

ОбЪЕДИНЕННЫЙ Институт Ядерных Исследований Дубна

P4-87-235

1987

# Б.В.Быковский, В.А.Мещеряков

# многополюсное представление ρ-мезона в пионном формфакторе

Направлено в журнал "Ядерная физика"

#### Введение

В настоящее время известно значительное количество мезонных и барионных резонансов, однако до сих пор не существует сколько-нибудь полной теории, претендующей на описание данного явления. Целью работы является попытка рассмотреть резонанс с точки зрения аналитических свойств амплитуды расселния и показать, что получение многих характеристик резонансов упрощается за счет правильного выбора структуры римановой поверхности. В частности, применение данного подхода к *р* - мезонному резонансу позволяет описать на его основе поведение электромагнитного формфактора пиона в широком интервале энергий.

В основе описания резонансов лежит свойство факторизуемости элементов матрицы расселния, а именно: если реакция проходит так, что может образоваться промежуточное состояние с массой  $M_R$ , то поведение амплитуды при импульсах  $q^2$ , близких к  $M_R^2$ , похоже на распространение свободной частицы/I/. Если состояние нестабильно, то в пределе малой ширины распада  $\Gamma_R$  матричный элемент зависит от импульса как  $[q^2 - (M_R^2 - i\Gamma_R M_R)]^{-1}$ . Более общим является случай, когда  $\Gamma_R$  является некоторой конечной функцией от импульса (хорошо изbестно, что около порога  $\Gamma \sim q^{2\ell+1}$ , где  $\ell$  – орбитальный момент), определение которой требует ряда дополнительных предположений/<sup>2</sup>.

С аналитической точки эрения (в пределе малых Г<sub>R</sub>) резонанс можно интерпретировать как два сопряженных полюса на комплексной плоскости импульса. В данной работе на примере

У – мезона будет показано, что резопанс с конечной шириной также можно описать набором полюсов на комплексной плоскости некоторой униформизирующей амплитуду переменной, аналитическая структура которой зависит от физических предположений модели.

Хорошо известно, что g -мезон в значительной степени определяет поведение электромагнитного формфактора пиона. Последний, в свою очередь, представляет чрезвычайно удобный объект для наших целей, т. к. аналитические свойства формфактора хорошо изучены<sup>2,3/</sup>, а большое количество экспериментальных данных позволяет сопоставлять предсказания модели с результатами измерений<sup>4/</sup>. Поскольку сами параметры g -резонанса определяются через формфактор, наша задача состоит в нахождений представления для формфактора с учетом сделанных выше предположений о том, каким именно образом нужно строить зависимость формфактора от  $\rho$  - мезона.

Работа состоит из трех частей и заключения. В первой части коротко перечислены необходимые в дальнейшем сведения о пионном формфакторе. Часть вторая посвящена построению модели и некоторым дополнительным предположениям относительно структуры римановой поверхности формфактора. Результаты расчетов и сравнение с экспериментом составляют содержание последней части.

## I. Основные свойства формфактора пиона

Электромагнитный формфактор пиона представляет собой граничное значение  $F_{\pi}(t) = \lim_{\varepsilon \to +0} F(t+i\varepsilon)$  аналитической функции F(t) на комплексной плоскости t с разрезом вдоль действительной оси от  $4m_{\pi}^2$  до  $+\infty$  (далее везде  $m_{\pi} = 1$ ). Упругий порог t = 4 является корневой точкой ветвления, и следовательно, риманова поверхность F(t) двулистна. Сшивание двух листов. происходит вдоль упругого разреза с использованием условия двучастичной унитарности

Im 
$$F_{\pi}(t) = f_{1}^{*1}(t) F_{\pi}(t)$$
. (1)

Амплитуда  $f'_{i}(t)$   $\pi\pi$ -рассеяния, входящая в (I), приводит к появлению на втором листе римановой поверхности левого разреза вдоль действительной оси ( $t \leq 0$ ) и двух полюсов, соответствующих g - мезону<sup>/5/</sup>. Следствием условия унитарности является также равенство фазы  $S_{\pi}(t)$  электромагнитного формфактора пиона и фазы  $S_{t}^{*}(t)$  изовекторной р -волны амплитуды  $\pi\pi$  -рассеяния, причем для фаз выполняется соотношение

$$\delta_{\pi}(t) = \delta_{1}^{\prime}(t) \sim \alpha_{1}^{\prime} q^{3}, \quad q \to 0, \qquad (2)$$

где  $\mathbf{a}_{1}^{\prime}$  – волновая изовекторная длина  $\pi\pi$  –рассеяния и  $\mathbf{q} = [(t-4)/4]^{\frac{1}{2}}$  – импульс пиона в LM системе.

Нетрудно показать, что из (2) следуют условия на пороговое поведение мнимой части формфактора:

$$Im F_{\pi}(t)|_{q=0} = 0$$
, (3a)

$$\frac{\partial}{\partial q} \operatorname{Im} F_{\pi}(t)|_{q=0} = 0, \qquad (36)$$

$$\frac{\partial^2}{\partial q^2} \operatorname{Im} F_{\pi}(t) |_{q=0} = 0.$$
 (3B)

Кроме того, на формфактор налагают обычное условие нормировки, которое следует из определения электрического заряда пиона:

$$F_{\pi}(t)|_{t=0} = 1$$
 (4)

Еще одно полезное соотношение возникает, когда мы хотим фиксировать вычет формфактора в g - мезонных полюсах. В рамках модели векторной доминантности (в пределе (-> 0) формфактор имеет вид<sup>/2</sup>,6/

$$F_{\pi}(t) = \frac{m_{q}^{2} f_{g\pi\pi} / f_{g}}{4 (q_{go} + q)(q_{go} - q)} , \qquad (5)$$

где  $q_{go} = \lim_{F>0} q_g = [(m_g^2 - 4)/4]^{\frac{1}{2}}$  и  $f_{g\pi\pi}/f_g$  - отношение эффективных констант взаимодействия.

Условие двухчастичной унитарности (I) справедливо только в упругой области. Начиная с t = 16 на комплексной плоскости

2

t появляются разрезы, соответствующие неупругим порогам, что приводит к значительному усложнению структуры римановой поверхности формфактора. Этот вопрос еще будет обсуждаться в части 2 при рассмотрении физических основ модели.

2. Представление пионного формфактора

Продолжением формфактора  $F_{\pi}(t)$  на комплексную плоскость переменной t является функция, аналитическая везде, кроме расположенных на действительной оси точек ветвления, соответствующих упругому (точка ветвления корневого типа) и неупругим порогам. Из (I) следует также, что формфактор должен включать в себя сингулярности, входящие в амплитуду  $f_1^4$  р – волны  $\pi \pi$  – рассеяния.

Чтоби выделить особенности, соответствующие вкладу *g* -мезонного резонанса, воспользуемся униформизирующим преобразованием переменных, а именно, построим конформное отображение плоскости t в комплексную плоскость w(t), учитывающее в явном виде все сингулярности формфактора за исключением непосредственно связанных с *g* - мезоном.

Большое число неупругих порогов приводит к тому, что риманова поверхность формфактора имеет сложную структуру. В настоящей работе вместо совокупности порогов для учета неупругости вводится один эффективный порог ( timel – свободный параметр), представляеющий собой точку ветвления корневого типа. Как показано в<sup>/7/</sup> такого приближения вполне достаточно для описания существующих экспериментальных данных. Неупругий разрез на комплексной плоскости расположен между timel и +∞.

В рамках сделанных предположений формфактор обладает тремя корневыми точками ветвления: упругий и эффективный неупругий пороги и точка ветвления t = 0 на нефизическом листе (левый разрез амплитуды  $f'_{(t)}$   $\pi\pi$ - рассеяния), следовательно, риманова поверхность формфактора восьмилистна. Переход к формфактору, зависящему от импульса  $q = (t/4-1)^{\frac{1}{2}}$ , позволяет освободиться от упругого разреза в комплексной плоскости q. При этом физический лист римановой поверхности формфактора переходит в верхнюю полуплоскость q > 0, а лист, содержащий сингулярности амплитуды  $f_1^4$  (точка ветвления t = 0и g - мезонные полюса), в нижнюю полуплоскость, Эффективный неупругий порог порождает в плоскости q две корневые точки ветвления t = 0,

$$finel = [(tinel - 4)/4]^{\frac{1}{2}},$$
 (6)

левый разрез амплитуды € простирается от -і до -і∞ (рис. Ia)



Схематическое представление особенностей формфактора в плоскости q (а) и w (б).

Применением обратного преобразования Куковского

$$W = i \frac{[q_{inel} + q_{j}]^{\frac{1}{2}} - [q_{inel} - q_{j}]^{\frac{1}{2}}}{[q_{inel} + q_{j}]^{\frac{1}{2}} + [q_{inel} - q_{j}]^{\frac{1}{2}}}$$
(7)

плоскость Q переводится в единичный круг на плоскости WНеупругий разрез исчезает, а разрез  $[-i, -i\infty]$  отображается в  $[W_L, 4]$  (рис. I б), где

4

$$W_{1} = i \frac{[q_{inel} - i]^{\frac{1}{2}} - [q_{inel} + i]^{\frac{1}{2}}}{[q_{inel} - i]^{\frac{1}{2}} + [q_{inel} + i]^{\frac{1}{2}}}$$

(8)

Проделав аналогичные преобразования, можно убрать оставшийся разрез. В результате формфактор не будет иметь в плоскости новой переменной точек ветвления, и все особые точки будут связаны с *g* -резонансом<sup>/8/</sup>. При устранении последнего разреза не возникает никаких принципиальных затруднений, однако данная замена переменных является весьма громоздкой, и в целях упрощения дальнейших формул можно воспользоваться тем, что разрез [-i,-i∞] на комплексной плоскости w хорошо аппроксимируется совокупностью нуля и полюса<sup>/9/</sup>. В этом случае вместо разреза на мнимой оси в нижней полуплоскости появляются нуль и полюс. Риманова поверхность формфактора становится четирехлистной, и следовательно, w есть искомая униформизирующая переменная.

Резонанс в пределе малых Г онисывается формулой Брейта-Вигнера<sup>/I/</sup>, т.е. на комплексной плоскости импульса амплитудн расположены два полюса. Из условия  $F^*(q) = F(q^*)$  следует,что полюса являются комплексно-сопряженными величинами. Применение униформизирующего преобразования переводит два сопряженных полюса на плоскости Q. в четыре полюса на плоскости V. В рамках "наивной" модели векторной доминантности электромагнитный формфактор также содержит зависимость от импульса в виде двух полюсных членов (5), причем полюса лежат на действительной оси.

Пусть полюс формфактора  $Q_S$  при преобразовании (7) отображается в  $w_1$  и  $w_2$ , а  $Q_S^*$  в  $w_1'$  и  $w_2'$ . Нетрудно показать, что при этом должны выполняться соотношения

$$w_1 \cdot w_2 = -1 \cdot , \quad w_1' \cdot w_2' = -1 \tag{9}$$

И

$$w_1^* = w_1'$$
,  $w_2^* = w_2'$ . (10)

Условие (IO) отражает фундаментальное свойство формфактора  $f'(q) = F(q_V^*)$ , в то время как (9) есть следствие предположения о том, что резонанс описывается полюсом первого порядка в плоскости t. Представляется целесообразным, сохранив соотношение (IO), считать полюса  $w_1$  и  $w_2$  комплексной плоскости свободными параметрами. Очевидно, что "наивная" модель векторной доминантности получается как частный случай, когда полюса  $w_1$ и  $w_2$  удовлетворяют условиям (9).

С учетом сделанных выше предположений об аппроксимации левого разреза амплитуды *ЛЛ* -рассеяния совокупностью нуля и полюса для пионного формфактора получается следующее представление:

$$F[w(q)] = C \frac{w-w_2}{w-w_1} \frac{(1-w^2)^2}{(w-w_1)(w-w_2)(w-w_1^*)(w-w_2^*)} , \quad (II)$$

где С =  $\frac{m_{\ell}}{m_{\ell}^2-4} \frac{\frac{1}{3} gnn}{\frac{1}{3} g}$ . В случае когда  $W_2 = W_{\ell}$ , при выполнении условия (9) формула (II) переходит в выражение для формфактора пиона в модели векторной доминантности (5).

Формула (II) содержит ряд феноменологических параметров, кроме того, в определение униформизующего преобразования (7) входит **О**<sub>inel</sub> - импульс, соответствующий неупругому порогу.

Для определения указанных параметров воспользуемся налагаемыми на формфактор пороговыми условиями (2) и (3). Кроме того, такие характеристики <u>9</u> -мезона, как масса и ширина распада, также выражаются через формфактор

$$e F(t)|_{t=m_g^2} = 0$$
, (12)

$$\Gamma = \left( m_g \frac{d \delta(t)}{dt} \right)^{-1} \left|_{t=m_g^2} \right.$$
(13)

(где S(t) -фаза пионного формфактора) и могут быть использованы для определения параметров, входящих в (II). Еще одно усло-

вие возникает из определения среднеквадратичного радиуса

Ň

$$\langle \tau_{\pi}^2 \rangle = 6 \frac{dF(t)}{dt} |_{t=0}$$
 (14)

Существует другая возможность: определить параметри, входящие в (II), фитируя экспериментальные значения пионного формфактора, и только носле этого проверить выполнение условий (2)-(4) и (I2)-(I4). Такой подход является более последовательным, однако требует не только сложных машинных расчетов, но и учета вкладов в формфактор от высших мезонных резонансов, таких как  $g^{t}$  и  $g^{u}$ . Подобное исследование будет проведено позднее, а для наших целей достаточно уметь определять параметры в (II) из перечисленных выше условий.

Нетрудно показать, что равенства (За,в) удовлетворяются тождественно в силу действительности формфактора и свойств отображения (7). Условие (Зб) принимает вид

$$\frac{1}{v_1} + \frac{1}{w_2} + \frac{1}{w_1^*} + \frac{1}{w_2^*} = \frac{1}{w_2} - \frac{1}{w_p} .$$
 (15)

Нормировка формфактора, длина рассеяния амплитуды и среднеквадратичный радиус *g* -мезона дают три уравнения

$$C \frac{w_{\bar{z}+W_{L}}}{w_{\bar{p}}+w_{L}} \cdot \frac{(1-w_{L}^{2})^{2}}{(w_{\bar{i}}+w_{L})(w_{\bar{z}}^{*}+w_{L})(w_{\bar{i}}^{*}+w_{\bar{z}})(w_{\bar{z}}^{*}+w_{L})} = 4 , \quad (I6)$$

$$Q_{1}^{4} = \frac{4}{24q_{1}w_{2}} \left[ \frac{1}{w_{\bar{z}}^{3}} - \frac{1}{w_{\bar{p}}^{3}} - \frac{4}{w_{\bar{i}}^{3}} - \frac{1}{w_{\bar{z}}^{3}} - \frac{4}{w_{\bar{z}}^{*}} - \frac{1}{w_{\bar{z}}^{*}} - \frac{1}{w_{\bar{z}}^{*}} \right] , \quad (I7)$$

$$< 4\frac{2}{M} > = \frac{3}{2} w_{L} \frac{4-w_{L}^{2}}{4+w_{L}^{2}} \left[ \frac{w_{\bar{z}}-w_{\bar{p}}}{(w_{\bar{p}}+w_{\bar{z}})(w_{\bar{z}}+w_{\bar{l}})} + \frac{4w_{\bar{t}}}{4-w_{\bar{z}}^{2}} + \frac{4}{w_{\bar{t}}+w_{\bar{L}}} + \frac{1}{w_{\bar{t}}+w_{\bar{L}}} + (w_{\bar{t}}-w_{\bar{z}}) \right], \quad (I8)$$

$$I_{AB} = w_{L} - odpas \text{ точки ветвления } q_{\bar{z}} - i \quad (8).$$

Масса и ширина g -резонанса определени при  $t = w_g^2$ , что соответствует  $w_g^2 = -(q_{inel} - \sqrt{q_{inel}^2 - q_g^2})^2/q_g^2$  (где  $q_g^2 = m_{g'4}^2 - 1$ ) в плоскости W. Уравнения, фиксирующие массу и ширину g -мезона, заверщают систему для определения значений феноменологических параметров, входящих в формфактор (II).

$$\frac{w_{p}-w_{q}}{w_{z}-w_{q}}(w_{l}-w_{q})(w_{z}-w_{q})(w_{l}-w_{q})(w_{q}-w_{q}) + (w_{q}-w_{q}) = 0, \quad (19)$$

$$\frac{1}{w_{g}-w_{1}} + \frac{1}{w_{g}-w_{2}} + \frac{1}{w_{g}-w_{1}^{*}} + \frac{1}{w_{g}-w_{2}^{*}} + (w_{g}-w_{g}) = -32 \frac{q_{g}q_{ind}(1+w_{g}^{2})}{m_{g}r_{g}(1-w_{g}^{2})^{2}} \cdot (20)$$

Отметим, что в настрящей работе свободный параметр, характеризующий положение неупругого разреза, не определялся. Его значение взято из/I0/ и составляет time! = I.8 ГэВ<sup>2</sup>.

### 3. Численные результаты

Система (I5)-(20) решалась численно. Полюса  $w_i (w_t)$ и  $w_z (w_z)$  лежат на комплексной плоскости, однако нетрудно показать, что они входят в систему (I5)-(20) в виде комбинаций  $Q_i = w_i + w_i^*$  и  $\mathcal{E}_i = w_i \cdot w_i^*$  (i = I, 2). Нуль  $w_z$  и полюс  $w_p$  формфактора (II) также расположены на действительной оси (рис. 2).



Рис. 2.

Нуль и полюса формфактора F[q(w)] в представлении (II) на плоскости w .

Используя табличные значения массы и ширины 9 -резонанса  $m_g = 763$  МэВ,  $\Gamma_g = I59$  МэВ и общепринятые величины среднеквадратичного радиуса 🧳 - мезона и длины волны парциальной амплитуды f 35 -рассеяния < 27 = 0,44 fm и  $0_1^4 = 0,036 m_{\pi}^{-3}$  получаем, что  $w_2 = 0,226$ ,  $w_p = 0,357$ ,  $a_1 = 0.0838$ ,  $b_1 = 0.0885$ ,  $a_2 = 5.27$ ,  $b_2 = 7.77$ . Ipm этом, согласно/10/, полагалось, что  $t_{inel} = 1,8 \ \Gamma \Rightarrow B^2$ . Таким образом, представление формфактора (II) непротиворечиво в том смысле, что система уравнений (15)-(20) разрешима относительно  $w_{a}$ ,  $w_{p}$ ,  $a_{i}$ ,  $b_{i}$  (i = 1, 2) на множестве действительных чисел. Применение обратного преобразования Жуковского (7) и переход в формуле (II) к зависимости от импульса q. позволяет получить унитаризованное представление пионного формфактора. Масса и ширина е -мезона зависят от положения полюсов Wi и W2. Выражение, которое при этом получается, имеет довольно громоздкий вид, поэтому мы рассмотрим некоторов упрощенное представление формфактора, в достаточной степени отражающее свойства рассматриваемой моде-ЛИ.

Как упоминалось выше, на втором листе римановой поверхности формфактора расположен разрез  $t \le 0$ , который в настоящей модели аппроксимируется совокупностью нуля и полюса. Если пренебречь влиянием этого разреза на поведение формфактора, то отпадает необходимость во множителе ( $(U-U_3)/(U-U_p)$ ) в формуле (II). Переход к импульсу в (II) значительно упрощается, если вместо условия (9) наложить на полюса более слабую связь  $|W_1 \cdot W_2| = 4$ . После сделанных предположений выражение для формфактора имеет вид

$$F_{\pi}(q) = \frac{4}{4} \frac{f_{QEF}}{f_{Q}} \frac{m_{Q}^{2}}{q_{Q}^{2} - q^{2} - \frac{1}{4}} m_{QE} \int \frac{q}{q} \frac{q_{inal} - \sqrt{q_{inal}^{2} - q^{2}}}{q_{Q} q_{inal} - \sqrt{q_{inal}^{2} - q^{2}}}$$
(21)

Ширина g -мезона является функцией импульса, нормированной в точке  $q_{g=}(m_{g}^{2}/4-1)^{1/2}$  на величину  $\int_{S}$ :

$$\Gamma(q) = \Gamma_{g} \frac{q}{q_{g}} \frac{q_{inel} - \sqrt{q_{inel}^{2} - q^{2}}}{q_{inel}^{2} - \sqrt{q_{inel}^{2} - q_{g}^{2}}}.$$
(22)

Формфактор (21) имеет правильное пороговое поведение и обеспечивает стандартные значения массы и ширины *С* – мезона.

Необходимо отметить, что выражение (22) для ширины резонанса справедливо при q≤qinct. Выше неупрутого порога зависимость ширины *Q* -мезона от импульса становится линейной. Подобное асимптотическое поведение имеет место для ширины резонанса, приведенной в работе<sup>/II/</sup>, где для описания экспериментальных данных зависимость ширины резонанса от импульса строилась в виде

$$\widehat{(q)} = \widehat{\Gamma}_{R} \left( \frac{q}{q_{R}} \right)^{2\ell+1} \left( \frac{x^{2}+q_{R}^{2}}{x^{2}+q_{2}^{2}} \right)^{\ell} ,$$

где x<sup>2</sup> - феноменологический параметр и  $\ell$  - орбитальный момент. В известной модели Гунариса - Сакураи<sup>/2/</sup> ширина резонанса

$$\Gamma_{\varphi S}(q) = \Gamma_{g} \frac{m_{\varrho}}{\sqrt{q^{2}+4}} \left(\frac{q}{q_{g}}\right)^{3}$$

при больших импульсах растет как  $q^2$  .

Отметим, что допущения, сделанные при выводе формулы (21), не влияют на асимптотическое поведение ширины резонанса. Переход к импульсу в выражении (II) также дает линейную зависимость ширины резонанса от импульса при *Q-Qinel*.

Поскольку все входящие в формулу (II) параметры определены, то представляется возможным сравнить экспериментальные значения модуля и фазы пионного формфактора с вычисленными по формуле (II). Поведение модуля и фазы пионного формфактора показаны на рис. 3 и 4. *g*-*ω* – интерференция учитывалась соотношением

$$F_{\pi}^{\text{tot}}(t) = F_{\pi}(t) + f_{g\omega}(t) , \qquad (21)$$
  

$$r_{\pi} = f_{g\omega}(t) = A_{\omega} e^{-\frac{m\omega^2}{m_{\omega}^2 - im_{\omega}\omega - t}} \cdot e_{C\pi M} m_{\omega}^2 - 10 m_{\pi}^2 \leq t \leq m_{\omega}^2 + 10 m_{\pi}^2 ,$$

10

и  $\oint_{\omega} (t) = 0$  - в остальных случаях. Согласно<sup>/4/</sup>  $A_{\omega} = 0,015\pm0,001$ и  $\Phi_{\omega} = 100^{\circ} \pm 2^{\circ}$ .

На рис. 5 и 6 показана зависимость модуля формфактора в пространственно- и времениподобной областях соответственно.





#### Заключение

Цель настоящей работы состоит в критическом анализе широко распространенного представления о том, что резонанс описывается двумя полюсами на втором, нефизическом листе матричного элемента процесса. Анализ проведен на примере электромагнитного формфактора у -мезона, т.к. по этой величине имеется богатый экспериментальный материал. За исходный пункт анализа взята модель векторной доминантности, которая хорошо описывает данные опыта в пространственно подобной области. Вычет ЭФ в о -мезонном полюсе имеет ясный физический смысл, а сам полюс обязан своим происхождением полюсу Q -мезонного пропагатора. Если теперь предположить наличие у ЭФ пиона лишь одной корневой точки ветвления при  $t=4m_r^2$ , то этот факт легко учесть, рассматривая его как функцию униформизирующей переменной q=[+/4m<sub>n</sub><sup>2</sup>-1]<sup>1/2</sup>. При этом полюса ЭФ в комплексной плоскости  $q_e$  в точках  $\pm q_e = \pm q(t_e)$  расположены на действительной оси - образе физического разреза te[4mi,+0]. Смещая их в нижнюю полуплоскость, можно обеспечить конечную ширяну у -мезона, т.е. провести унитаризацию модели векторной доми-

нантности. Однако экспериментальные данные по ЭФ пиона указывают, что при энергиях t >t e вклад многочастичных процессов составляет 10%/10/. Этот факт можно включить в рассматриваемую модель путем введения новой дополнительной точки ветвления при t=tine>to . Основным неупругим процессом в этой области будет канал ЛТ-ОЛТ, поэтому далее предположим, что точка ветвления при t-time также корневого типа. Это предположение содержится в новой униформизирующей переменной  $\mathcal{W}[q(t)]$ . В результате ЭФ пиона как функция W описывается формулой типа (II), в которой Q - Мезону нулевой ширины соответствует четыре полюса, расположенные на мнимой оси 🐱 плоскости. Положение всех четырех полюсов зависит от одного параметра  $t_e$ . Сдвигая их в комплексной плоскости 🛯 так, чтобы они попали в области, являющиеся образами нефизических листов римановой поверхности ЭФ пиона 5-(1), легко получить унитаризованное представление для  $F_{\pi}(t)$  . При этом необходимо отказаться от уравнения (9), соответствующего нулевой ширине *Q* -мезона. Условие действительности *F*<sub>r</sub>(t) приводит к. наличию у него двух пар комплексно сопряженных полюсов. Несмотря на то, что детальное описание пионного формфактора не являлось целью настоящей работи, значения формфактора хорошо согласуются с экспериментальными данными в широком интервале энергий.

В заключение подчеркнем, что проведенный нами на примере  $F_{\pi}(t)$ анализ соответствия: резонанс  $\iff$  два полюса, указывает на зависимость его от структуры римановой поверхности изучаемой амплитуды процесса. На четырехлистной римановой поверхности  $F_{\pi}(t)$  *g* -мезону соответствует две пары комплексно сопряженных полюсов. Зависимость их от параметров с явным физическим смыслом задана уравнениями (17)-(20).

Один из авторов (В.А.М.) глубоко благодарен С.Дубничке, стимулировавлему написание этой работн.

### Литература

- Фейнман Р. Взаимодействие фотонов с адронами. М., "Мир", 1975.
- 2. Gourdin M.: Phys.Rep. C11 (1974) 29.
- 3. Perez-y-Jorba J.P., Renard F.M.: Phys. Rep. C31 (1977) 1.
- 4. Heyn M.F., Lang C.B.: Z. Phys. C7 (1981) 169.
- Бартон Г. Дисперсионные методы в теории поля. М. Атомиздат, 1968.
- 6. Dubnickova A.Z., Dubnicka S.: Czech.J. Phys. B31 (1981) 241.
- Dubnicka S., Dubnickova A.Z., Meshcheryakov V.A.: Czech.J. Phys. B 34 (1984) 1282.
- Dubnicka S., Meshcheryakov V.A., Milko J.: J. Phys. G: Nucl. Phys. 7 (1981) 605.

10. Dubnicka S., Martinovic S. Lett. Nuovo Cimento 44 (1986) 462.

11. Walker R.L., Phys.Rev., 182, 1729 (1969).

Рукопись поступила в издательский отдел IO апреля 1987 года.

# ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

| Индекс | Тематика                                                                                                             |
|--------|----------------------------------------------------------------------------------------------------------------------|
| 1.     | Экспериментальная физика высоких энергий                                                                             |
| 2.     | Теоретическая физика высоких энергий                                                                                 |
| 3.     | Экспериментальная нейтронная физика                                                                                  |
| 4.     | Теоретическая физика низких энергий                                                                                  |
| 5.     | Математика                                                                                                           |
| 6.     | Ядерная спектроскопия и радиохимия                                                                                   |
| 7.     | Физика тяжелых ионов                                                                                                 |
| 8.     | Криогеника                                                                                                           |
| 9.     | Ускорители                                                                                                           |
| 10.    | Автоматизация обработки экспериментальных<br>данных                                                                  |
| 11.    | Вычислительная математика и техника                                                                                  |
| 12.    | Химия                                                                                                                |
| 13.    | Техника физического эксперимента                                                                                     |
| 14.    | Исследования твердых тел и жидкостей<br>ядерными методами                                                            |
| 15.    | Экспериментальная физика ядерных реакций<br>при низких энергиях                                                      |
| 16.    | Дозиметрия и физика защиты                                                                                           |
| 17.    | Теория конденсированного состояния                                                                                   |
| 18.    | Использование результатов и методов<br>фундаментальных физических исследований<br>в смежных областях науки и техники |
| 19.    | Биофизика                                                                                                            |

Быковский Б.В., Мещеряков В.А. Многополюсное представление р-мезона в пионном формфакторе

Работа посвящена анализу проблемы описания резонансов полюсными членами. На примере электромагнитного формфактора пиона показано, что учет структуры римановой поверхности амплитуды пп-рассеяния приводит к увеличению числа полюсов по сравнению с моделью векторной доминантности. Модель эффективным образом учитывает неупругую область амплитуды рассеяния и позволяет удовлетворительно описать поведение формфактора в широком интервале энергий.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1987

#### Перевод авторов

Bykovsky B.V., Mescheryakov V.A.P4-87-235Multipole Representation of ρ-Mesonin the Pion Form-Factor

In this paper the problem of description of resonances by means of pole terms is analysed. It is shown that in the case of electromagnetic pion form-factor, taking account of the structure of Riemann surface of the amplitude of  $\pi\pi$ -interaction leads to the increase of the number of poles as compared with VDM. The model takes the inelastic region of the  $\pi\pi$ -amplitude effectively into account and permits one to describe the behaviour of the pion formfactor satisfactorily in a wide energy interval.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1987

P4-87-235