

P4-87-752

1987

А.М.Горбатов*, А.В.Бурсак*, А.М.Калинин, Е.А.Колганова*, П.В.Комаров*, Ю.И.Крылов*, П.Ю.Никишов*, Ю.Э.Пенионжкевич, В.Л.Скопич*

МИКРОСКОПИЧЕСКИЙ РАСЧЕТ СИСТЕМЫ⁴ Н С РЕАЛИСТИЧЕСКИМ NN-ВЗАИМОДЕЙСТВИЕМ

Направлено в журнал "Nuclear Physics A"

*Калининский государственный университет

<u>Таблица I.</u> Параметры несвязанных уровней в системе ⁴Н, полученные в различных реакциях

:	:Энергия уровня, МэВ	-: : Ширина, МэВ	: Работа	: : :
:	·:	- :	-:	:
: л + ³ н -> л + ³ н	: 3,4	: 5,5	: _т	:
:	: 5,I	: 5,5	: 1	:
$: \pi + \frac{7}{4} = T + \frac{4}{H}$: 2,7 ± 0,6	: 2,3 ± 0,6	: 2	:
${}^{6}L_{i} + {}^{6}L_{i} \rightarrow {}^{8}B + {}^{4}H$: ~3,6	:~2,2	: 3	÷
$: \mathcal{I}^{-} + {}^{6}\mathcal{I}^{\rightarrow} {}^{2}\mathrm{H} + {}^{4}\mathrm{H}$: 3,3 ± 1,5	: < 3	: 4	:
$: \pi^- + \chi \rightarrow {}^{3}H + {}^{4}H$: 0,3 ± 1,5	: < 5	: 4	:
$: n + {}^{3}\text{H} \rightarrow n + {}^{3}\text{H}$: ~ 3,5	:~3	: 5	:
$H_{B} + {}^{9}Be - {}^{16}O + {}^{4}F$	I; 3,5 + 0,5	: I	:	:
:	: ~ 5	:~2	:	:
$^{9}\text{Be} + \mathcal{R}^{-} \rightarrow d + \text{T} + ^{4}\text{H}$: 3,0 ± 0,2	: 4,7 ± 1,0	: 7	:

исчерпаны и здесь уникальные возможности представляют пучки тяжёлых ионов. Необходимо отметить, что вероятность заселения отдельных состояний в значительной степени определяется правилами отбора, а также механизмом ядерной реакции. В связи с этим ненаблюдение в эксперименте конкретного состояния не означает его отсутствия в данной системе. Наиболее перспективными с этой точки зрения являются пучки тяжёлых ионов, позволяющих варьировать в широких пределах характе ристики входного канала реакции. Систематические экспериментальные исследования тяхелых изотопов водорода на пучках тяжёлых ионов были проведены в работах /6,10/, в которых были обнаружены квазистационарные состояния ⁶Н, а также проявление возбуждённых уровней в системе ⁴Н. Эти результаты имеют большое значение для дальнейшего понимания свойств мультинейтронных систем и дают важную информацию для теоретических расчётов этих систем. Настоящая теоретическая работа

BOLLEN ALL SHOTHYT

Изучение малонуклонных систем занимает особое место в ядерной физике. Интерес к этой области исследований объясняется в первую очередь возможностью проверки различных теоретических полходов для достаточно точного безмодельного описания свойоте таких оистем. В последнее время большое внимание уделяется экопериментаторами изучению ядер легчайщих элементов, сильно обогащённых нейтронами (мультинейтроны, тяжёлые изотопы водорода и гелия). Этот интерес значительно вырос после обнаружения квазистационорных систем ⁶Н и ⁹Не /6,10,11/, которые оказались существенно более отобильными, чем предсказывалось ранее. Появилась недежда на существование связанных мультинейтронных систем. В связи с этим большой инторос представляет экспериментальное исследование малонуклонных окотом и обнаружение их квазистационарных состояний. Неиболее логким ядром, в котором была обнаружены кразистационарные осотолния, прилоов ⁴Н, исследованию которого был посвящен ряд оконориментальных работ /I - 7/. Результаты этих исследований, проводённых о помощью различных методик в разных ядерных роакциях, продотавлоны в табл. І. В большинстве работ авторы наблюдали кразиотационарные осстояния ⁴Н с энергией 3.5 МэВ. В работо /6/ п ропкнии о тиколыми ионами было надежно идентифицировано ощо одно квазиотационарное состояние ⁴Н с энергией 5 МэВ. Не исключено, что и отой области энергий может наблюдаться ещё носколько квазистационарных осотолний этого ядра.

Теоретические исследования системы ⁴II /8/ показали ипличие двух резонансов. Однако точность этих расчётов, включающих в асбы ряд упрощений, была недостаточна для одновначного ваключения с отруктура этого ядра. По-видимму, дильнейший прогресс в исследовании системы ⁴II следует связать с-полмостными усилинии тоуротиков в внопарияментаторов. Эксперима

предпринята с целью описания возможных состояний, проявляющихся в системе ⁴H, и их сравнения с наблюденными в работе /6/ экспериментальными данными. С теоретической точки зрения мультинейтронные системы с $A \leq 4$ представляют особый интерес по двум причинам. Во – первых, нечетные компоненты NN – взаимодействия играют здесь столь же существенную роль в формировании глобальных характеристик (энергий связи, радиусов), что и чётные составляющие. Во-вторых, благодаря относительно малому числу нуклонов сохраняется возможность для проведения прецизионных микроскопических расчётов. При этом важно, что аналитические методы исследования малонуклонных систем уже развиты, а экспериментальное изучение рассматриваемых объектов ещё не завершено. Таким образом, физические системы 3n, 4n и ⁴H представляют на сегодняшний день уникальную возможность для проерки предсказательной силы потенциальной модели адронных систем.

В настоящей работе расчет системы ⁴Н проводится методом угловых потенциальных функций (УПФ). Этот метод является едва ли не самым надежным инструментом исследования легчайших и легких ядер с использованием реалистического NN - взаимодействия. В последнее десятилетие он успешно применялся для изучения низколежащих состояний стабильных ядер ⁴Не, ⁶Li, ⁷Li, ^{I4}N, ^{I5}O, ^{I6}O и привел к установлению границ применимости потенциального подхода /I2,I3/. Основы метода изложены в работах /I2-I4/. Необычные свойства мультинейтронных систем потребовали дальнейшего совершенствования математического аппарата по двум направлениям - расширения базиса УПФ в сторону ещё больших значений глобального момента К и болеё точного решения системы дифференциальных уравнений с помощью плавных передаточных функций гиперрадиуса. Поэтому настоящая работа имеет также и методическое значение.

Наконец, заметное место в работе занимает ядро ³Н, так как для физической интерпретации результатов расчета ⁴Н необходимо знать порог развала в канале ³H + n. Более того, простейшая система ³H удобна для экономной демонстрации новых элементов расчета. Действуя последовательно, мы проводим одновременный расчет объектов ³H и ⁴H с одним и тем же вариантом *NN* - потенциала в рамках одних и тех же приближений.

Далее придерживаемся обозначений работы /І4/.

РАЗЛОЖЕНИЕ ПОТЕНЦИАЛА ПО МНОГОМЕРНЫМ ГАРМОНИКАМ

Как известно, непосредственное вычисление матричных элементов

$$\begin{split} & M \tilde{\vartheta}) \qquad N \tilde{N} - \text{BSAUMODE BUTBUH} \\ & \tilde{V} = \sum_{XMT} \hat{V}_X^{MT}, \quad \tilde{V}_X^{MT} = \sum_{j>i=1}^{A} \tilde{V}_X^{MT} (ij) \end{split}$$
(I)

розможно лишь при относительно небольших индексах возбуждения $S = (K - K_{mun})/2 \le 10$, недостаточных для достижения полной сходимости в мультинейтронных системах. Проникновение в область практически неограниченных S обеспечивается разделением переменных P и $\Omega = \Omega_{3A-3}$ уже в самом NN - потенциале. Реализуется оно как частный случай ($\hat{U}_{K_{mun}} = I$) формулы проектирования (I) работы /I4/ с учетом полноты $\sum_{\kappa} \hat{C}_{\kappa}^{\ N} = 1$ (2)

проекционных операторов \hat{C}_{κ}^{\flat} :

$$\hat{V}_{x}^{M\tau} = \sum_{\rho=bx}^{\infty} B_{x\rho}^{M\tau}(\rho) \hat{\Phi}_{x\rho}^{M\tau}(\Omega).$$
(3)

В разложении (3) гиперрадиальные коэўфициенты $B_{x\rho}^{\prime\prime}(\rho)$ совпадают с функциями (20) из /I4/, если в них положить $S = P, \ell = 0$. Объекты $\Phi_{x\rho}^{\prime\prime}(\Omega)$ в конфигурационном пространстве представляют определенную комбинацию многомерных симметричных гармоник, а в спинизоспиновом - являются операторами той же природы, что и исходная компонента $\sqrt[7]{\mu^{\prime}}: (-1)^{P-\delta_x}(M+2P-1)\Gamma(P+\delta_x+3/2) \sum_{x=0}^{P-\delta_x} C_{P-\delta_x}^{\prime} (4)$ $* \frac{\Gamma(M-1+\delta_x+P+x)}{\Gamma(x+2\delta_x+3/2)} \sum_{j>i=1}^{A} (-\frac{P_{ij}}{2\rho^2})^{\chi+\delta_x} \sqrt[\Lambda]{\mu^{\prime}}(ij)/V_x^{\prime\prime}(\rho_{ij}).$

5

Здесь $U_{s}^{\mu\tau}(\rho_{ij})$ радиальные части потенциала, M = (3A - 3)/2, b_{t} = I, $b_x = 0 \text{ при } x \neq t$.

МАТРИЧНЫЕ ЭЛЕМЕНТЫ И РЕКУРРЕНТНЫЕ СООТНОШЕНИЯ

Разложение (3) позволяет установить рекуррентные соотношения между МЭ с соседними индексами и тем самым вычислить всю матрицу NN - взаимодействия. Рассмотрим в качестве примера ядро ³H. В данном случае существует три потенциальные гармоники (ПГ) $U_{cos}^{31}(\Omega), U_{cos}^{13}(\Omega), U_{tos}^{31}(\Omega),$ (5)

генерируемые четными центральными и тензорными составляющими потенциала (при S = I центральные ПГ линейно зависимы, см. (18) работы /14/). Квантовые числа основной конфигурации (К = К по = 0) равны $\mathcal{J}^{\pi}_{\Gamma=\frac{1}{2}+\frac{1}{2}}$. Для символической записи $\mathcal{U}_{\kappa_{min}}(\Omega)$ введем одночастичные состояния || вти и определителя Слэтера А × А равенствами

$$\left\| \ell m_{M} \tau \right\| = \mathcal{L}_{M} \beta_{\tau} \begin{cases} 1, & \ell = m = 0 \\ x + ij, & \ell = 1, & m = 1 \\ z, & \ell = 1, & m = 0 \\ x - ij, & \ell = 1, & m = -1, \end{cases}$$
(6)

гдеd_и - спиновое, а β_{τ} - изоспиновое состояние нуклона. В этих обозначениях

$$U_{\kappa_{min}}(\Omega) = \sqrt{\frac{1}{6\pi^3}} \begin{bmatrix} 0 & 0 + - \\ 0 & 0 & - - \\ 0 & 0 & + + \end{bmatrix}, \quad \langle U_{\kappa_{min}} | U_{\kappa_{min}} \rangle = 1.$$
(7)

Представляя оператор (4) в базисе (5), ограничимся тремя петельными пиаграммами рис. І из /ІЗ/, которые вносят подавляющий вклад в (D = S)

M3. Получим (P = 0):

$$< U_{x_20S}^{M_2 T_2} \left| \hat{\mathcal{O}}_{x_0 S_0}^{M_0 T_0} \middle| U_{x_10S_1}^{M_1 T_1} \right> = \frac{12}{\pi} \left\{ B + C\beta_{x_0}(S_0) \right\} \times (8)$$

$$* \int_{0}^{1} z'^{2} (1-2)^{1/2} dz \frac{\pi^{2}}{e^{z_0}} \frac{(-1)^{S_e} (2+2S_e) \Gamma(2+S_e+b_{Xe})}{\Gamma(S_e+3)} Z^{B_{Xe}} * \int_{S_e-B_{Xe}}^{2B_{Xe}} \frac{1}{2} \frac{1}{2} (1-2Z) ,$$
где
$$\int_{X_0}^{1} (S_0) = \frac{(-1)^{S_0-b_{X0}} (S_0-b_{X_0})! \Gamma(3/2)}{\Gamma(S_0-b_{X0}+3/2)} \int_{S_0-b_{X0}}^{12b_{X0}+\frac{1}{2}} \frac{1}{2} ,$$
a $P_{n}^{(\mathcal{U},\beta)} (Z)$ -полином Якоби.

Радиальные части составляющих $V_{x}^{\mu\tau}$ потенциала GPT /16/. Puc.I. Численные коэффициенты В и С определяются индексами <X2 M2 T2 X 0 MO T0 X1 M1 T1> левой части (8). Значения В и С приведены в таблице 2.

Таблица 2. Численные коэффициенты В и С матричных элементов (8) лля япра ³Н

:												-:
:	МЭ	:	В	:	C	:	МЭ	:	В	:	C	:
<pre></pre>	1 C33 C31> 51 C31 C31> 51 C31 C31> 51 C33 C31> 51 C33 C33> 51 C31 C31> 51 L31 C31> 51 L33 C31>	:- : : : :	0 1 0 0 8 0	: : : : :	3/8 1/8 9/8 -3/8 -1/2 -3/2	-:- : : :	<t31 t31 c13 <t31 t33 c13 <t31 c33 t3 <t31 c31 t3 <t31 c31 t3 <t31 t31 t31 <t31 t33 t31< th=""><th>7 3 >: 1 > : 1 > : 2 > : 2 > :</th><th>0 0 8 -16 0</th><th>-:-: : : :</th><th>-3/2 3/2 12 4 -2 -6</th><th>-: : : :</th></t31 t33 t31<></t31 t31 t31 </t31 c31 t3 </t31 c31 t3 </t31 c33 t3 </t31 t33 c13 </t31 t31 c13 	7 3 >: 1 > : 1 > : 2 > : 2 > :	0 0 8 -16 0	-:-: : : :	-3/2 3/2 12 4 -2 -6	-: : : :
:	n (1994 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (:-		:	, 112 - 114 - 11 7 - 117 - 117 - 117	-:	ر میر انام سر میر در بار میر میر در میر میر میرد میرد. ر	~-:		-:-		-:

Остальные подучаются с учетом симметрий коэффициентов этносительно замены спина на изоспин ($\mathcal{H}_i \rightleftharpoons \mathcal{T}_i$, i = 0, I, 2) и левых индексов на правые ($X_2 M_2 \mathcal{T}_2 \rightleftharpoons X_1 M_1 \mathcal{T}_1$), а также равенств

$$\begin{split} & B(< CM_2 T_2 | C | | | CM_1 T_1 >) = B(< CM_2 T_2 | C 33 | CM_1 T_1 >) \\ & C(< CM_2 T_2 | C | | | CM_1 T_1 >) = C(< CM_2 T_2 | C 33 | CM_1 T_1 >), \end{split}$$

формула (8) точно описывает важнейщие МЭ первой строки (0 = S₂ < S₁). Чтобы увидеть это, достаточно воспользоваться связью

$$\mathcal{U}_{\kappa_{min}}(\mathcal{Q}) = \frac{2}{A(A-1)} \sum_{\mathcal{M},\tau} \sum_{\ell=0}^{\infty} (-1)^{\ell} \mathcal{U}_{colo}^{\mathcal{M}\tau}(\mathcal{Q}), \qquad (9)$$

следующей из формулы (18) работы /14/.

При расчете сложных систем предпочтительней пользоваться базисом УПФ $U_S(\rho, \Omega) \equiv U_S$ (формула (20) из /I3/), в котором матрица гамильтониана сокращается на порядок, в то время как энергия связи уменьшается (по сравнению с ПГ) всего на десятые доли МэВ. Поэтому волновую функцию представим в виде разложения

$$\Psi = \rho \sum_{s}^{-(3A-3)/2} \Psi_{s}(\rho) \mathcal{U}_{s}(\mathcal{D}; \rho) \cdot (\mathcal{U}_{o} = \mathcal{U}_{K_{\min}}).$$
(10)

Обозначая искомые МЭ

$$W_{\mathcal{S}_{\mathcal{S}}\mathcal{S}_{4}}(\rho) \equiv \langle \mathcal{U}_{\mathcal{S}_{\mathcal{S}}} / \sqrt[4]{\mathcal{U}_{\mathcal{S}_{4}}} \rangle , \qquad (II)$$

сразу получим

$$W_{os}(p) = \sqrt{\langle \hat{C}_{\kappa}^{\vee} \vee \mathcal{U}_{\kappa_{min}} | \hat{C}_{\kappa}^{\vee} \vee \mathcal{U}_{\kappa_{min}} \rangle} \geqslant O.$$
 (I2)

Точное выражение для трития имеет вид

$$W_{0s}^{2}(\rho) = \frac{3(2+2s)\Gamma^{2}(s+3/2)}{(2+s)\Gamma(s+3)\Gamma(s+4)\Gamma^{2}(3/2)} \left\{ \left[1 + \frac{1}{2}\beta_{c}(s) \right] * \right\} \\ * \left[\left(b_{cs}^{31}(\rho) \right)^{2} + \left(b_{cs}^{13}(\rho) \right)^{2} \right] + 3\beta_{c}(s) b_{cs}^{31}(\rho) b_{cs}^{13}(\rho) \right\} + (13) \\ + \frac{3(2+2s)\Gamma(s+5/2)\Gamma(s+1/2)}{\Gamma(s+3)\Gamma(s)\Gamma^{2}(3/2)} \left[8 - 2\beta_{t}(s) \right] \left(b_{ts}^{31}(\rho) \right)^{2} .$$

Произвольные МЭ получаются подстановкой (3) и (8) в (II) с учетом (20) из /I3/:

$$W_{S_{2}S_{1}}(p) = W_{S_{20}}(p) W_{S_{10}}(p) \sum_{s_{2}=1}^{S_{2}=1} \sum_{x_{2}N_{2}\overline{z}_{2}} \sum_{x_{\sigma}H_{\sigma}\overline{z}_{\sigma}} \sum_{x_{1}N_{1}\overline{z}_{4}} *$$

$$* b_{x_{0}S_{0}}^{H_{\sigma}\overline{z}_{0}}(p) b_{x_{2}S_{2}}^{H_{\sigma}\overline{z}_{1}}(p) < U_{x_{2}0S_{2}}^{H_{\sigma}\overline{z}_{2}} | \widehat{\Phi}_{x_{0}S_{0}}^{N_{0}\overline{z}_{0}} | U_{x_{1}0S_{4}}^{H_{\tau}\overline{z}_{1}}.$$
(14)

Область изменения спин - изоспиновых индексов определяется смыслом еходящих сюда выражений. Границы суммирования по S_o следуют из теоремы разложения произвольного полинома по многомерным гармоникам. В общем случае ($\mathcal{K}_{mlo} \ge 0$) справедливо неравенство треугольника

$$S_2 - S_1 \leq S_0 \leq S_2 + S_1 + K_{min}$$
 (15)

Выбранные здесь приближения (петельность, УПФ) легко устраняются в ³Н , но в ⁴Н строгий расчет требует гораздо больше усилий (одна орбиталь в Р – оболочке). Поэтому на первом этапе нецелесообразно стремиться к высокой точности, достигнутой в области легчайших ядер /12/.

Таким образом, МЭ (14) сводятся к разнообразным интегралам от полиномов Якоби и вычисляются с помощью рекуррентных соотношений /15/.

XAPARTEPUCTUKA UCHOJISSYEMEX HOTEHHUAJOB

При анализе результатов расчета изотопа ⁴Н мы будем многократно привлекать данные о радиальных частях потенциала $\bigcup_{x}^{M_{\tau}^{\tau}}(r)$ и его проявлении в других физических системах. Интересующая нас информация разбросана по разным источникам и нуждается здесь в объединении. Благодаря развитию теории, к характеристикам реалистического NN – взаимодействия в последние годы добавились качество описания легчайших и легких ядер ($A \leq 16$) и свойства насыщения ($A \rightarrow \infty$).

Среди большой группы известных феноменологических локальных потенциалов варианты G. PT /I6/ и SSC_в /I7/ наилучшим образом воспроизводят энергии связи ядер (табл.3).

8

Таблица 3. Расчетные \mathcal{E}_{cb} , \mathcal{R}_{c} и экспериментальные $\mathcal{E}_{cb}^{\mathfrak{skcn.}}$, $\mathcal{R}_{c}^{\mathfrak{skcn.}}$												
энергии связи и радиусы ядер												
: π_{APO} : $\mathcal{E}_{cb}(GPT)$: $\mathcal{K}_{c}(GPT)$: $\mathcal{E}_{cb}(SSC_{b})$: $\mathcal{K}_{c}(SSC_{b})$: $\mathcal{E}_{cb}(MBB)$: $\mathcal{K}_{c}(\mathcal{P}_{M})$:											
: \mathcal{D} : 2,6 : : 2,23 : : 2,22 :	:											
: ⁴ He /I2: 27,8 : I,67 : 25,7 : I,64 : 28,3 : I,67	:											
: ¹⁶ 0/13/ : 135,8 : 2,53 : 105,0 : 2,49 : 127,6 : 2,72	:											
::::-::::::												
Но по сравнению с BPT потенциал SSC _в значительно точнее описы-												

вает друхнуклонные данные.

Радиальные части взаимодействий приведены на рис. I, 2.

<u>Рис.2.</u> Радиальные части составляющих $V_{x}^{\mu \tau}$ потенциала SSC_B /17/. Как видно, вариант SSC_B отличается бо́льшими амплитудами и потому приводит к более медленной сходимости разложения (IO) /I5/. Отметим ещё одну особенность – притягивающий характер триплетного нечетного езаимодействия \mathcal{N}_{c}^{33} (*r*) в области больших *γ*, присущую тем потенниалам, которые с высокой точностью воспроизводят фазы *NN*- рассеяния в указанном канале. Эти детали могут проявиться в системах с большим избытком нейтронов.

Насыцающие свойства потенциалов контролируются 5 условиями Калоджеро – Симонова /18/, из которых наиболее строгими оказываются переме два:

$$\underline{I}_{4} \equiv 3 \, \underline{V}_{c}^{33} + \, \underline{V}_{c}^{\prime 3} \geqslant 0, \qquad (16)$$

$$\underline{I}_{2} \equiv 9 \, \overline{V_{c}^{33}} + \overline{3} \, \overline{V_{c}^{31}} + \overline{3} \, \overline{V_{c}^{\prime 3}} + \, \overline{V_{c}^{\prime \prime}} \geqslant 0, \qquad (17)$$

причем для сферической формы системы (тензорный потенциал не ухудшает насыщающие свойства)

$$\overline{\mathcal{J}_{c}^{\mu\tau}} \doteq \int_{c}^{\infty} \mathcal{J}_{c}^{\mu\tau} \, v^{2} dr. \tag{18}$$

Результаты расчета I_{I,2} для некоторых вариантов взаимодействия приведены в табл.4.

<u>Таблица 4.</u> Левые части условий насыщения I_{1,2} для различных вариантов NN- взаимодействия

•		•				•		· · ·				•••		•••		••
	I	:	6 pt	:	SSC [®] B	: {	SSÇc	:	SSCA	:	TRSA	:	TRSB	:	EH	:
:		:	/16/	:	/17/	:	/17/	:	/17/	:	/20/	:	/19/	:	/21/	:
: -		:-		-:-		-:-		-:-		-:-		-:-		-:-		-:
:	I,	:	~68,	4:	-3,8	3:	-3,8	8:	-6,6	:	-12,2	:	-0,4I	:	5I , 7	:
:	I.2	:	-325,7	:	-123,0	:	-97,6	:	4,3	:	-65, 6	:	-30,3	:	365,2	:
		•				•				_•_		. • .				

Как видно, наиболее сильно нарушается условие (17), а I $_4\simeq$ О в случае $SSC_{\rm B}$.

Поэтому для SSC_в комбинация

$$I_{2}' = I_{2} - 3I_{1} = 3\overline{v_{c}^{31}} + \overline{v_{c}^{''}} < 0.$$
(19)

Для предотвращения коллапса (19) необходимо большее отталкивание в синглетном нечетном состоянии. Поскольку, однако, V_c^{II} (r) играет второстепенную роль в мультинейтронных системах, установленный дефект потенциала SSC_B считаем здесь несущественным.

система ⁴н в основном приближении

Расчет конкретной системы начинается с построения первого элемента базиса (IO) - основной гармоники U_{Kmin} , выступающей вместе с (I) в качестве генератора всей цепочки УПФ. Для изотопа ⁴Н $K_{min} = I$ (отрицательная четность), а I2 линейно независимых U_{Kmin} строятся на основе следующих определителей (с орбитальным моментом L = I): (2O) $\Psi_{1m} = \begin{bmatrix} 00^{+} - \\ 00^{-} - \\ 1m^{+} - \\ 00^{+} + \end{bmatrix}, \Psi_{2m} = \begin{bmatrix} 00^{+} - \\ 00^{-} - \\ 1m^{+} - \\ 00^{+} + \end{bmatrix}, \Psi_{4m} = \begin{bmatrix} 00^{+} - \\ 00^{-} - \\ 1m^{-} - \\ 00^{-} + \end{bmatrix}$. С помощью стандартной алгебры понижающих и повышающих орбитальных, спиновых и изоспиновых операторов найдем ортонормированную систему

 $\bigcup_{K_{min}}$, SJJ/SJJ>coпределенным спином (S), моментом (J) и его проекцией на ось Z (J_z), например:

$$|122 \rangle = B \Psi_{H} / P \sqrt{2} , |110 \rangle = B (\Psi_{I-1} + \Psi_{44}) / P \sqrt{4} ,$$

$$|100 \rangle = B [\Psi_{I-1} - (\Psi_{20} + \Psi_{30}) - \Psi_{41}] / P \sqrt{6} , |010 \rangle = B (\Psi_{20} - \Psi_{30}) / P \sqrt{2} ,$$
rge $B^{2} = \Gamma (11/2) / \pi^{9/2} 4 !$
(21)

Изоспин всех $|SJ_Z^{,>}$ равен T = - T_Z = I. Совокупность (2I) исчерпывает все возможные S и J. Поэтому в дальнейшем речь пойдет о четырех уровнях.

Динамическая система уравнений основного приближения (в единицах 20, 738 МэВ) имеет вид

$$\left\{-\frac{d^{2}}{d\rho^{2}}+\frac{2\theta}{\rho^{2}}+\langle SJJ_{z}|\hat{V}|S'JJ_{z}\rangle-E\right\}\varphi_{0}^{SJ}(\rho)=$$

$$=-\langle SJJ_{z}|\hat{V}|S'JJ_{z}\rangle\varphi_{0}^{S'J}(\rho).$$
(22)

 $\langle SJJ_{Z} | V | SJJ_{Z} \rangle = \sum_{q=0}^{I} \frac{\Gamma(41/2)}{\Gamma(4-q)\Gamma(q+3/2)}$ $* \int_{0}^{I} Z^{q+1}(1-Z)^{3-q} dZ * \sum_{x,\mu,\bar{\iota}} \alpha_{x}^{\mu\bar{\iota}}(q) \mathcal{V}_{x}^{\mu\bar{\iota}}(\rho \sqrt{2Z}),$ $OT \pi u q Hue ot ну \pi численные кождищиенты \alpha_{x}^{\mu\bar{\iota}}(q) \pi \pi.$ midemode < SJ/SJ > coopenha E Taga. 5.

МЭ системы даются выражением

<u>Таблица 5.</u> Численные коэфрициенты $O_{x}^{\mu \epsilon}(q)$ для различных состояний изотопа ⁴H

:	-:-		:		:-		:		:		:
:	:•	< 12/12	7:<	10/10	₹:<	11/11	>:<	01/01	>:<	01/11	>:
:	-:-		:		:-		:		:		:
$: a_c^{3t}(o)$:	2	:	2	:	2	:	3/ ₂	:	0	:
: a ¹³ (0)	:	2	:	2	:	2	:	^{5/} 2	:	0	:
$: \alpha_{c}^{33}(1)$:	2	:	2	:	2	:	3/ ₂	:	0	:
: a"(1)	:	0	:	0	:	0	:	$I/_2$:	0	:
$a^{33}(4)$:	-I/ ₅	:	-2	:	I	:	- 0	:	0	:
$: a^{33}(4)$:	3/2	:	-3	:	-3/2	:	0	:	-√2	1.
25	-:-				:_		•				

Зацепление уравнений в состоянии $\mathcal{J} = I$, обязанное спин - орбитальным силам, лишь незначительно (не более, чем на 0, I МэВ) изменяет положение уровней I - I (I) и I - I (O). Пренебрегая этим смешиванием конфигураций, считаем далее спин S хорошим квантовым числом.

МАТРИЧНЫЕ ЭЛЕМЕНТЫ КАК ФУНКЦИИ ГИПЕРРАЦИУСА

Вычисление МЭ системы ⁴Н является наиболее трудоемкой частью всего расчета. Присутствие Р – орбитали *Папуч* П в определителях (20) порождает многообразие ПГ с данным *S* (табл.6). Как следствие, значительно расширяется область изменения переменных суммирования в (14), хотя общая структура МЭ (8), (14) сохраняется. Так, число интегралов от произведения трех полиномов Якоби возрастает от 6400 (³H) до

I40 800 (⁴ Н), если ограничиться S _{0,1,2} ≤ I5.												
Таблица 6. Количество Ш, генерируемое различными компонентами												
потенциала $V_x^{\mathcal{F}}$												
I'ME	-:::		·: <i></i> :									
: V×	$\cdot V_{c}^{3} \cdot V_{c}^{3} \cdot V_{c}^{3}$	³ : V _c ¹¹ : V ₄ ³¹ : V ₄ ³	: Всего :									
норо :	-:::	-:::	-::									
$: {}^{4}{}_{H} (S = 0)$: I:I : I	:I : I : 2	: 7 :									
• 4 H (S = I)	: I:I : I	:0 : I:2	: 6 :									
: ³ H , ⁴ He	: I:I : C	:0 : I : 0	: 3 :									
*	-::	-:::	-::									

Гигантским скачком изменяется и общее число коэффициентов фигурной скобки правой части (8) от 26 (3 Н) до 540 672 (4 Н). Полная информация о МЭ системы 4 Н требует отдельной публикации. Здесь же рассмотрим конечный продукт – $W'_{S_{2}S_{4}}(\rho)$ как функции гиперрадиуса. Их поведение определяет выбор метода решения системы гиперрадиальных уравнений. Для определенности возьмем состояние 0 I (I) и потенциал SSC_{B} . Графики $W_{S_{2}S_{4}}(\rho)$ вдоль характерных направлений матрицы приведены на рис.3,4,5.

<u>Рис.4.</u> Матричные элементы $W_{SO}(\rho)$. Состояние $O_{I}(I)$, потенциал SSC_{B} .

<u>Рис.5.</u> Матричные элементы W_{sg} (р). Состояние 0 (1), потенциал SSC_B.

Как видно, ни один эффективный диагональный МЭ

$$W_{SS}^{\mathfrak{sp}} = W_{SS}(\mathfrak{p}) + x_{\mathfrak{s}}(\mathfrak{x}_{S}+\mathfrak{s})/\mathfrak{p}^{2},$$

$$x_{\mathfrak{s}} = 4 + \mathfrak{s}^{S}$$
(24)

не уходит в отрицательную область. В частности, нет связанных состояний в основном приближении (S = O). Область резких изменений недиагональных МЭ (особенно W_{03} (P)) ограничена условием $P \leq 5$ фм. Внутренние $W_{S_2S_4}$ (P) ($S_2 \neq S_4$, $S_2 \star S_4 \neq 0$) растут при движении к диагонали (главная причина ухудшения сходимости при высоких S) и больших ρ даже сравнимы с (24).

В конечном счете область эффективных ρ переносится с $\rho \simeq 3$ \tilde{q} M (⁴He) к $\rho \simeq 5$ \tilde{q} M (⁴H), где роль барьеров $X_S(X_S+I)/\rho^2$ понижается. Поэтому метод решения гиперрадиальной системы уравнений для $\Psi_2(\rho)$ работы /I3/ (он связан с приближенным учетом производных $\sigma^2 \Psi_S / \sigma^2$ при высоких S) должен быть модифицирован.

НЕЛИНЕЙНАЯ СИСТЕМА ЦЛЯ ПЕРЕДАТОЧНЫХ ФУНКЦИЙ

Запишем исходную систему для гиперрадиальных функций Уз(9) разложения (10):

$$\left[-\frac{d^{2}}{dp^{2}} + \frac{X_{S}(X_{S}+1)}{p^{2}} + W_{SS}(p) + \mathcal{E}_{CB}\right] \Psi_{S}(p) = -\sum_{S' \neq S} W_{SS'}(p) \Psi_{S'}(p).$$
(25)

Введем передаточные функции C_S(p), S>0 равенством

$$\Psi_{\rm S}(\rho) = C_{\rm S}(\rho) \Psi_{\rm o}(\rho). \tag{26}$$

При наличии связанных состояний асимптотическое поведение $\Psi_S(\rho)$ дается выражением

$$\Psi_{s}(p) \simeq A_{s} e^{-\sqrt{\varepsilon_{c} \beta}} \mathcal{P}.$$
(27)

Так что

$$C_{g}(\rho) \simeq A_{s}/A_{o}.$$

$$C_{g}(\rho) \simeq \Delta_{s}/A_{o}.$$
(28)

Реально (28) выполняется при очень больших ρ , а в области эффективных ρ имеет место неравенство $C_s(\rho) \gg A_s/A_o$. Например, в дейтроне $A_4/A_o = 0,027I$ (4), а $C_4(\bar{\rho}) \sim \sqrt{P_D} \simeq \sqrt{0.04} = 0.2$ (P_D - вес D - волны).

Подставляя (26) в (25), учтем плавное поведение МЭ в области $\rho \sim \overline{\rho}$:

$$\frac{d^2}{d\rho^2}C_s(\rho)\varphi_o(\rho) \simeq C_s(\rho)\frac{d^2}{d\rho^2}\varphi_o(\rho)$$
(29)

и выразим $d^2 \varphi_o(p)/d_p^2$ из первого уравнения (S = 0). В результате получим нелинейную систему уравнений для передаточных функций:

$$\sum_{S' \neq S} \widetilde{W}_{SS'}(\rho) C_{S'}(\rho) = -W_{SO}(\rho), \qquad (30)$$

где *S', S > O*,

$$\widetilde{W}_{ss}(p) = \frac{X_s(X_s+1) - X_o(X_o+1)}{p^2} + W_{ss}(p) - W_{oo}(p) + \overline{f}(p),$$

 $I(\rho) = -\sum_{s'>0} W_{os'}(\rho) C_{s'}(\rho), \quad \widetilde{W}_{ss}(\rho) = W_{s's}(\rho), \quad \rho \cup s' \neq s.$ Положительная определенность $W_{so}(\rho) > 0$ (см. (I2)) приеодит к отрицательным решениям неоднородной системы (30) $C_s(\rho) < 0$. Поэтому $I(\rho) > 0$. Нелинейность вносится только суммой I (ρ), а она не зависит от S. Так что не представляет труда согласовать всего одну функцию $I(\rho)$ с решением (30) методом последовательных приближений.

После нахождения C_S(р) возвращаемся к первому уравнению системы (25):

$$\left[-\frac{d^2}{\alpha p^2} + \frac{X_o(X_o+1)}{p^2} + W_{oo}(p) - I(p) + \mathcal{E}_{cb}\right] \varphi_o(p) = 0$$
(31)

и, рейая его, находим φ_o (р) и \mathcal{E}_{cb} с учетом нормировочного условия

$$\int_{0}^{\infty} \varphi_{o}^{2}(p) \left(\sum_{S>0} C_{S}^{2}(p) + 1 \right) dp = 1,$$
(32)

Подставляя $\varphi_{o}(\rho), \varphi_{S}(\rho)$ (26) в (I0), проводим вариационный расчет $\overline{\hat{H}} \equiv \langle \Psi | \hat{H} | \Psi \rangle = -\mathcal{E}_{cl} - \sum_{S>0} \int_{0}^{\infty} C_{S}(\rho) \varphi_{o}(\rho) *$ $* [2(\frac{d}{d\rho} \varphi_{o}(\rho)) * (\frac{d}{d\rho} C_{S}(\rho)) + \varphi_{o}(\rho) \frac{d^{2}}{d\rho^{2}} C_{S}(\rho)] d\rho.$ (33)

16

Интегрирование по частям с учетом известных граничных условий при-

$$\frac{\text{водит к выражению}}{\tilde{H} = -\mathcal{E}_{CB} + \sum_{SO} \int_{0}^{S} \varphi_{O}^{2}(p) \left(\frac{d}{\sigma P} C_{S}(p)\right)^{2} dP.$$
(34)

Сравним (34) с аналогичным выражением работы /22/

$$\vec{H} = -\mathcal{E}_{c}\mathcal{B} + \sum_{S \neq 0} \int_{0}^{\infty} \left(\frac{d}{dp}\varphi_{S}(p)\right)^{2} dp.$$
(35)

Поправка к энергии связи \mathcal{E}_{cb} в (34) на порядок меньше, чем в (35) (по абсолютной величине), поскольку быстроменяющаяся функция 4, ()) рыведена в (34) из под оператора дифференцирования. Количественное представление о поведении $\Psi_o(\rho)$ и $C_s(\rho)$ дает рис.6.

<u>Рис.6</u>. Передаточные функции С₅(р) уровня 0₄ (1), потенциал SSC_B, полученный путем точного решения системы (25) для уровня 0⁻I (I) с потенциалом SSC_R.

РЕЗУЛЬТАТЫ И ОБСУЖЛЕНИЕ

Расчетный спектр изотопа ⁴Н представлен на рис.7.

Все четыре уровня оказались ядерно-нестабильными - они лежат выше расчетного порога развала на Энип. Основным является состоя-18

<u>Рис.7</u>. Расчётный спектр изотопа ⁴Н. О по шкале энергии соответствует нулевой энергии для четырёх нуклонов.

ние с большим моментом. Наблюдается идентичность спектров для обоих потенциалов. Уровни, лежащие выше горизонтальной оси, получены в основном приближении K = I путем искусственного введения граничных условий $\Psi_{S}(\rho) = 0$ при $\rho \simeq 8$ фм, которые обеспечивают те же размеры системы, что и базис УПФ.

Зарядовый радиус R основного состояния 2 І (І) оказался равным R_c = 2,7 фм для потенциала 6 РТ и R_c = 2,6 фм для SSC_B и согласно табл. З превосходит даже расчетный R , ядра ¹⁶0.

Сходимость разложения (IO) по вкладам в Ессиллюстрирует табл.7 (состояние 2°I (I), потенциал SSCB). Как видно, вклад всех УКФ с S = 12, 13, 14 составляет, ещё $\Delta E = 0.099$ МаВ.

Таблица	<u>7</u> .	Вклады	В	энер	гию	Связи	۵E	при	ра	сширении	da:	зиса (IO))
:				.:					-:-		-1		-:
:				:	ΔS	:	8 -	- IO	:	IO - I2	:	I2 - I4	:
:						:			-:-	~~~~~~~	-:-		-:
: _∆E	GRT		:	4_{He}	:	0,0	058	:	0,018	:	0,008	:	
			:	4 _H	:	0,3	223	:	0,087	:	0,025	:	
	_			:	$4_{\rm He}$:	0,	307	:	0,087	:	0,031	:
	SSCB			:	$^{4}_{ m H}$:	0,	897	:	0,295	:	0,099	:

В целом сходимость в системе ⁴Н примерно в 3 раза хуже, чем в ядре ⁴Не.

Роль различных составляющих $V_x^{\mu^{\alpha}}$ в энергетическом балансе изотопа видна из табл.8 (2-I (I), SSC_B).

<u>Таблица 8.</u> Изменение энергии связи при выключении определенной составляющей $\sqrt[]{}^{\mu^{\tau}}$

 $\frac{V_{c}}{V_{c}} = \frac{V_{c}}{V_{c}} = \frac{V_{c}}{$

В результате проведенных исследований можно сделать следующие выводы:

- Теоретические расчеты уровней ⁴Н хоропо согласуются с экспериментальными данными /6/.
- Кразистационарные состояния ⁴Н имеют аномально большой радиус.

Как следствие второго вывода, неоднозначность *NN* – потенциала на малых расстояниях слабо проявляется в мультинейтронной системе ⁴H. По той же причине второстепенную роль играют кварковые степени свободы (среднее расстояние между нукложами в ⁴H составляет ~4,2 фм). В заключение подчеркнем, что построенная здесь матрица NN – взаимодействия в базисе УПФ может быть использована (на уровне внутренней части волновой функции интерполяционного подхода) при описании рассеяния в канале ³H + ∩ и вычислении времени жизни квазистационарных состояний ⁴H.

Подученные результаты не исключают существование связанных состояний нейтронных систем 3 л и 4 л как конфигураций с аномально большим радиусом. Поэтому естественным продолжением настоящей работы является расчёт объектов 3 л и 4 л с реалистическим NN – взаимодействием.

Авторы выражают благодарность академику Г.И. Элерову за поддержку настоящей работы.

ЛИТЕРАТУРА

- 1. T.A.Tombrello.-Phys. Rev. 143 (1966) 772.
- 2. U.Sennhouser et.al.-Phys. Lett. 103B (1981) 409.
- 3. R.B.Weisemiller et.al.-Nucl. Phys. A280 (1977) 217.
- 4. R.G.Cohen et.al.-Phys. Lett. 14 (1965) 242.
- 5. T.W.Phillips et.al.-Phys. Rev. C22 (1980) 384.
- 6. A.V.Belozyorov et.al.-Nucl. Phys. A460 (1986) 352.
- 7. М.Г.Горнов и др.-Письма в ЖЭТФ, т.45, вып.2, 205, 1987.
- А.М.Бадалян и др.-ЯФ 41 (1985) 1460.
- 9. H.H.Hackenbroich, P.Heiss.-Z.Phys. Bd 242 (1971) 352.
- IO. Д.Б.Александров и др.-ЯФ, 39 (1984) 513.
- 11. K.Seth Proc. 4th. Int. Conf. on Nuclei far from Stability, Helsingor (1981) 655.
- 12. А.М.Горбатов и др.-ЯФ, 40 (1984) 364.
- I3. А.М.Горбатов и др.-ЯФ, 40 (I984) 882.
- I4. А.М.Торбатов и др.-ЯФ, 36 (1982) II38.
- 15. А.М.Горбатов и др. В еб: Теория квантовых систем с сильными взаимодействием . Калинин, КГУ, (1987), 55.

16. D.Gogny, P.Pires, R.de. Tourreil -Phys. Lett. B32 (1970) 591.

17. R.de Tourreil, D.W.L.Sprung -Nucl. Phys. A201 (1973) 193.

18. F. Calogero, Yu.A.Simonov -Nuovo Cim. 64B (1969) 337.

- 19. J.Cote, B.Rouben, R.de.Toureil, D.W.L.Sprung -Nucl. Phys. A273 (1976) 269
- 20. R.de_Tourreil, B.Rouben, D.W.L.Sprung -Nucl. Phys. A242 (1975) 445.

21. H.Eikemeier, H.H.Hackenbroich-Nucl. Phys. A169 (1971) 407.

Горбатов А.М. и др. Микроскопический расчет системы ⁴Н с реалистическим NN-взаимодействием

Проведен микроскопический расчет спектра системы ⁴H с реалистическим NN-взаимодействием методом угловых потенциальных функций. Теоретические расчеты уровней ⁴H хорошо согласуются с экспериментальными данными. Квазистационарные состояния ⁴H имеют аномально большой радиус.

Работа выполнена в Лаборатории ядерных реакций ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1987

Перевод О.С.Виноградовой

۰.

Gorbatov A.M. et al. Microscopic calculations of ⁴H System with a Realistic NN-Interaction P4-87-752

P4-87-752

Microscopic calculations of the spectrum ⁴H system with realistic NN-potential have been performed. Theoretical calculations are in good agreement with experimental data. Quasistationary states of the ⁴H system have anomalous large radii.

The investigation has been performed at the Laboratory of Nuclear Reactions, JINR.

Рукопись поступила в издательский отдел 16 октября 1987 года.

Preprint of the Joint Institute for Nuclear Research. Dubna 1987