ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

31/11/75

P4 - 8611

1211/2-75 Г.Кырчев, В.Г.Соловьев, Ч.Стоянов

11 11 11

......

...........

K-978

ИЗУЧЕНИЕ АНГАРМОНИЧНОСТИ ВИБРАЦИОННЫХ СОСТОЯНИЙ В СИЛЬНОДЕФОРМИРОВАННЫХ ЯДРАХ

P4 - 8611

Г.Кырчев, В.Г.Соловьев, Ч.Стоянов

ИЗУЧЕНИЕ АНГАРМОНИЧНОСТИ ВИБРАЦИОННЫХ СОСТОЯНИЙ В СИЛЬНОДЕФОРМИРОВАННЫХ ЯДРАХ

Направлено в "Изв. АН СССР" (сер. физ.)

объединенный институт иссрпих веселостаней БИБЛИОТЕКА Кырчев Г., Соловьев В.Г., Стоянов Ч.

P4 - 8611

Изучение ангармоничности вибрационных состояний в сильнодеформированных ядрах

Изучена роль примеси двухфононных компонент в волновых функциях первых и вторых вибрационных состояний с данными K^{π} для четночетных деформированных ядер. Расчеты выполнены с одночастичными энергиями и волновыми функциями потенциала Саксона-Вудса при одновременном учете трех однофононных компонент. Показано, что первые вибрационные состояния с $K^{\pi} \neq 0^+$ являются практически однофононными. Для вторых состояний двухфононные примеси более существенны.

Препринт Объединенного института ядерных исследований Дубна 1975

Kyrchev G., Soloviev V.G., Stoyanov Ch. P4 - 8611

Study of Vibrational State Unharmonicity in Strongly Deformed Nuclei

The role is studied of the two-photon component admixture in the wave functions of the first and second vibrational states with a given K^{π} for even-even deformed nuclei. The calculations are performed with one-particle energies and wave functions of the Saxon-Woods potential taking into account, at the same time, three one-phonon component. The first vibrational states with $K^{\pi} \neq 0^+$ are shown to be, practically, one-phonon. For the second states two-phonon admixtures are more essential.

Preprint of the Joint Institute for Nuclear Research Dubna 1975 Ангармонические эффекты в вибрационных состояниях сферических ядер достаточно велики, они заметно изменяют простую однофононную структуру состояний. Экспериментальные данные по ангармоничности вибрационных состояний и по двухфононным состояниям в четно-четных деформированных ядрах весьма скудны. В^{/1/} отмечено, что двухфононные состояния в деформированных ядрах находятся среди большого числа двухквазичастичных, ротационных и однофононных состояний и поэтому их экспериментально трудно выделить. Обычно в деформированных ядрах вибрационные состояния рассчитываются в гармоническом приближении /см. ^{/2,3/} /.

Ангармонические эффекты в четно-четных деформированных ядрах были исследованы в ^{/4/} с волновой функцией, в которой к однофононному были добавлены двухфононные члены. Было показано, что, во-первых, ангармонические эффекты невелики и, во-вторых, что они увеличиваются по мере приближения к ядрам переходных областей. Однако эти расчеты выполнены с одночастичными энергиями и волновыми функциями потенциала Нильссона, поэтому их необходимо повторить с волновыми функциями потенциала Саксона-Вудса, включая третьи корни однофононных состояний и одновременно учитывая три однофононных состояния. Такие расчеты выполнены в настоящей работе для сильнодеформированных ядер, т.е. для ядер, удаленных от переходных областей.

Изучение ангармоничности неротационных состояний проводится в рамках полумикроскопического подхода ^{/2/} с гамильтонианом, включающим среднее поле, силы, приводящие к парным корреляциям сверхпроводящего

3

типа, а также квадруполь-квадрупольное и октупольоктупольное взаимодействия:

$$H = H_{av} + H_{pair} + H_Q \quad . \qquad /1/$$

После проведения канонического преобразования Боголюбова и введения фононов, основную часть гамильтоннана /1/ можно представить в виде:

$$H = H_{v} + H_{vq} = \sum_{g} \omega_{g} Q_{g}^{\dagger} Q_{g} - \frac{1}{2} \sum_{g\nu} \sum_{\nu} [\Gamma^{g}(\nu\nu')]$$

$$\sum_{\sigma} \pm a_{\nu\pm\sigma}^{\dagger} a_{\nu'\sigma} (Q_{g}^{\dagger} + Q_{g}) + h.c.] + \frac{1}{2} \sum_{r} G_{r} [\sum_{\nu\nu}, v_{\nu\nu} u_{\nu'\nu'}] / 2/$$

$$(\sum_{\sigma} \sigma a_{\nu-\sigma}^{\dagger} a_{\nu\sigma}^{\dagger} \sum_{\sigma} a_{\nu'\sigma}^{\dagger} a_{\nu\sigma} + h.c.)]_{\tau} \cdot$$

Приняты обозначения: $(\nu \sigma)$ - совокупность квантовых чисел, характеризующих одночастичные состояния, $\sigma = \pm 1$; G_{τ} - константа спаривания для нейтронной или протонной систем;

$$u_{\nu\nu'} = u_{\nu} v_{\nu'} + u_{\nu'} v_{\nu}$$
 $v_{\nu\nu'} = u_{\nu} u_{\nu'} - v_{\nu} v_{\nu'}$;
Q⁺, Q_r - операторы рождения и уничтожения фо

 Q'_{g} , Q_{g} - операторы рождения и уничтожения фонона gс моментом и проекцией $q = \lambda \mu$, номером і и частотой ω_{g} ;

$$\Gamma^{\mathbf{g}}(\nu\nu') \equiv \frac{f^{\mathbf{q}}(\nu\nu')}{2\sqrt{\mathbf{Y}_{\mathbf{g}}}} \mathbf{v}_{\nu\nu'},$$

где $f^{q}(\nu\nu')$ - одночастичный матричный элемент от оператора мультипольности $\lambda\mu$, Y_{g} - характеристика фонона /см. /2/ /.

Второй и третий члены в /2/ описывают взаимодействия квазичастиц с фононами и происходят из H_Q и H_{pair}, соответственно. В частности, такой гамильтониан может смешивать состояния с числом фононов, отличающимся на единицу, три и т.д.

Волновую функцию состояния запишем в виде:

$$\Psi_{n}(K^{\pi}) = \begin{bmatrix} 3 \\ \sum_{i=1}^{3} C_{q_{0}i}^{n} & Q_{q_{0}i}^{+} + \sum_{g_{1}g_{2}} \Delta_{g_{2}}^{g_{1}}(q_{0}n)Q_{g_{1}}^{+}Q_{g_{2}}^{+}]\Psi_{0} \rightarrow /3/$$

где п - номер возбужденного состояния, $Q_g \Psi_0 = 0$. Условие нормировки волновой функции выглядит следующим образом:

$$\sum_{i=1}^{3} \left(C_{q_0 i}^{n} \right)^2 + 2 \sum_{g_1 g_2} \left[\Delta_{g_2}^{g_1}(q_0 n) \right]^2 = 1.$$
 /4/

Выполнение вариационной процедуры с гамильтонианом /2/, волновой функцией /3/ и сучетом /4/ приводит к секулярному уравнению для энергий возбужденных состояний $\eta_n^{/5/}$:

det
$$||(\omega_{q_0^i} - \eta_n)\delta_{ii}, -K_{ii}, (q_0^n)|| = 0,$$
 /5/

где

$$K_{ii}, (q_0n) = \frac{1}{2} \sum_{g_1g_2} \frac{\bigcup_{g_2}^{g_1} (q_0i) \bigcup_{g_2}^{g_1} (q_0i')}{\bigcup_{g_2}^{\omega_{g_1}} + \bigcup_{g_2}^{\omega_{g_1}} - \eta_n}$$

причем $U_{g_2}^{g_1}(g_0)$ есть матричный элемент перехода из однофононного состояния $(\lambda_0 \mu_0 i_0)$ в двухфононное $(\lambda_1 \mu_1 i_1, \lambda_2 \mu_2 i_2)$:

$$U_{g_{2}}^{g_{1}}(g_{0}) \equiv \langle Q_{g_{0}}H_{vq} Q_{g_{1}}^{+}Q_{g_{2}}^{+} \rangle.$$

Явный вид $U_{g_2}^{g_1}(g_0)$ дан в /5/.

Величины $U_{g_2}^{g_1}(g_0)$ представляют собой количественную меру ангармоничности. Уравнение /4/ является обобщением уравнения, полученного в /4/. Выражения для $C_{q_0i}^n$ найдены в явном виде /см. /5/ /:

$$C_{q_{0}i}^{n} = \frac{M^{i}}{\sqrt{\sum_{i'=1}^{3} (M^{i'})^{2} + \frac{1}{2} \sum_{g_{1} g_{2}} (\sum_{i'=1}^{3} \frac{U_{g_{2}}^{g_{1}}(q_{0}i')M^{i'}}{\omega_{g_{1}} + \omega_{g_{2}} - \eta_{n}}}} = \frac{M^{i}}{N}.$$
(6/

$$\Delta \frac{g_{1}}{g_{2}}(q_{0}n) = \frac{1}{2N} \sum_{i=1}^{3} \frac{U_{g_{2}}^{g_{1}}(q_{0}i')M^{i'}}{\omega_{g_{1}} + \omega_{g_{2}} - \eta_{n}}$$

/7/

где M^{1} -i -тый минор матрицы /5/. / i = 1,2,3/.

Изучим влияние двухфононных компонент на первые вибрационные состояния на примере ряда сильнодеформированных ядер в области 150<А<190. Параметры потенциала Саксона-Вудса и константы G. возьмем из 16/ . Расчеты выполним со значениями констант мультипольмультипольного взаимодействия $\kappa^{(\lambda)}$, при которых энергин первых вибрационных состояний, вычисленные в гармоническом приближении, совпадают с экспериментальными. В таблице 1 приведены сдвиги энергии из-за ангармоничности и вклад разных компонент волновой функции; $(\lambda \mu i) \mathbf{H} (\lambda_1 \mu_1 i_1, \lambda_2 \mu_2 i_2)$ обозначают однофононные и двухфононные компоненты. Из этой таблицы видно, что учет ангармоничности приводит к опусканию энергий первых состояний на 100-200 кэВ и к примесям /1-15/% к однофононным компонентам. Наибольшие изменения претерпевают 0⁺ состояния, которые следует изучить отдельно. Например, большое опускание первого 0⁺ состояния в ¹⁶⁶ Ег связано с тем, что энергия однофононного /201/ состояния близка к энергии двухфононного состояния /221, 221/.

В продемонстрированных в таблице 1 результатах переоценен эффект ангармоничности. Чтобы правильно описать измеренные на опыте энергии первых возбужденных состояний, нужно несколько уменьшить константы $\kappa^{(\lambda)}$. Расчеты показали, что для данного ядра всегда можно найти такой набор констант $\kappa^{(\lambda)}$, который позволит описать энергии всех первых вибрационных состояний. Этого можно добиться небольшим уменьшением $\kappa^{(2)}$ для К^{π} = 2⁺ состояний и $\kappa^{(3)}$ для К^{π} = 0⁻, 1⁻, 2⁻ состояний и значительным уменьшением /до 20%/ $\kappa^{(2)}$ для К^{π} = 0⁺ состояний.

Результаты расчетов показаны в таблицах 2-5, где даны рассчитанные и экспериментальные энергии и структура первых и вторых вибрационных состояний. Уменьшение $\kappa^{(\lambda)}$ вызвало уменьшение примесей в первых вибрационных состояниях: для подавляющего числа состояний однофононная компонента доминирует и суммарный вклад примесей не превышает 10%. На структуру вторых вибрационных состояний с данным К^П взаимодействие квазичастиц с фононами оказывает значительное влияние. Например, в ¹⁶⁰ Dy второе $K^{\pi} = 2^+$ состояние содержит вклад 26,1% компоненты /222/, 59,2% компоненты /201, 221/ н 13,2% компоненты /223/. Значительное смешивание разных компонент во вторых вибрацнонных состояниях наблюдается во многих случаях, хотя имеется немало вторых вибрационных состояний с простой структурой. Например, в ¹⁵⁸ Gd для $K^{\pi} = 0^{-}$, i=2 состояния компонента /302/ составляет 94.1%; для $K^{\prime\prime}=2^{-1}$, i = 2 компонента /221,301/ составляет 91,5%.

С увеличением энергии возбуждения влияние H_{vq} увеличивается еще больше, что приводит к распределению одно- и двухфононных компонент по ядерным уровням, т.е. структура состояний усложняется.

Проведенные исследования показали, что в сильнодеформированных ядрах первые вибрационные состояния являются практически однофононными и результаты ранее выполненных расчетов, представленные, например, в виде таблиц в $^{/3/}$, не утратили своей ценности. Для вторых состояний с данными K^{π} ангармонические эффекты более существенны. Однако в большинстве случаев ре-

	Таблица 2		154	~	
Нижние	вибрационные состояния	в	134	S	r

B	154	Sm	

Jin	Энергия опыт	г, Мэв расчет	Структура, 2		
0 ⁺	I,I	I,I6	(201)80,8(201,201)8,3(301,301)5,6(201,202)2,8		
0 ⁺ 2	-	I,9	(202)72,3(301,301)15,6 (221,221)5,7(201,201)4,5		
2_{1}^{+} 2_{2}^{+} 0_{1}^{-} 0_{2}^{-} 1_{1}^{-} 1_{2}^{-}	I,44	I,4	(221) 96,9 (202,221) 1,9		
	-	2,6	(222)71,9(201,221)14,1(223)11,2(201,222)2,1		
	0,922	0,99	(301)95,1 (201,301) 4,6		
	-	2,2	(302) 95,7 (201,301) 3,0		
	I,475	I,47	(311) 99,7		
	-	2,4	(312) 97,9 (201,311) 1,0		

Таблица 3. Humhue вибрационные состояния в 158 Gd

к ^π	Энерги	я, Мэв	Companya d
Лп	опыт	расчёт	Структура, %
0 †	1,196	I,I	(201) 89,7 (201,201) 3,1 (301,301) 2,7(201,202) 1,5
02	-	2,0	(202) 83,5 (311,311)10,8 (301,301) 1,9(201) 1,6
2† I	I, 185	1,2	(221) 95,4 (201,221) 1,5 (201,222) 1,2
22	(2,340	k 2,2	(222) 99,0
٥Ĩ	1,263	1,2	(301) 89,4 (201,301) 8,4 (201,302) 1,1
07	-	2,2	(302) 94,1 (201,301) 3,7 (301) 1,3
II	0,977	Ι,Ο	(311) 96,9 (201,311) 1,9
I_2^-	-	2,2	(312) 77,9 (201,311)12,4 (221,311) 5,4 (313) 3,1
2 <u>-</u> 1	1,793	I , 8	(321) 99,1
22	-	2,4	(221,301) 91,5 (323) 6,0 (322) 2,2

<u>Таблица I</u> Сдвиги Д В энергии и структура первых вибрационных состояний из-за учёта ангармоничности

Ядро	κ^{π}	∆E,Mi	(Chored) 2	Другие наибольшие компоненты $\left(C_{NTL}^{2} \right)^{2}$, или $\left(\Delta_{g_{2}}^{g_{1}} (\lambda_{0}KI) \right)^{2} %$
154 Sm	0+ 2+ 0-	1,09 0,14 0,32 0,02	67,8 94,2 82,0 99,2	(201,201) 18,7 (201,202) 5,5 (301,301) 5,1 (201,223)2,4(202,221) 2,0 (201,301) 17,6
158 Gd	0 ⁺ 2 ⁺ 0 ⁻ 1 ⁻ 2 ⁻	0,24 0,12 0,26 0,07 0,02	86,3 93,7 85,4 95,0 99,I	(301,301)4,3 (201,201) 3,3 (201,202) 1,9 (201,221)2,3 (201,222) 1,5 (311,311) 1,2 (201,301)12,2(201,302) 1,2 (201,311)3,3 (221,311) 1,2
160 Dy	0 ⁺ 2 ⁺ 1 2	0,66 0,12 0,02 0,03	73,9 95,5 99,2 98,0	(201,201)12,4 (201,203) 8,8 (203) 2,7 (203,221) 1,8 (201,321) 1,5
166 Ez	0+ 2+ 0- 1- 2-	İ,26 0,27 0,05 0,11 0,04	65,2 86,7 95,6 92,4 97,0	(201,201) 26,1 (221,221) 6,8 (201,221) 12,8 (221,321) 2,0 (201,301) 1,6 (201,311) 4,0 (221,311) 1,7 (201,313) 1,1 (201,321) 1,9

8

			Таолица 4 Нижние вибрационные состояния в ВОД			
k ^π	Энергия, Мэв					
Sin	опыт	расчет	Структура, »			
0 ⁺ I	1,263	I, I8	(201) 84,7 (201,201) 14,0 (321,321) 1,1			
02	I,953	2,13	(221,221) 99,98			
$2^+_{\rm I}$	0,966	0,98	(221) 96,5 (203, 221) 1,4			
22	-	2,24	(201,221) 59,2 (222) 26,1 (223) 13,2			
II	1,285	1,27	(311) 99,2			
12	-	2,25	(311,221) 92,8 (312) 6,8			
$2\overline{I}$	1,265	1,23	(321) 98,0 (201, 321) 1,5			
22	-	2,46	(322) 92,5 (201, 321) 3,4 (201, 322) 3,1			

K ⁿ	нергия, Изв		G 0 6
⁵ ² n	опыт	расчет	структура, 0 /
o†	1,46	1,3	(201)70,3(221,221)19,2 (201,201)7,4(201,202)1,2
02	2,187	2,0	(221,221)61,9(202)24,3(201)8,1(201,201)3,6
2^+_{I}	0,786	0,8	(221)94,9(201,221) 4,8
2^{+}_{2}	- [.]	2,3	(222) 98,4 (201,221) 1,2
0 <u>1</u>	1,663	1,66	(301) 97,7 (221,321) 1,3
02	-	2,4.	(221,321) 93,6 (303) 4,1 (301) 1,2
II	I,83	1,88	(311) 96,6 (201,311) 1,5
I_2^-	-	2,3	(312) 99,0
$2\overline{I}$	I,458	1,44	(321) 98,2 (201,321) 1,0
$2\frac{1}{2}$	-	2,3	(322) 99,2

зультаты расчетов в гармоническом приближении правильно описывают структуру этих состояний. Таким образом, подтверждены, сделанные в ^{/4/}, общие выводы, относящиеся к сильнодеформированным ядрам.

Большой интерес, представляет выяснение ролиангармонических эффектов для следующих состояний:

а/ для низких вибрационных состояний деформированных ядер, лежащих вблизи переходных областей,

 $\mathbf{6}/$ для 0^+ состояний,

в/ для более высоких неротационных состояний.

Эти вопросы находятся в центре нашего внимания.

В заключение авторы выражают искреннюю благодарность А.И.Вдовину, В.В.Воронову, Р.В.Джолосу, С.П.Ивановой, Л.А.Малову, В.О.Нестеренко и С.И.Федотову за плодотворные дискуссии и предоставление программ и материалов для расчетов.

Литература

- 1. В.Г.Соловьев. ЯФ, 10, 296 /1969/.
- 2. В.Г.Соловьев. Теория сложных ядер. Наука, 1971.
- 3. Е.П.Григорьев, В.Г.Соловьев. Структура четных деформированных ядер. Наука, 1974.
- 4. R.V.Jolos, V.G.Soloviev, K.N.Zheleznova, Phys.Lett., 25B, 393 (1967).

R.V.Jolos, U.M.Finer, V.G.Soloviev, K.N.Zheleznova, Phys.Lett., 27B, 614 (1968).

- 5. А.И.Воовин, Г.Кырчев, Ч.Стоянов. ТМФ, 21, 137 /1974/.
- 6. Ф.А.Гареев, С.П.Иванова, В.Г.Соловьев, С.И.Федопов. ЭЧАЯ, 4, 357 /1973/.

Рукопись поступила в издательский отдел 14 февраля 1975 года.

11

10