

T202

P4-87-382

1987

Ф.А.Гареев, С.Н.Ершов, Н.И.Пятов, С.А. Фаянс*

ЗАРЯДОВО-ОБМЕННЫЕ РЕАКЦИИ

Направлено в Оргкомитет международного симпозиума "Новейшие достижения в ядерной физике", Новосибирск, 27 июня - 1 июля 1987 г.

*Институт атомной энергии им. И.В.Курчатова, Москва

I. Введение

Зарядово-обменные реакции адронов и легких ионов с ядрами за последние годы стали важным инструментом исследования как структуры ядер, так и механизма реакций. В частности, большой прогресс достигнут в реакциях при промежуточных энергиях частиц (\geq IOO MoB), когда доминирующий вклад в сечение в области низких энергий возбуждения E_x ∠ E_F и при небольших передачах импульса P ≤ P_F дают пряядер мые квазиупругие процессы. В инклюзивных спектрах на малых углах был открыт новый класс спин-изоспиновых резонансов, в частности гамов теллеровских резонансов, и установлено физическое явление подавления силы спин-изоспиновых переходов в области $\mathcal{F}_{X} \lesssim 30$ МэВ по сравнению с оболочечными расчетами/1,2/. Эти исследования существенно продвинули наше понимание эффектов многочастичных возбуждений в низкоэнергетических спектрах, а также роли мезонных обменных токов и ненуклонных степеней свободы в ядрах/3,4/. В реакциях при промежуточных энергиях получены новые важные сведения как об эффективных взаимодействиях нуклонов в ядрах, так и о нуклон-ядерных взаимодействиях, особенно в спин-изоспиновом канале / 5/.

Большое внимание за последние годы привлекли также реакции с поляризованными пучками, в которых измерялись анализирующие способности и коэффициенты передачи спиновой поляризации. Эти величины очень чувствительны как к деталям механизма реакции, так и к структуре ядерных возбуждений. Измерения коэффициентов передачи спиновой поляризации в принципе дают возможность проводить мультипольный анализ в сплошном спектре, а при известной структуре ядерных возбуждений позволяют изучать индивидуальные компоненты нуклон-ядерных эффективных взаимодействий.

В докладе обсуждаются последние достижения в теоретических и экспериментальных исследованиях зарядово-обменных реакций при промежуточных энергиях.

2. Микроскопическое описание зарядово-обменных реакций

Для получения из измеренных инклюзивных энергетических спектров структурной информации о распределении сили переходов различных мультипольностей, особенно в сплошном спектре ядерных возбуждений, были развиты микроскопические модели^{/5-7/}. Общими для них являются следующие основные предположения:

OBBLAND HILL RHOTETYT

-6

 $\dot{\iota}$) при относительно малых энергиях возбуждений ядра ($F_x \leq \mathcal{E}_F$) доминирующий вклад в сечение реакции дают одноступенчатые процессы квазиупругого рассеяния, которые описываются в импульсном приближении искаженных волн ($\mathcal{D}w'IA$)/8/

ii) в качестве эффективного нуклон-ядерного взаимодействия используется зависящее от энергии t – матричное *NN* -взаимодействие, параметризованное по данным фазового анализа⁹;

 $\dot{\ell}\dot{\ell}\dot{\ell}\dot{\ell}$) возбуждения ядра описываются в микроскопическом подходе с учетом эффективных взаимодействий в ядре в методе случайной фазы (СФ) или теории конечных ферми-систем (ТКФС); при этом обычно включаются вклады всех частично-дырочных переходов с передачей орбитального момента 0 $\leq L \leq 5$ и спина S = 0, I (т.е. возбуждения с полным моментом и четностью $J'' = 0^+, I^+, 0^-, I^-, \dots 4^-)$. Искаженные волны обычно вычисляют для феноменологического оптического потенциала. Наиболее часто используют параметризации /I0,II/ оптичес-

кого потенциала по данным об упругом рассеянии протонов. Основное различие моделей^{/5-7/} касается структурных расчетов переходных плотностей ядерных возбуждений. В работах ^{/5/} используется метод СФ с эффективными взаимодействиями *П+S* – мезонного обмена и дополнительного локального взаимодействия Ландау-Мигдала в спин-изоспиновом канале.

Самосогласованный метод Хартри-Фока с упрощенными , силами Скирма используются в работе 6. Наконец, в работах / структура возбуждений описывается в ТКСФ с эффективными взаимодействиями в спинизоспиновом канале, включающими локальное отталкивание Ландау-Мигдала и притягивающую амплитуду одношионного обмена (см. остальное описание в /12/). Важно отметить, что силовые функции и переходные плотности в этом подходе вычисляются на полном ч.-д. базисе, т.е. с точным учетом одночастичного континуума. Обычно получают дискретизованный спектр возбуждений дочернего ядра и для каждого возбуждения вичисляют угловые распределения реакции. Для получения непрерывного инклызивного энергетического спектра нейтронов расчетные сечения для заданного угла Эразмывают сверткой с функциями Брейта-Вигнера, что на феноменологическом уровне соответствует эффекту связи частично-дирочных возбуждений с многопарными (спредовые ширины). В работе^{/5/} использовались асимметричные функции Брейта-Вигнера с зависящими от энергии ширинами, что позволило переместить значительную долю силы переходов в высокоэнергетическую область возбуждений, так что в низкоэнергетической области осталась необходимость в ослаблении силы переходов примерно на 15 %. Включение связи ч.-д. возбуждений с возбуждением

<u>∆</u> -изобара-нуклонная дырка уже дает заметный дефицит расчетного сечения по сравнению с экспериментом. В работе^{/6/} использовалась постоянная для всех состояний ширина размытия 2 МэВ. Сделан вывод о необходимости ослабления ГТ-переходов в области $E_{\chi} \leq 20$ МэВ примерно на 35 %. Наконец, в работах ^{/7/} использовались симметричные функции Брейта-Вигнера с зависящими от энергии ширинами, подбираемыми так, чтобы наилучшим образом описать наблюдающиеся в спектрах структуры в области $E_{\chi} \leq 20$ МэВ.

В качестве примера на рис. I, 2 показаны расчеты энергетических спектров нейтронов для (ρ, n) -реакций на ${}^{90}Zr$ и ${}^{208}\rho_{B}$ при $E_{\rho} = 200$ МэВ и экспериментальные данные , любезно предоставленные д-ром К. Годе (см. также ${}^{/I}$). В ТКФС ослабление силы спин-изоспиновых переходов описывается с помощью феноменологической величины локального заряда квазичастиц $e_{q}[\sigma_{Z}]$ по отношению к полям σ_{Z} -симметрии I3 . Квадрат этой величины входит в вероятность любого спин-изоспинового перехода, а также содержится в изовекторных компонентах магнитных моментов и МІ-переходов. В частности, для ГТ-переходов $e_{q}^{2}[\sigma_{Z}]$ характеризует долю правила сумм $\mathcal{J}(N-Z)$, которая исчерпывается частично-дырочной ветвые возбуждений. В сечение (ρ, n) -реакции для спин-флиповых переходов $e_{q}^{2}[\sigma_{Z}]$ входит как внешний фактор, и его величина под-биралась из условия наилучшего описания низкоэнергетической части ин-клюзивного спектра. Показанные на рис. I результаты получены при $e_{q}[\sigma_{Z}] = 0.8$ при использовании оптического потенциала I1 . С оптическим потенциа – 208 мри использовании описуского потенциала ${}^{208}\rho_{B}$ выше. Расчеты для ${}^{208}\rho_{B}$ (рис.2) проведены с оптическим потенциа –

Рис.І. Энергетические спектры нейтронов для реакции ${}^{90}Z_{\Gamma}(\rho,n) {}^{90}NB$ при $E_{\rho} = 200$ МэВ. Показаны парциальные вклады в полное сечение (сплошные линии) I⁺-переходов, изобараналогового 0⁺-возбуждения, спин-дипольных (L = I) переходов, а также суммарный фон переходов с L > 0. Расчет проведен для $e_{g}[\sigma z] = 0.8$. Скорректированные экспериментальные данные/I/ (ломаные кривые) были любезно предоставлены д-ром К.Годе.

3

Рис.2. То же, что на рис. I, для реакции $208 \ Pg(\rho,n)^{208} Bi$ при $F_{\rho} = 200 \ MeB.$ (Расчет с оптическим потенциалом/10/)

лом /10/. Оденка: е, [62] ≈ 0,8 неплохо согласуется с данными, полученными из анализа В-распада и МІ-переходов.

Наши расчеты показали, что одноступенчатый механизм (ρ, n) – реакций при $\mathcal{E}_{\rho} > 100$ МэВ позволяет хорошо описать наблюдаемые спектры вплоть до энергий возбуждения ~ 20 МэВ. Выще по энергии теоретические сечения систематически ниже экспериментальных. Однако при $e_{\rho}[\sigma_{\mathcal{I}}] = I$ вычисленное интегральное сечение по всему показанному на рис. I,2 интервалу 0 $\leq -Q_{\rho n} \leq 40$ МэВ хорошо согласуется с экспериментальным, т.е. если "излишек" сечения в области 0 $\leq -Q_{\rho n}$

 ≤ 20 МэВ переместить в вышележащую область, то одноступенчатый механизм способен объяснить весь наблюдаемый спектр вплоть до - $Q \rho n \approx \approx 40$ МэВ. Такое перемещение происходит при взаимодействии ч.-д. возбуждений с более сложными многопарными^{/3/} и физически отражается в величине $e_{g}[\sigma_{T}]$. Конечно, эффекты ослабления силы спин-изоспиновых переходов, связанные с обменными мезонными токами и барионными резонансами^{/4/}, также могут давать вклад в $e_{g}[\sigma_{T}]$, однако пока нет убедительных количественных оценок их в средних и тяжелых ядрах.

На рис.I,2 показаны парциальные вклады в сечение переходов различных мультипольностей. Доминирующий вклад на малых углах дают I⁺ IT-переходы, а фон других мультипольностей $\angle > 0$ мал при $\theta = 0^{\circ}$, но быстро нарастает с углом. При $\theta = 45^{\circ}$ в спектре уже хорошо виден спин-дипольный ($\angle = I$) резонанс в области 20 $\leq -Q_{\rho n} \leq 30$ МэВ, образованный суммарными вкладами возбуждений с $J'' = 0^-$, I и 2⁻. Отметим, что аналогичные качественные выводы получены и в работах^{/5,6/}.

3. Исследования с поляризованными протонами

Недавние исследования с поляризованными протонами /15/ дали прямые свидетельства о доминантности спин-флиповых переходов в спектрах реакции на малых углах. Измерялась поперечная поляризация ρ_{e} вылетающих нейтронов, связанная с поляризацией ρ_{c} налетающих протонов (поляризованных перпендикулярно плоскости реакции) через коэффициенты $\mathcal{D}_{MN}(\theta)$ передачи спиновой поляризации соотношением $\rho_{e} = \mathcal{D}_{MN}(\theta)$, коэффициенты \mathcal{D}_{MN} принимают характеристические значения для различных переходов с передачей орбитального момента \mathcal{L} и спина $\mathcal{S} = 0, I$. Простие оценки получены в приближении плоских волн/I6/

$$\mathcal{D}_{NN}(0^{\circ}) = \begin{cases} +1, \ S'=0 & \text{возбуждения} \\ 0, \ S=1, \ L=J & \text{четности} \\ -J/(2J+1), \ L=J-1 & \text{спин-Флино-} \\ -(J+1)/(2J+1), \ L=J+1 \end{cases}$$
(I)

Из (I) следует, что для 0⁺-состояний $\mathcal{D}_{WW} = +I$, для 0⁻-возбуждений $\mathcal{D}_{WW} = -I$, для I⁺ ГТ-переходов $\mathcal{D}_{WW} = -I/3$ и т.д. Для всех спинфлиповых переходов $\mathcal{D}_{WW} = -I/3$ и т.д. Для всех спинится численными расчетами 17/, проведенными в рамках подхода 6/. Величина \mathcal{D}_{WW} связана с вероятностью \mathcal{S} переворота спина нуклона при возбуждении

$$S = (1 - D_{NN})/2,$$
 (2)

с помощью которой полное сечение для неполяризованного цучка разделяется на сечение с переворотом спина σS и сечение без переворота спина $\sigma (I-S)$, так что

$$\sigma \mathcal{D}_{NN} = \sigma (1 - S) - \sigma S' \quad (3)$$

Экспериментальные распределения для б'я, б'(1-5) и Д_{им} обнчно строят, усредняя полученные спектри по энергетическому интервалу I МэВ, чтобы исключить резкие статические флуктуации.

4

5

На основе микроскопического подхода /7/ нами проведены расчеты соответствующих распределений для реакции ${}^{90}Zr(\rho,n){}^{90}NB$ при $E_{\rho} = 160$ МэВ и ${}^{48}Ca(\rho,n){}^{48}Sc$ при $E_{\rho} = 135$ МэВ и полученные результаты вместе с экспериментальными данными из работ/15,17,18/ приведены на на рис. 3,4 и в таблице. Использовался оптический потенциал в параметризации /II/. Расчеты показали, что при $e_o[\sigma_z] = 0,8$ теория хорошо описывает наблюдаемые в распределениях 5 и 5/1-5) структуры в области 0 < - Qpp < 20 МэВ, причем правильно воспроизводит соотношение интегральных вкладов переходов без переворота спина и с переворотом спина $\int \sigma(1-s) / \int \sigma s' \approx 2/3$. Отметим, что с ростом угла θ это отношение заметно растет, достигая в \mathcal{D} Zr при θ = I2⁰ значения 🕿 0,9. Эту тенденцию было интересно проверить экспериментально. Хорошее согласие расчетов с экспериментальными данными получено и для распределения $\mathcal{D}_{NN}(o^{\circ})$. В низкоэнергетической области спектра \mathcal{P}_{Zr} (рис.3) доминирует I⁺-возбуждение (- Qpn ≈ 9 МэВ), что и определяет значение $\mathcal{D}_{NN} \approx$ -0,3. Такое же значение \mathcal{D}_{NN} характерно и для всей области ГТР (I3 \leq - Q_{PD} \leq 20 МэВ). В окрестности ИАС (- Qon= 12 МэВ) сказывается влияние окружающих его I+_возубядений, пони-

Рис.3. Вычисленные (сплошные линии) и экспериментальные (гистограммы) распределения $\sigma S'$, $\sigma(t-S)$ и \mathcal{D}_{HN} для реакции $\mathcal{D}_{Tr}(\bar{\rho},\bar{n})^{go}NB$ при $\mathcal{E}_{\rho} = 160$ МэВ и угла $\theta_{cm} = 0^{\circ}$. (см. текст).

рис.4. 10 же, что на рис.3 для реакции ${}^{48}Ca(\bar{p},\bar{n}){}^{48}Sc$ при E_P = I35 МэВ. <u>Таблица.</u> Интегральные сечения (ρ, n) реакций на различных участках спектра $\Delta Q_{\rho n}$ (в ед. мбн/ср.), вычисленные при $e_{q}[\sigma_{I}] = 0.8$. Даны парциальные вклады I⁺($\lambda = 0$) переходов, суммарный фон l > 0 переходов, полные сечения σ_{t} , а так же отношение вкладов переходов без переворота спина $\sigma(1-S)$ и с переворотом спина $\sigma' S'$.

∆ Qpn	5(1+)	E5(L)	o,		S(1-S)	105
(MəB)		170	теор.	эксп.	теор.	эксп.
	⁹⁰ Zr(p	n) ^{so} NB,	Ë _P =	I6O МэВ,	$\theta_{cm} = 0^{\circ}$	
0 – IO	IO,I	I,0	II,5	IO,3	0,58	0,5
0 - 20	48,4	4,5	57,2	62	0,64	0,67
0 - 40	56,4	20,4	8I,9	I25	0,66	0,7I
	⁹⁰ Zr (p,n) ⁹⁰ Nb ,	Ep=	160 МэВ,	$\theta_{cm} = 6^{\circ}$	
0 – IO	3,0	2,3	5,4		0,73	
0 - 20	I4,7	I6,7	32,8		0,79	
0 - 40	I8,7	48,5	69,0		0,82	
	⁴⁸ Ca (f	o,n) ⁴⁸ Sc ,	Ep=	13 5 МэВ,	$\theta_{cm} = 0^{\circ}$	
0 – 5	9,0	0,7	9,9	IO	0,50	
0 - 1 5	5 0,I	3,2	5 9,0	72	0,63	
0 - 40	60,4	17,5	84,4	I3 6	0,64	
	48 Ca (p	,n) ⁴⁸ Sc ,	Ep =	135 MəB,	$\theta_{cm} = 6^{\circ}$	
0 - 5	4,3	2,0	6,4		0,58	
0 – I5	24,2	II,O	38,2		0,70	
0 - 40	30,7	38,2	72,4		0,72	

жающих значение \mathcal{D}_{NN} до $\approx 0,3$, по сравнению с оценкой +I для изолированного резонанса. В области 20-30 МэВ распределение \mathcal{D}_{NN} определяется конкуренцией вкладов сильно фрагментированных 2⁻-переходов, 0⁻-резонанса (в окрестности - $q_{pn}\approx 27$ МэВ, $\mathcal{D}_{NN}\approx -I$), 3⁺-резонанса (с центроидом при - $q_{pn}\approx 26$ МэВ, $\mathcal{D}_{NN}\approx -0,3$) и "хвоста" ITP, для которых $\mathcal{D}_{NN} < 0$, и фрагментированных I⁻-переходов с $\mathcal{D}_{NN} > 0$. Среди последних, однако, заметный вклад дает лишь спин-дипольный I⁻-резонанса, предсказываемый теорией в окрестности - $q_{Pn}\approx 28$ МэВ ($\mathcal{D}_{NN}(\mathcal{O}) \approx +0,3$). Присутствие вблизи него 0⁻- и 3⁺-резонансов со сравнимыми по величине сечениями приводит к суммарному отрицательному \mathcal{D}_{NN} в окрестности I⁻-резонанса. Однако наблюдающиеся в экспериментальном распределении

7

 \mathcal{D}_{NN} структурн при - $\mathcal{Q}_{\rho n}$ > 22 МэВ значительно лучше описываются теорией, если О-резонанс передвинуть в область - $\mathcal{Q}_{\rho n} \approx 32$ МэВ (пунктирная линия на рис.3). Это свидетельствует о высокой чувствительности распределений \mathcal{D}_{NN} к энергетическому положению резонансов, имеющих интегральное сечение $\mathfrak{S} \approx I$ мб/ср. Заметим, что указанный сдвиг на 5 МэВ О-резонанса практически не меняет распределений \mathfrak{S}^{S} и $\mathfrak{S}(t-s)$. В области - $\mathcal{Q}_{\rho n}$ > 30 МэВ предсказываемые теорией значения $\mathcal{D}_{NN}(\mathcal{O}^{\circ})$ малы, что связано с влиянием 2⁺-и 3⁻-переходов с $\mathcal{D}_{NN} > 0$. Спинквадрупольный резонанс, согласно расчетам, локализуется в окрестности - $\mathcal{Q}_{\rho n} \approx 36$ МэВ.

Расчеты показали, что распределения $D_{\mu\nu}$ довольно заметно меняются с углом θ (см. рис.5), причем изменения, связанные со сдвигом О-резонанса, также характерным образом меняются с ростом угла (пунктирные линии). Все это подчеркивает важность экспериментальных измерений при $\theta > 0^{\circ}$ и позволяет надеяться извлекать из таких распределений новые сведения о мультипольном составе в сплошном спектре.

Аналогичные заключения получены и при анализе реакции ${}^{48}Co(\rho,n)$ ${}^{48}Sc$ (см. рис.4). Отметим только, что расхождение теории и эксперимента при $-Q_{\rho n} = I-2$ МаВ, по-видимому, связано с тем, что предсказываемое здесь теорией сечение возбуждения 2^+ -уровня ($E_x=I$, I4 МаВ) оказывается при $\theta = 0^{\circ}$ в несколько раз меньше экспериментальной оценки /I8/. И хотя для него теоретическое значение $\mathcal{D}_{NW}(0^{\circ}) \approx$ +I, но в результате усреднения по энергетическому интервалу по сечению доминирует 3^+ -возбуждение ($E_x = 0,62$ МаВ), для которого

 $\mathcal{D}_{NN}(\mathcal{O}^{o}) \approx -0,55$. Очевидно, необходим дополнительный анализ структуры 2⁺-возбуждения в ⁴⁸ Sc.

4. Заключение

Проведенный нами анализ данных по (ρ, n) -реакциям при промежуточных энергиях показал применимость импульсного приближения искаженных волн и микроскопического описания структуры возбуждений в ТКФС. Отметим, что удовлетворительно описываются не только инклюзивные спектры на малых углах в области $-Q_{\rho n} \leq 30$ МэВ, но и более детальные распределения, полученные в реакциях с поляризованными протонами. Можно считать хорошо установленным, что доминирующий вклад в спектры в низкоэнергетической области дают ГТ-переходы, причем есть необходимость ослаблять силу спин-изоспиновых переходов в этой области примерно на I/3, что описывается в ТКФС феноменологической величиной $e_{\rho}(\sigma z) \approx 0.8$. В интегральном сечении в области 0 $\leq -Q_{\rho n} \leq 40$ МаВ при $\theta = 0^{\circ}$ доминирует вклад спин-флицовых переходов, причем отношение $\sigma(1-s)/\sigma S \approx 2/3$, однако оно растет с θ .

Согласно ТКФС ослабление силы спин-изоспиновых переходов должно иметь универсальный характер. В частности, для ГТ β -переходов это эффективно соответствует перенормировке константы слабого аксиально-векторного взаимодействия $g_A - G_A = e_q [{\tt CT}] \cdot g_A \approx 1$, что хорощо известно из анализа экспериментальных данных (см., например, /19/). Перенормируется в ядерной среде и константа *ПNN* - взаимодействия: $g_{\pi NN} - G_{\pi NNN} \equiv e_q [{\tt CT}] \cdot g_{\pi NN}$. Эти перенормировки констант важны, например, при оценке вклада пионного механизма в ЕМС-эффект/20/.

Локальный заряд $e_{q}[\sigma z]$ входит в изовекторную часть оператора МІ-переходов и влияет на сечения их возбуждения в неупругом рассеянии протонов. Анализ, проведенный для ${}^{48}C\sigma$, ${}^{90}Zr$, и ${}^{208}Pg$, показал, что при $e_{c}[\sigma z]\approx 0.8$ теория хорошо согласуется с данными по $(\rho, \rho')^{/21}/$.

Физически величина $e_{\rho}[\sigma z]$ учитывает эффекты в низкоэнергетических ч.-д. спектрах, связанные как с многопарными возбуждениями, так с ненуклонными степенями свободы (мезонные обменные токи и барионные резонансы) /12,13/. Связь ч-д. возбуждений с многопарными приводит к спрэдовой ширине резонансов и фрагментации силы переходов по спектру возбуждений ^{3/}. Это было подтверждено в недавних расчетах спектров реакции ³⁰ $Z_{\Gamma}(\rho, n)$ при $E_{\rho} = 200$ Мав с учетом $2\rho 2h$ – возбуждений /22/. Качественные оценки вклада двухступенчатых процессов в сечения реакции были проведены в работах /23/ и сделан вывод о его малости в области – $Q_{\rho n} \leq 25$ Мав при $\theta = 0^{\circ}$. Это подтверждает надежность оценки величины $e_q[\sigma \tau] \approx 0.8$.

Наличие вклада IT-переходов в нерезонансной части сплошного спектра выше ITP пока является весьма неопределенным. Помимо механизма связи ч.-д. возбуждений с многопарными определенную роль могут сыграть и корреляции в основном состоянии, не включенные в СФ или TKФС.

- 9

В работе^{/24/} отмечалось, что в ядрах с замкнутыми оболочками и $\mathcal{N}=\vec{z}$ такие корреляции приводят к появлению дополнительной силы IT-переходов в области энергий возбуждений $\mathcal{E}_x \approx \mathcal{E}_F$. Решению этого вопроса, а также надежной идентификации спин-мультипольных резонансов в сплошном спектре, насомненно, будут способствовать экспериментальные измерения полного набора коэффициентов \mathcal{D}_{ij} передачи поляризации при различных углах \mathcal{O} .

В заключение авторы выражают благодарность д-ру Е.Бангу, в сотрудничестве с которым получен ряд приведенных результатов, а также д-ру К.Годе и проф. Р.Мадей за предоставление экспериментальных данных.

Литература

 Bainum D.E. et al. Phys.Rev.Lett.<u>44</u> (1980) 1751; Goodman C.D. et al., ibid, p.1755; Horen D.J. et al. Phys.Lett. <u>95B</u> (1980) 27; Gaarde C. et al. Nucl.Phys.A369 (1981)258.

2. Gaarde C. Nucl.Phys. A396(1983) 127c; Physica Scripta <u>V5</u> (1983) 55; Gaarde C. et al. in Spin Excitations in Nuclei, eds. Petrovich F. et al. (Plenum, N.Y., 1984), p.65;

Goodman C.D., Bloom S.D. - ibid, p.143.

 Bertsch G.F., Hamamoto I. Phys.Rev. <u>C26</u> (1982) 1323; Takayanagi
 K. et al. Nucl.Phys. <u>A444</u> (1985) 436; Muto K. et al. Phys.Lett., 165B (1985) 25; Drozdz S. et al. Nucl.Phys. <u>A451</u> (1986) 11.

4. Towner I.S., Khanna F.C. Nucl.Phys. <u>A399</u> (1983) 334; Bohr A., Mottelson B.R. Phys.Lett. <u>100B</u> (1981) 10; Izumoto T. Nucl.Phys. <u>A395</u> (1983) 189; Arima A. et al. Phys.Lett. 122B (1983) 126.

5. Osterfeld F. Phys.Rev. <u>C26</u> (1982) 762; Osterfeld F., Schulte A. Phys.Lett. <u>138B</u> (1984) 23; Osterfeld F. et al. Phys.Rev. <u>c31</u> (1985) 372.

6. Klein A. et al., Phys.Rev. C31 (1985) 710.

7. Гареев Ф.А. и др. ЯФ, <u>39</u> (1984) **1401**; <u>44</u> (1986) 1435; Bang J. et al. Nucl. Phys. <u>440A</u> (1985) 445; Phys. Scr. <u>34</u> (1986) 541.

8. Kerman A.K. et al. Ann.Phys. <u>8</u> (1959) 551; Bertsch G., Scholten O. Phys. Rev. <u>C25</u> (1982) 804.

9. Love W.G., Francy M.A. Phys.Rev. <u>C24</u> (1981) 1073; ibid <u>C31</u> (1985) 488.

10. Nadasen A. et al. Phys.Rev. <u>C23</u> (1981) 1023.

Crawley C.M. et al. Phys.Rev. <u>C26</u> (1982) 87;
 Schwandt P. et al. Phys.Rev. <u>C26</u> (1982) 55.

12. Пятов Н.И., Фаянс С.А., ЭЧАЯ, <u>14</u> (1983) 953

(_{перевод:} Sov.J.Part.Nucl., <u>14</u> (1983) 401).

13. Мигдал А.Б. Теория конечных ферми-систем и свойства атомных ядер, изд. 2^е, Наука, М., 1983.

 Ershov S.N., Gareev F.A., Pyatov N.I., Fayans S.A. In:Weak and Electromagnetic Interactions in Nuclei, ed. Klapdor H.V. (Springer, 1986), p.287.

 Taddeucci T.N. et al. Phys.Rev., C33 (1986) 746; Taddeucci T.N. Suppl. J.Phys. Soc.Japan, <u>55</u> (1986) 156; Madey R. et al., see ref.14, p.280.
 Moss J.M. Phys.Rev. C26 (1982) 727.
 Klein A., Love W.G. Phys.Rev. <u>C33</u>, (1986) 1920.

18. Anderson B.D. et al. Phys.Rev. C31 (1985) 1147; 1161.

19. Wilkinson D.H. Phys.Rev. <u>C7</u> (1973) 930;
Brown B.A.. At. Data Nucl.Data Tables, <u>33</u> (1985) 347;
Towner I.S., Nucl.Phys. <u>444A</u> (1985) 402.
Alkhazov G.D. et al. Nucl.Phys. <u>438A</u> (1985) 482.

Llewelyn Smith C.H. Phys.Lett., <u>128B</u> (1983) 107;
 Ericson M., Thomas A.W. Phys.Lett., 128B (1983) 112;
 Титов А.И., ЯФ, <u>40</u> (1984) 76;
 Саперштейн Э.Е., Шматиков М.Ж. Письма в ЖЭТФ, <u>41</u> (1985) 44.

21. Борзов И.Н. и др. ЯФ, <u>40</u>(1984) 1151; ЯФ, <u>42</u> (1985) 625.

 Wambach J. et al. Preprint P/87/3/34, University of Illinois, 1987.
 Ebensen H., Bertsch G.F. Phys.Rev. <u>C32</u> (1985) 553; Smith R.D. Wambach J. Preprint P/87/4/52, University of Illinois, 1987

24. Desplanques B., Noguera S. Phys.Lett. <u>B173</u> (1986) 23.

Рукопись поступила в издательский отдел 4 июня 1987 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были эаказаны ранее.

	Д3,4-82-704	Труды IV Международной школы по нейтрон- иой физике. Дубна, 1982.	5 p.00 ĸ.
	Д7- 83-644	Труды Международной школы-семинара по физике тяжелых ионов. Алушта, 1983.	6 р.55 к.
	Д2,13-83-689	Труды рабочего совещания по проблемам излучения и детектирования гравитационных волн. Дубна, 1983.	2 р. 00 к.
	Д13-84-63	Труды XI Международного симпозиума по ядерной электронике. Братислава, Чехословакия, 1983.	4 р.50 к.
	Д2 -84-3 66	Труды 7 Международного совещания по проблемам квантовой теории поля. Алушта, 1984.	4 р.30 к.
	Д1,2-84-599	Труды VII Международного семинара по проб- лемам физики высоких энергий. Дубна, 1984.	5 p.50 ĸ.
	Д10,11-84-818	Труды V Международного совещания по проб- лемам математического моделирования,про- граммированию и математическим методам решения физических задач. Дубна, 1983.	3 р.50 к.
•	Д17-84-850	Труды III Международного симпозиума по избраиным проблемам статистической механики. Дубна,1984./2 тома/	7 р.75 к.
	Д11-85-791	Труды Международного совещания по аналити- ческим вычислениям на ЭВМ и их применению в теоретической физике. Дубна, 1985.	4 р.00 к.
	Д13-85≈793	Труды XII Международного симпозиума по ядерной электронике. Дубна, 1985.	4 р.80 к.
	Д4-85-851	Труды Международной школы по структуре ядра. Алушта, 1985.	3 р.75 к.
	Q3,4,17-86-747	Труды V Международной школы по нейтронной физике. Алушта, 1986.	4 р.50 к.
		Труды IX Всесоюзного совещания по ускори- телям заряженных частиц. Дубна, 1984. /2 тома/	13 р.50 к.
	Д1,2-86-668	Труды VIII Международного семинара по проблемам физики высоких энергий. Дубна,1986. /2 тома/	7 p.35 ĸ.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79. Издательский отдел Объединенного института ядерных исследований.

Гарее	в Ф.А. и др.			P4-87-	-382
Заряд	ово-обменные реа	акции			
Да в (р, пробл ма ре мента состо скопи стем.	ется обзор иссле n)-реакциях при мы описания пол акции. Основное пьной информации ояний, так и резо ическому анализу	едований спи и промежуточ іяризационны внимание уд и о структур онансов в сп на основе т	новых воз ных энерт х характе елено обо е как дио пошном ст еории ков	буждений сиях. Расс еристик и суждению с скретных о пектре и б нечных фер	ядер смотрены механиз- экспери- спиновых ее микро- оми-си-
Ра ОИЯИ.	бота выполнена в	з Лаборатори	и теорети	ической фи	ізики
n	репринт Объединенног	о института яде	рных исслед	ований. Дуб	на 1987
					<u> </u>
Перев	вод О.С.Виноградо	овой			
Перев Garee Charg	вод О.С.Виноградс ev F.A. et al. ge-Exchange React	овой tions		P4-87-	-382
Перев Garee Charg Re tions cribi nisms struc nuum, Fermi	од O.C.Виноградо ev F.A. et al. ge-Exchange React eview of nuclear s at intermediate ng polarization s are considered. ture of discrete , and its microso	рвой spin invest e energies i characteris . Experiment e spin state copic analys scussed.	igations s given. tics and al inform s and res sis in the	P4-87- in (p,n)- Problems reaction mation on conances i eory of f	-382 -reac- of des- mecha- nuclear n conti- inite
Tepes Garee Charg Retions cribi nisms struc nuum, Fermi Th of Th	вод O.C.Виноградо ev F.A. et al. ge-Exchange React eview of nuclear at intermediate ng polarization are considered. cture of discrete and its microso -systems are disc ne investigation heoretical Physic	рвой spin invest e energies i characteris Experiment e spin state copic analys scussed. has been pe cs, JINR.	igations s given. tics and al inform s and res is in the erformed a	P4-87- in (p,n)- Problems reaction mation on conances i eory of f: at the La	-382 -reac of des- mecha- nuclear in conti- inite boratory
Tepes Garee Charg Retions cribi nisms struc nuum, Fermi Th of Th	од O.C.Виноградо v F.A. et al. ge-Exchange React view of nuclear at intermediate ng polarization are considered. ture of discrete and its microso systems are dis ne investigation heoretical Physic	DBOЙ spin invest e energies i characteris Experiment e spin state copic analys scussed. has been pe cs, JINR.	igations s given. tics and al inform s and res is in the erformed a	P4-87- in (p,n)- Problems reaction mation on conances i eory of f: at the La	-382 -reac- of des- mecha- nuclear n conti- inite boratory