области ягра - объясняется тем фактом, что благодаря сильному поглошению 🗠 -частин в ядре для описания наблодаемых величин существенно ловедение потенциала $V_{OM}(\kappa)$ в тех областях \mathcal{R} , $V_{out}(R) \ge -10 \text{ MaB} / 10 /$. Указаяные значения R гле соответствуит области формирования потенциального барьера ($R > R_A + 2 \alpha$, где R_A и α – радиус и диффузность оптического потенциала). В этой области все феноменологические опти-

ческие потенциаль близки между собой /IO,II/, а кластерные представления, заложенные в оптическую модель, оказываются, по-видимому, справедливыми. Последнее позволяет понять причину успеха оптической модели и дать независимую оценку для величины $\mathcal{R}_{\Lambda_{\Lambda}}$:

$$R_{AA}^{aA} = R_{A} + 2\alpha . \tag{14}$$

L

Заметим, что соотношение (14) дает величину \mathcal{R}_{**} несколько большую, чем формула (13). Например, для ядра ²⁰⁸рв $\mathcal{R}_{**}^{oN} = 9$ ферми.

Вклад кластерной области в абсолютную величину \propto -ширины характеризуется значением функции $\propto_c^2(\mathcal{R}_{\star,*})$, определенной соотношениями (8^I) и (9), в которых радиальная функция канала $\bigvee_c \psi$ должна быть заменена на функцию $\bigvee_c^{\star,*}(\mathcal{R})$. Используя фурмулы (3) и (12) для области $\mathcal{R} \ge \mathcal{R}_{\star,*}$, перепишем определение величины $\propto_c^{+}(\star)$ (9) в виде:

$$\chi_{\ell}^{2}(k) = \left\langle \frac{\hbar_{\ell}}{Q_{\ell}} \int_{R}^{Q_{\ell}} \frac{(R')V_{\ell}(R')F_{\ell}(R')dR'}{R'} \right\rangle^{2}, \qquad (15)$$

где функция $\underline{\varphi}:\mathcal{K}$ отличается от функции $\underline{\psi}_{c}^{r,\kappa'}(\mathcal{R})$ постоянным фактором $\mathcal{L}_{c}^{r,\kappa'}(\mathcal{R})$ и поэтому удовлетворяет уравнению Шредингера (11) с граничным условием:

$$g_{L}(R \to R_{\star}) = G_{L}(R) \quad (16)$$

Таким образом, функция $\ll_c^2(R)$ в форме (15) не зависит от величины \sim -ширины и целиком определяется кинематикой \propto распада и свойствами потенциала $V_{oo}(R)$. Поэтому с ее помощью удобно исследовать вклад кластерной области в абсолютные \ll ширины для широкого диапазона изменения значений Q_c и \angle , соответствующего \propto -распаду тяжелых сферических ядер.

На рис. I^A для ядра ²¹⁰В і представлены функции 9 (R), перенормированные для удобства обсарения на елинину в последнем максимуме, потенциалы $V_{(R)}$, равные сумме ядерного, кулоновского и центробежного потенциалов, а также функции 🗠 (4) . На рис. I⁶ показаны функция $\mathcal{G}(\mathcal{K})$ и $\ll_{c}(\mathcal{K})$ для ндря ²¹²Ро (Q_{c} = = 8,96 МэВ). Все величины, приведенные на рисунках, получены с ядерным потенциалом $V_{oo}(R)$ (IO), подробно изученным в работе $\frac{15}{5}$ Как видно из рис. 1², положение последнето максимума функции $g_{\ell}(R)$ (точка R_m) не сильно зависит от величины L (ср. сплошную кривую – $\angle = 5$, Q = 2 МэВ и пунктир – $\angle = 0$, Q = 2 МэВ) и одвигается на величину не более 0,4 ферми при возрастании энергии Q_c от 2 до IC МэВ (см. штрих-пунктир – L = 0, Q = IO МэВ) что исчерпывает интервал изменения исследуемых экспериментальных значения Q. Ситуация с l. -зависимостью величины К. меняется для 2>8. когда резкое возрастание центробежного барьера приводит к заметному смещению максимума функции 9, (R) в сторону меньших значений R (ср. случиную кривую – L = 0 и пунктир – \angle = 18 на рис.1⁶). Как показали детальные расчеты, приведенные на рис. I^a и I^d. результати являются типичными для 🗠 -распада тяжелых сферических ядер (140 \leq A \leq 230), причем поведение функций $g_{j}(R)$ и $\prec_{c}(R)$, отнесенное к положению радиуса \mathcal{K}_{A} , оказывается универсальным и слабо зависит от величин А и Z. Посколку амплитула функции $\propto^2 (R_{s,s}) \ge 0.8$ пля $\angle \le 8$ и превыдает величину 0.5 для больших 2. то отсюда следует важный физический вывод о том. что существенный вклад в абсолютное значение 🛛 -ширины набирается в кластерной области 🧹 -распада. Таким образом. теория не может правильно воспроизвести абсолютные 🗠 - ширины , если в ней не учитывается корректно кластерная асимптотика 🗠 распала.

Гля. Сотлошахоть сункция Q (Х) и Храх и постона и на Пр.Х. от снортия Храни ородтального могента д. Х -частина, сликция Q /Х воразрована на наинину в постеднем маногодие, шкото ты ноленияма Др.Х. в цов дена справа.

a) OPROBENCY FLARAL, NUMERIC II III MITHUM - NUMERIAL MODULARY CANVAR: $Q_c = 200$ PF, z = 5; $Q_c = 200$ PF, z = 200 = 0 - 0, $Q_c = 10^{-1}$ PF, z = 0, contretothermod(support S_c^{-1}). G) OPROBENS KANDAS z = 1, $G_c = 3.98$ Use, mythetup Z = 1.6, $Q_c = 11.93$ Use (support P_c^{-1}). Основние выводы, сделанные выше, остаются в силе, если вместо потенциала $V_{oo}(R)$ из формулы (IO) использовать действительные части феноменологических оптических потенциалов / IO,II /

3. <u>Предельная кластерная модель и экспериментальные</u> приведенные ∝ -ширины

В качестве примера использования развитого формализма рассмстрим предельную кластерную модель, введенную в работе / 12 /. В этой модели принимается, что разбиение на дочернее ядро я \propto -частицу, между которыми действует неполяризующий потенциал, справедливо во всей области $O \leq R \leq R_r$.

Параметры потенциала нодбирались в работе / 12 / так, чтобы положение резонансов при рассэнний \propto -части, на этом потенциале соответствовало энергии канала Q_c . Ширины этих квазистационарных \propto -кластерных состояний / * авторы получали, исследуя с малым шагом по энергии $\delta \mathcal{E}$ зависимость сечения упругого рассеяния в окрестности резонанса. Хотя такая процедура и может дать точный результат, она оказывается громоздкой в практическом применении, требуя большого объема вычислений с высокой точностью ($\delta \mathcal{E} < \Gamma_c^{\kappa n} < M_{25}$). Видимо, по этой причине авторы работы / 12 / ограничились случаем ядра 212Ро, для которого ширина \propto -распада имеет одно из самых больших значений ($\Gamma_c \simeq 10^{-15}$ M3B).

Используя результать, полученные выше, задачу вычисления ширин \int_c^{**} можно решить значительно проце и сделать, таким образом, предельную кластерную модель удобным средством для анализа экспериментальных \propto -переходов.

В рассматряваемой "одночастичной" модели функция квазистационарного \propto -кластерного состояния для $\mathcal{O} \leq \mathcal{R} \leq \mathcal{R}_{f}$ совпадает

н

с функцией $\varphi_{(k)}^{**} / 2.3 /$, которая удовлетворяет уравнению Шредингера (II) с граничными условиями:

$$\phi_{c}^{\star A}(\kappa + R_{t}) = \sqrt{r_{c}^{\star A}K_{c}/2Q_{c}} \quad (z_{L}(\kappa))$$
(18)

и нормирована на единицу:

$$\begin{bmatrix} r_{i} \\ r_$$

Поскольку функция $\mathcal{P}_{c}^{**}(k)$ в данном случае играет роль радиальной функции канала $\mathcal{H}(k)$, ширину \int_{c}^{**} можно сразу вычислить по формуле, аналогичной соотношению (8): / 2 /

$$\int_{c}^{K_{1}} = 2\pi \int_{c} \int_{c}^{R_{1}} (R) V_{oo}(R) \phi_{c}^{*}(R) R dR / c^{*}.$$
(20)

Существует более удобный способ вычисления ширин / с ^ без использования интегральной формулы (20). Введем функцию 9 (ск) соотчошением:

$$\phi_{k}^{**}(\kappa) = \sqrt{\Gamma_{k}^{**} h_{c}/2Q_{c}} g_{L}^{**}(\kappa).$$
(21)

По определению функция $\mathcal{G}_{L}^{*}(\mathcal{R})$ совпадает на асимитотике с введсиной выве функцией $\mathcal{G}_{L}^{(\mathcal{R})}$ и удовлетворяет граничному условию

$$g_{L}^{**}(J) = 0 .$$
 (22)

Возводя обе стороны тождества (21) в квадрат и интегрируя их по *R* имеем, с учетом формулы (19),

$$\int_{c}^{\star} = 2Q_{c}/\kappa_{c} \int_{c}^{r} \int_{dL}^{\star} (R) \int_{c}^{2} dR \qquad (23)$$

Заметим, что в нестационарном формализме выражение для ширины квазистационарного состояния (23) может быть получено как следствие уравнения непрерывности и хорошо известно в литературе / I3/. Приведенный выше вывод формулы (23) основывается на использовании вещественных граньчных условий для функции квазистационарного состояния, переход к которым возможен для подбарьерных энергий Q / I4,3/.

В отличие от метода, использованного в работе / I2 /, осъем вичислений
— ширин по формулам (20) и (23) не зависит от абсолютных значений кокомых ширин, что делает предельную кластерную модель удобной при систематизации

Для сопоставления с традиционными способами обработки экспериментельных данных по « -распаду запишем выражение для ширины / ^{- ка} с помощью формулы (21) в виде:

$$\int_{c}^{c} = \frac{2\kappa_{c}R}{\left[g_{L}^{\kappa_{1}}(R)\right]^{2}} \left[\frac{t}{V_{2m,R}} - \phi_{c}^{\kappa_{1}}(R)\right]^{2} = 2P_{L}(R) \gamma_{c}^{2}(R), \quad (24)$$

где

2

$$P_{L}(R) = \kappa_{c} R / \left[g_{L}^{*}(R) \right]^{2}.$$
(25)

При этом пирина $\int_{c}^{\kappa_{A}}$ (24) имеет обычный R -матрязный вид / 15,12 /, факторизованный на проницаемость $P_{L}(R)$ и приведенную кластерную пирину $\chi^{2}_{c,\kappa_{A}}(R)$. Однако в отличие от стандартного подхода в силу специального выбора потенциала $V_{oo}(R)$, обеспечивающего выполнение условия (17), формула (24) справедлива для любых значений R в области $0 \leq R \leq R_{c}$.

Обично анализ экспериментальных \propto -ширин проводится в терминах приведенных ширин / 15,9 /:

$$\chi^{2}(k_{o}) = \int \int 2P_{1}(k_{o}), \qquad (26)$$

где $\dot{\kappa}_{c}$ — произвольно внбираемый радиус канала. Таким образом, абсолютные значения и относительный ход экспериментальных привеценных — -ширин при вариации величин A, \measuredangle , Q_{c} и \bot определяются рецептом выбора радиуса \mathcal{R}_{o} . Величины \mathcal{R}_{o} , как правило, принимаются независящими от \measuredangle , Q_{c} и \bot , зависимость же от A либо игнорируется для узкого диапазона массовых чисел / 18 /, либо используется тависимость вида: $\mathcal{R}_{o} = z_{o} A^{\prime \prime s}$ с различными значениями константы z_{c} / 9,19 /.

Существующий в настоящее время произвол в выборе величин делает затруднительным сопоставление экспериментальных приведенных ширин, полученных в различных работах.

Поэтому полезно рассмотреть способ обработки экспериментальных -ширин, зе содержащий явной зависимости от радиуса обрезания. Для этого, следуя работе / I2 /, введем спектроскопические факторы

$$S_{c} = \Gamma_{c} / \Gamma_{c}^{-1}, \qquad (27)$$

которые с помощью формул (24) и (26) перепишем в виде:

$$S_{c} = \gamma_{c}^{*}(R), \gamma_{cn}^{*}(K).$$
(28)

Таким образом, спектроскопические факторы являются аналогами безразмерных приведенных ширин, выраженных в единицах витнеровского предела / I5 /. Как следует из формулы (24), величина $\chi_{c \times n}^2(R)$ определяется квадратом амплитуды функции $\Phi_c^{*n}(R)$. Поскольку характер радиальной зависимости функции $\Phi_c^{*n}(R)$ в окрестности последнего максимума ($R = R_m$) аналогичен соответствующей зависимости функции $\Psi_c^{*n}(R)$, то в силу ее универсальности (см. раздел 2) и условия нормировки (19) амплитуда $\Phi_c^{*n}(R_m)$ и, соответственно, приведенная ширина $\chi_{c \times n}^2(R_m)$ оказываются практически постолнными во всем рассматриваемом диапазоне величин A, \mathcal{I} , Θ_c и $\mathcal{L} \cdot (\Phi_c^{*n}(R_m) \simeq 0,6 (фермя)^{-1}$ и $\chi_{c \times n}^2(R_m) \simeq 0,5$ МэВ). Тогда, как следует из формулы (28), выбор радиуса обрезания

$$R_o = R_m \tag{29}$$

делает экспериментальные приведенные 🖂 -ширины (26) эквивалентными спектроскопическим факторам (27).

Заметим, что ранее в работах / 16,17 / использовалось определение для радиуса R_o (29), однакс преимущества этого выбора не связывались с понятием спектроскопического фактора.

Единственная неопределенность при анализе экспериментальних данных по \prec -ширинам на языке спектроскопических факторов свазана с неоднозначностью параметров оптического потенциала. В таблице I показаны результаты расчета ширин / b зависимости от величин A , Z , Q и L для теоретического потенциала из работы / 5 / и для двух феноменологических оптических потенциалов / II /, дающих эквивалентное описание данных по упругому рассаянию \prec -частиц на тяжелых ядрах. Действительная часть потенциала в работе / II / зацается в виде:

$$V(R) = V_{01} [1 + exp[(R' - v_0 A^{'3})] + a]].$$
 (30)

Выше в расчетах использовани следующие наборы параметров/II/:

(31)	$(I) \rightarrow i V_o =$	177,3 MəB;	ч₀ = I,342 ферми;	а = 0,569 ферми }
(32)	$(\Pi) \rightarrow \gamma V_{o} =$	58,8 MəB;	~υ, = I,454 фермы;	а = 0 , 56 ферми ј

Поскольку наборы I и II реализуют предельные случан дискретной неоднозначности в выборе параметров потенциала (30), то получившиеся величины отношений ($\int_{c}^{\kappa_{A}}$)_{$r} / (<math>\int_{c}^{\kappa_{A}}$)_{$r} <math>\simeq 4$ дают реальную оценку возможной неопределенности в абсолютных величинах $\int_{c}^{\kappa_{A}}$. Тем не менее анализ таблицк I позволяет сделать важный для последующего рассмотрения вывод о приближенной независимости относительных значений спектроскопических факторов от конкретного выбора параметров потенциала $V(\kappa)$.</sub></sub>

На рис.2 для изотопов Ро сравниваются зависимости от числа нейтронов спектроскопических факторов (сплошная кривая) з эконоримантальных приведенных ширин из работы / 18 / (R_o = 8,6 ферми (тунктир) и R_o = 9,0 ферми (штрих-пунктир), рассчитаниях с тонмощью оптического потенциала (30), (31). На том же рисузке точками показани значения экопериментальных приведенных ширин, родученных в работе / 19 /, с использованием кулоновских факторана родученных в работе / 19 /, с использованием кулоновских факторана проницаемость / 15 / и выбора радиуса $R_o = 1.65 \text{ A}^{1/3}$ берми. Видно, что относительные приведенные ширины могут отлачаться на фактор $\simeq 5$ для различных способов выбора параметра R_o . Добопытно, что относительные значения экопериментальных приведенных ширин из работу / 19 / близки к относительным значениям слектроскопических факторов.

Рис.2 Сависиность от числа нейтронов \mathcal{N} спектроскопического бактора \mathcal{S}_{c} (сплошная кригая) и экспериментальных приведенных ширин (пунктур и штрих-пунктир из работи / \mathbb{R}^{3} , кружки – из работы / \mathbb{R}^{2}) на примере изотопов \mathcal{O}_{c} . (Пормировка на ядро $\mathbb{C}^{2}\mathcal{O}_{c}$).

Вероятности существования *∝* -частиц на поверхности ядра и классификация *∝* -переходов

Очевидно, что идея об объемной \propto -кластеризации, лежащая в основе рассмотренных выше оптической и предельной кластерной моделей, не является физически обоснованной. Более последовательным является представление о поверхностной \propto -кластеризации, предложенное в работе А.И.Базя / 6 /. В этом случае эффективный потеничал для \propto -частици имеєт отталкивательную сердцевину и является притягивающим в поверхностной области ядра. Так что в принципе можно говорить о существовании \propto -частичных уровней молекулярного типа, свойства которых аналогичны свойствам \propto кластерных уровней, рассмотренных выше. Поскольку детальные свойства эффективного потенциала для модели поверхностной \propto кластеризации изучены в настоящее время недостаточно, ниже проведем приближенное рассмотрение, которое, несмотря на его грубость, способно, по-видимому, воспроизвести качественные черты модели.

Так как в случае поверхностной *с*-кластеризации основной вклад в нормировку набирается на периферии ядра, то определим каналовую функцию поверхностной модели соотношением:

$$\int \left[\phi_{c \ nob}^{nn}(R) \right]^2 dR = 1, \qquad (33)$$

принимая при этом, что в кластерной области редиальные зависимости функций $\phi_{c \ n \ 0}^{\kappa n}(\kappa)$ и $\phi_{c \ n \ 0}^{\kappa n}(\kappa)$ совпадают. Тогда из формул (18) и (33) легко получить, что ширина $\int_{c \ n \ 0}^{\kappa n}$ поверхностного \propto -кластерного уровня может быть записана в виде:

$$\int_{c}^{\kappa_{A}}_{nob} = \int_{c}^{\kappa_{A}} / \int_{c}^{\kappa_{f}} \left[\phi_{c}^{\kappa_{A}}(R) \right]^{2} dR \quad . \tag{34}$$

Введем далее спектроскопический фактор

$$W_c = \int_c^{\kappa} / \int_{c nob}^{\kappa n} . \tag{35}$$

Учитывая близость радиальных зависимостей функций $\oint_{\alpha,\delta}^{\alpha,\alpha} (\kappa)$ и $\psi_{\alpha}^{\alpha,\alpha} (\kappa)$, с помощью формул (12), (18) и (34) получим:

$$W_{c} \approx \int_{R_{hn}}^{\infty} \left[\Psi_{c}^{*n}(R) \right]^{2} dR \cdot$$
(36)

Таким образом, величину W_c можно рассматривать как "экспериментальную" вероятность обнаружения \sim -частицы на поверхности ягра.

Рассмотрим классификацию экспериментальных \prec -переходов на основе величин W'_c . На рис.3 представлены логари саланачений W'_c как функции числа нейтронов N, рассчитанные с потенциалом (10) / 5 /, для большой группы четно-четных, нечетных и нечетно-нечетных сферических ядер (140 $\leq A \leq$ 230). Подробная библиография экспериментальных работ, в которых получены \sim -ширины для исследуемых ядер, приведена в работах / 19,20 /.

На рис.З прослеживается тенденция разбиения \sim -переходов на группи по степени " \propto -одночастичной запреленности". Наибслее многочисленная группа соответствует в обычной терминологии облегченным \propto -переходам, когда вылетающая \sim -частица образуется из спаренных с моментом нуль пар нейтронов и протонов. Значения $l_g W_c$ для подавляющего большинства \sim -переходов этой группы ложатся в полосу шириной около 0,6, форма которой немонотонно зависит от числа нейтронов, причем – 3,8 = $l_g W_c \leq$ – 2,7. Ниже этой полосы в области значений – 4,7 = $l_g W_c =$ – 3,8 располагаются полуоблегченные \approx -переходы для ядер с $\mathcal{N} = 127$ и $\mathbb{R} = 83$ (одна из пар нуклонов, образующих \sim -частицу, имеет ненулевой момент).

Рис.3 . ависимость логарияма экспериментальной веролтности нахождения *с* -частицы в поверхностной области ядра от числа не: тронов *N*.

Еще ниже в шкале величин $l_g W_c$ располагаются случам необлегченного \propto -распада ядер B_i^{210} и $Fo^{212}m$ (- 7,7 $\leq l_g W_c \leq$ - 5,6), для которых обе пары нуклонов в улетающей \propto -частице обладают ненулевым моментом.

Классификация \propto -перекодов по величинам W_c обладает предсказательной силой в той же мере, что и оболочечная классификация, проведенная в работах / 20 / на основе формулы (I) для ширины \propto -распада. Значения периодов полураспада для ряда ненадежно измеренецах облегченных \propto -мереходов, предсказанные исходя из относительного хода $W_c(M)$, оказываются в близком соответствия с предсказаниями, сделанными ранее в работах / 20 /.

В силу аргументов, приведенных в разделе 3. относительные значения вероятностей W_c слабо зависят от выбора параметров оптического потенциала, абсолютние же величины W_c увеличиваются в среднем в 2 раза при переходе от теоретического потенциала (10) /5 / к потенциалу (30), (31) и приблизительно в 5 раз при использовании нараметров (32). Эти изменения величин W_c связани с уменьшением фактора проницаемости для барьеров, образованных феноменологическими потенциалами (31) и (32), и показывают масштаб неопределенности при получении абсолютных величин вероятностей W_c .

Учитывая отмеченные неопределенности, можно тем не менее сделать вывод, что вероятность нахождения \propto -частицы на поверхности ядра значительно меньше единицы, причем даже для наиболее благоприятных случаев облегченных \propto -переходов она не превышает величины 0,008 + 0,003.

В свете этого заключения полезно обсудить результати недавней работи / 21 /, в которой с помощью статистической предравно-

весной модели сделана полытка оценить вероятности \mathcal{Y}_{∞} образования \ll -частяцы в основных состояниях четно-четных \ll -радиоактивных ядер. Величина \mathcal{Y}_{∞} определяется формулой типа (35), в которой в знаменателе фигурирует ширина \int_{O} , имеющая квазиклассический вил:

$$\Gamma_o = \left(\mathcal{D}_{\alpha}/2\pi\right)\overline{P}_{L}, \qquad (37)$$

где \vec{P}_{ℓ} – фактор проницаемости потенциального барьера, рассчитанный по формуле Расмуссена / 9 /, а \mathfrak{D}_{\propto} – расстояние между уровнями в системе \sim -частица плюс дочернее ядро, причем, согласно гипотезе предравновесной моделя, :

$$\mathcal{L}_{2} = 4/900. \approx (0,25 + I) M_{2}B.$$
 (38)

Здесь $\frac{9}{66}$. – плотность одночастичных оболочечных состояний вблизи поверхности ферми. Величины $\frac{9}{24}$, полученные в работе / 21 / для облегченных $\frac{1}{24}$ –переходов, оказались в интервале 0,7 \leq $\frac{9}{24} \geq$ 0,01. Это приблизительно 80 + 200 раз больше соответствукщих значений , получаемых для потенциала (30), (31), близкого к потенциалу Иго / 10 /, использованному в работе / 21 /

Заметим, что кластерная ширина \int_{c}^{**} также может быть представлена в форме (37), где вместо величины \mathfrak{D}_{\sim} должна стоять величина $\mathfrak{D}_{c}^{**} \simeq 20$ МэВ, соответствующая расстоянию между \ll -частичными уровнями в предположении объемной \ll -кластеризации. Оценивая интеграл, входящий в соотношение (34), для рассматриваемого случая $\mathcal{L} = \mathcal{O}$ получим $\mathcal{H}_{c}^{-k*} \simeq \int_{c}^{\infty} \int_{c} \int_{$

∝ -частичных уровней (38), представляется неоправданно завышенной.

Из рассмотрения рис.З можно сделать некоторые заключения о свойствах \ll -кластерных уровней. Действительно, поскольку величины W_c весьма малы для всех исследованных ядер и плавно зависят от массового числа, то кластерные уровни могут проявляться только в виде правила сумм, будучи сильно фрагментированы по реальным ядерным состояниям (предел сильной связи $\begin{pmatrix} 6 & / \\ \end{pmatrix}$. L

5. Заключение

Рассмотренная выше кластерьзя картина 🗠 -распада способна лишь констатировать зависимость 🗠 -ширкн от ядерной структуры, Оболочечная модель ядра является в настоящее время единственной медельн, которая может претендовать на воспроизведение экспериментально наблюдаемых факторов запрета для 🔨 -распада/стиссительных <--ирин/.в расчётах^{/20},²²,²³, проведенных с поможью формулы (1) в рамках оболочечной молели со смешиванием кончигураний и сверхтекучих корреляций, удалось удовлетворительно описать относительные вероятности 🗠 -распада. Однако абсолютные значения 🗸 -ширин. полученные в работах / 22,23 /. оказались на два порядка меньше экспериментальных. Этот факт можно качественно понять, используя результаты настоящей статьи. Действительно, асимптотическое повеление функции конечного канала в оболочечном плиближении ($\Psi^{o\delta}(R)$) определяется главным образом суммарной энергией связи четырех нуклонов, формирующих ~ -частицу / 24 /. и совершенно не похоже на правильную зависимость (12). Болес того, значение функции $\mathcal{Y}_{i}^{r \to \delta}(\mathcal{R}_{i,i})$ составляет менее 0,02 от ее максимальной амплитуды в окрестности радиуса оболочечного потенциала.

Поскольку, например, для облегченных \propto -переходов вклад кластерной области в абсолютные \sim -ширины оказывается $\geq 80\%$ (см. раздел 2), легко понять, почему оболочечные \propto -ширины не превышают \simeq 1% от соответствующах экспериментальных значений.

Таким образом, остается актуальной задача корректного включения в оболочечную картину 🚿 -распада кластерной асимптотики.

Таблица І

Редительское идро	Ф _с Мэв	L	Ic I/Fom	Γ ^{εκ} η / Γ _ε κη	
174 Pt	6.20	U	0.39	0.125	3.10
194 Po	7.02	0	0,41	0.11	4.35
212 PO	8.95	C	Ú . 44	J.10	4.40
²¹⁰ At	5.66	2	Ü.46	0.125	3.60
214 Fz	8.62	5	0.45	0.13	3.50
²¹⁶ Ac	9.27	5	0.45	0.13	3. 50
212mpo	8.67	13	0.5;	0.21	? . 50
212mpo	8.67	17	0 .7 U	0,24	2.90
212mpo	11,88	18	C. 64	0.22	₹ . 90

ЛЕТЕРАТУРА.

- I. С.Г.Кадменский, В.Е.Калечиц, ЯФ, 12, (1970), 70.
- 2. С.Г.Кадменский, В.Е.Калечиц, А.А.Мартынов. ЯФ, 14(1971), 1174.

Ì

ŧ

- С.Г.Кадменский, В.И.Фурман. Сообщение ОКНИ Р4- 8729, Лубна, 1975.
- 4. С.Г.Кадменский. Изв. АН СССР физ. 30, (1966), 1349.
- 5. С.Г.Кадменский, В.Е.Калечиц, С.И.Лопатко, В.И.Фурман, Б.Г.Хлебостроев АФ, <u>10</u>, (1969), 730.
- А.И.Базь. Материалы УІ зимней школы ЛИЯФ по физике ядра и элементарных частиц, ч.Г. Ленин.рад, 1971.
- Г.Хофштадтер. В сб. "Электромагнитная структура ядер и нуклонов". ИЛ. Москва, 1958.
- 8. d.J. (mg. Z. Phys. 144 (1957)572.
- Дж.Расмуссен. В сб. "Альфа-, бета, -гамма спектроскспия". Атомиздат, Москва, 1963.

- 12. L.Johork, D. J. Vogt. Canad. J. Phys. 46 (1968)1119.
- IЗ. Л.Д.Ландау, Е.М.Лифииц. Квантовая механика. Физматгиз, Москва, 1963.
- 14. Г.Брейт. Теория резонансных ядерных реакций, ИЛ, Москва, 1961.
- А.Лейн, Р.Томас. Теория ядерных реакций при низких энергиях, ИЛ, Москва, 1960.
- 16. E. I. Vort et al., Phys. Rev. C1 (1970)864.
- А.А.Мартинов, Ю.П.Попов, В.И.Фурман. Программы и тезиси XX совещания по ядерной спектроскопии и структуре атомного ядра, ч.2. стр. 251, Наука, Ленинград, 1970.
- 18. MGarjan, A. Sandulesku. Z.F. Naturfor. 326a(1971)1389.

- P.dornshøj, P.G.Hancel, J.Jonnoh, H.L.Ravn, L. /essgaard, O.B. Mielson. Hucl. Phys. A230(1974)365.
- С.Г.Кадменский, В.Е.Калечиц, А.А.Мартинов. яФ.<u>13</u>, (1971), 300; ЯФ, <u>16</u> (1972),717; ЯФ, <u>17</u>, (1973),75.
- 2I. R.Bonnetti, L.Milazzo-Colli. Phys.Lett. 49B(1974)17.
- 22. V.I.Furman, S.Holan, S.G.Kadmensky, G.Stratan. Nucl.Phys. <u>A226</u>(1974)131.
- 23. V.I.Furman, S.Holan, S.G.Kadmensky. Nucl. Phys. to be published.
- V.I.Furman, S.Holan, S.G.Kadmensky, G.Stratan. Nucl. Phys. <u>A239</u>(1975)114.

Рукопись поступила в издательский отдела 24 марта 1975 год .