

P4-86-784

А.И.Вдовин, Ч.Велчев*, В.Ю.Пономарев

магнитный дипольный резонанс в 206 рь

Направлено в "Journal of Physics G: Nuclear Physics"

* Институт ядерных исследований и ядерной энергетики БАН, София

I. BBEARHNE

В последнее время произошли существенные сдвити в экспериментальном изучении магнитного дипольного резонанса. Как известно, история его открытия и последующего экспериментального изучения очень драматична/1-3/. Лишь в начале 80-х годов в экспериментах по неупругому рассеянию протонов промежуточных энергий удалось окончательно доказать его существование в средних и тяжелых ядрах/4/. Но до сих пор остается нерешенным вопрос, какую часть теоретически ожидаемой . силы MI-переходов удалось обнаружить. В частности, в ²⁰⁸ Pb-ядре, которому и теоретики и экспериментаторы уделяли неибольшее внимание, до недавнего времени были надежно идентифицированы лишь переходы с суммарной вероятностью $\sum B(MI)$ с 8 μ_0^2 . Важный шаг в решении указанной проблемы сделан в недавних экспериментах с поляризованными Х квантами^{/5-7/}. Во-первых, в изотопах ²⁰⁸Рь и ²⁰⁶Рь были обнаружены очень похожие I⁺-уровни (Е_x 5,8 МэВ, В(МI)↑ с I,5 Å³,), которые, по-ви-димому, являются изоскалярными I⁺-состояниями^{/5,6/}. Во вторых, в опы-тах с мечеными фотонами группа из Университета штата Иллинойс^{/7/} обнаружила в ²⁰⁶ рь на интервале 6,7 < E_x < 8, I МэВ I⁺-состояния с суммарной вероятностью возбуждения $\sum B(\widehat{MI})^{\dagger} \simeq 19\pm 2 \mu_{0}^{2}$. Если эти данные будут подтверждены, то значит в 206 Pb обнаружен МІ-резонанс, причем сила MI-переходов согласуется с традиционными теоретическими представлениями.

В абсолютном большинстве теоретических работ, посвященных проблем магнитного дипольного резонанса в тяжелых ядрах, исследовалось ядро ²⁰⁸ Pb. Эти работы весьма многочисленны и перечисление их заняло бы много места. На большинство этих работ есть ссылки в обзоре^{/3/}. Теоретические расчеты для ядра ²⁰⁶ Pb не проводились, и поэтому, например, Лажевски и др.^{/7/} сравнивали свои данные с теоретическими расчетами для ²⁰⁸ Pb^{/8/}. Но структура изотонов ²⁰⁸ Pb и ²⁰⁶ Pb заметно различается. В то время как ²⁰⁸ Pb -магическое ядро, в нейтронной системе ²⁰⁶ Pb известную роль играют сверхтекучие парные корреляции. Энергия нижайших вибрационных уровней (2¹ и 3¹) в ²⁰⁶ Pb гораздо ниже, чем в

Объсависиный кистеру васоных исследования БИБЛИОТЕНА

]

²⁰⁸Pb. Оба эти фактора должны заметно увеличить плотность сложных состояний в ²⁰⁶Pb по сравнению с ²⁰⁸Pb (при одной и той же энергии возбуждения). Кроме того, как указывалось в работах^{/9/}, взаимодействие фононов, из-за которого в ядерных спектрах появляются ангармонические эффекты и возникает фрагментация простых ядерных возбуждений, в магических ядрах слабее, чем в соседних. Оба указанных фактора (большая плотность уровней и более сильное взаимодействие фононов) должны вызвать более сильную фрагментацию МІ-резонанса в ²⁰⁶Pb, чем в ²⁰⁸Pb.

В настоящей работе исследуются МІ-состояния в ²⁰⁶Pb. Причем будет рассмотрена не только фрагментация МІ-резонанса в этом ядре, но и влияние взаимодействия со сложными конфигурациями на изоскалярный I⁺-уровень. Мы также рассчитаем вклад в полную силу МІ-переходов прямых переходов из основного состояния на двухфононные I⁺-уровни.

2. Однофонные 1⁺-уровни в ²⁰⁶Рь

Наиболее подходящей моделью для таких расчетов является квазичастично-фононная модель ядра (КФМ)/^{IO/}. КФМ позволяет на микроскопическом уровне рассчитать взаимодействие простих однофононных конфигураций со сложными (двухфононными) в тяжелых ядрах с развитым спариванием. Формализм КФМ подробно изложен в серии обзоров^{/II/}, а изучению фрагментации магнитного дипольного резонанса в ее рамках посвящены работы^{/I2/}.

Эффективное частично-дырочное взаимодействие в КФМ имеет сепарабельную форму, а радиальный формфактор этих сил в настоящей работе взят в виде R(r) = dU/dr, где U -центральная часть потенциала Вудса-Саксона. В приближении случайной фазы I⁺-состояния генерируются спин-спиновым взаимодействием, вклад двухквазичастичных компонент с $\Delta 1 = 2$ в их структуру не учитывается нами, т.к. согласно предыдущим расчетам в рамках КФМ/I3, 14/ их роль незначительна.

В качестве потенциала, описывающего среднее поле, взят потенциал Вудса-Саксона с параметрами Чепурнова /15/. Однако энергии одночастичных (дырочных) состояний из двух главных протонных и нейтронных оболочек, ближайших к уровню Ферми, были получены посредством феноменологической подгонки, т.е. так, чтобы наилучшим образом описать экспериментальные спектры низколежащих состояний нечетных ядер, соседних с ²⁰⁸Pb , учитывая взаимодействие квазичастиц с фононами. Такое исследование было проведено в работе /16/и мы воспользовались ее результатами. Правильный выбор одночастичного спектра весьма важен для описания изоскалярного I⁺-уровня в 208 Pb /I4/, а также подструктур в сечении фотопоглощения для 208 Pb при энергиях возбуждения 5-6 МэВ/I6/

Рис. I. Распределение сили МІ-переходов в²⁰⁶ Pb : а) расчет в приближении случайной фазы; б) расчет, в котором учтено взаимодействие одно- и двухфононных состояний.

Константа изовекторного спин-спинового взаимодействия в КФМ определяется по положению МІ-резонанса. Мы взяли её такой, чтобы в приближении случайной фазы $E_x(MI) = 7.85$ МэВ. Значение константы $\mathscr{X}_{b}^{(ot)}$ было определено из соотношения $\mathscr{X}_{o}^{(ot)} = 0, I \mathscr{X}_{d}^{(ot)}$. Такая величина отношения констант $\mathscr{X}_{o}^{(ot)} / \mathscr{X}_{d}^{(ot)}$ была получена в работе / I4/ на основании анализа свойств 1_{1s}^{+} - состояния ядра ²⁰⁸ рь. Эта оценка согласуется и с оценками других авторов / I7/. Заметим, что определенные вышеуказанным образом константы $\mathscr{X}_{0,1}^{(ot)}$ для ²⁰⁶ рь очень близки к их значениям для ядра ²⁰⁸ рь / I4/. Результаты расчета распределения В(MI) в спектре ²⁰⁶ рь в ПСФ представлены на рис. Iа. Из-за сверхтекучих корреляний в нейтронной подсистеме ядра ²⁰⁶ рь спектр однофононных I⁺ - воспроизведет точную картину распределения B(MI). Мы рассчитали b(MI, E_x) для $\Delta'=0,3$ МэВ с помощью программы GIRES /19/. Она изображена на рис. 2^{**} , где показано и экспериментальное распределение B(MI) из работы'7/. Оба распределения хорошо согласуются между собой. Заметим, что упоминавшиеся нами два максимума в распределении MI-силы в²⁰⁶Pb отсутствуют у теоретических распределений MI-силы в²⁰⁸Pb (см. расчеты в работах'⁸, 14/).

Рис. 2. Распределение сили МІ-цереходов в ²⁰⁶ Рь в области МІ-резонанса. Экспериментальная гистограмма взята из работы/7/. Силовая функция с $\Delta = 0,3$ Мев рассчитана с помощью/19/ программы GIRES .

В эксперименте с мечеными фотонами^{/7/} на интервале 6,7-8,1 МэВ была обнаружена суммарная сила МІ-переходов, равная (19+2),4° . Напи расчетн дают для этой величины следующие значения: а) в ПСФ $\sum B(MI)$ = 18,7,4°; б) точный расчет, учитывающий взаимодействие с двухфононными состояниями – 16,1,4°; ; в) расчет с дополнительным затуханием – 13,2,4°.

Ми хотели би прокомментировать некоторое противоречие между экспериментальными результатеми групп из Гиссена ⁶⁷ и Иллинойса ⁷⁷ относительно силы МІ-переходов при $E_{\chi} > 7$ МэВ в²⁰⁶рь. Эксперименты с мечеными фотонами чувствительны к полной силе дипольных χ -переходов в некотором интервале ΔE_{χ} , в то время как метод ядерной резонансной флуоресценции (ЯРФ) направлен на идентификацию отдельных уровней. Это затрудняет его использование, когда плотность состояний велика. Именно такова ситуация в ²⁰⁶рь. Методом ЯРФ на интервале 4,3-7,5 МэВ исследовано 24 дипольных уровня (из них только один оказался магнитным дипольным). Ясно, что это много меньше действительного числа дипольных уровней. Даже в наших расчетах с состояниями ограниченной сложности на указанном интервале находится 58 состояния I⁺ и почти столько же состояний I⁻. Но ведь должны быть и состояния еще более сложные. Мы полагаем, что в экспериментах методом ЯРФ часть I⁺-уровней была процущена.

¹Говоря точнее, на рис.2 для большего удобства сравнения с экспериментом изображена функция ¹ (МІ,Е_х) = b(МІ,Е_х) х 0,І M3B. 4. ИЗОСКАЛЯРНОЕ І+ -СОСТОЯНИЕ

Расчеты в ПСФ (рис. Ia) показывают, что в 206 рь , как и в 208 рь , при энергиях возбуждения $E_x \sim 6.0$ МэВ должно существовать изоскалярное I_{1s}^+ -состояние. Интересно, что в 208 рь взаимодействие с двухфононными состояниями оказывает очень слабое влияние на структуру I_{1s}^+ – состояния/I4,20/, и наблюдающийся экспериментально I⁺ –уровень представляет собой практически чистую суперпозицию двух частично-дырочных компонент $(1n_{11/2}^{-1}1n_{9/2})_{\pi}$ и $(1i_{13/2}^{-1}1i_{11/2})_{\nu}$ Заметим, что в 208 рь I_{1s}^+ -состояние с энергией $E_x = 5,846$ МэВ – нижайшее по энергии I⁺ – состояние, а следующий обнаруженный экспериментально I⁺ -уровень находится при энергии 7,3 МэВ (см. последнюю компиляцию экспериментальных данных /2I/). Это указывает на малую плотность I⁺ -состояний при $E_x = 5-7$ МэВ и объясняет, почему взаимодействие со сложными конфигурациями слабо влияет на I⁺ -состояние ядра

Как уже отмечалось. в 206 рь ситуация иная. Расчеты показывают. что взаимодействие с двухфононными состояниями оказывает заметное влияние на однофононное Lis-состояние этого ядра, вызывая заметную фрагментацию его силы (рис. 16). В расчетах, результаты которых представлены на рис. 16, при Е_х≈ 5,7 № В видна группа из трех I⁺ -уровней. Один из них, с энергией $E_x^2 = 5,71$ МэВ, имеет B(MI) $\uparrow = 1,15 \mu_*^2$, два других имеют B(MI) $\approx 0.3 \mu_{*}^{2}$. Именно между тремя этими состояниями и распределена основная часть силы однофононного I_{is}-состояния. Его вклад в структуру I⁺ -уровня с максимальной величиной B(MI)[†] составляет ~ 50%. Правда, количественная сторона этого результата довольно сильно зависит от параметров модельного гамильтониана. При изменении этих параметров В(МІ) для слабых І+-уровней меняются в несколько раз. Но при любом реалистическом наборе параметров сохраняется I⁺-уровень с В(МІ) 1 ~ І,І-І,7 4, и Е 25,6-5,8 МаВ. Вклад однофононного І, -состояния в его структуру колеблется в пределах 45-60%, остальная часть нормы состояния исчерпывается двухдононными компонентами. На наш взгляд, это состояние можно отождествить с I⁺-уровнем с E_x = 5,80 МэВ и B(MI) † = I,5 μ^2 , который обнаружен в ²⁰⁶ рв группой из Гиссена.

Изоскалярный I⁺-уровень ²⁰⁸рь исследовался в нескольких реакциях, в том числе в неупругом рассеянии электронов и реакции (d ,³He) /22/. Как повлияют примеси двухфононных компонент на вероятности возбуждения аналогичного I⁺-уровня в ²⁰⁶Pb? Уменьшение вклада однофононного состояния I⁺₁₈ в структуру наблюдаемого I⁺-уровня приводит и к уменьшению вклада протонной частично-дырочной компоненты (1h⁻¹_{11/2}1h_{9/2})_т. Ее амплитуда в волновой функции (I) I⁺-уровня ядра²⁰⁶Pb будет иметь ве-

7

воспроизведет точную картину распределения B(MI). Мы рассчитали. b(MI, E_x) для $\Delta = 0,3$ МэВ с помощью программы GIRES /19/. Она изображена на рис. 2^{**} , где показано и экспериментальное распределение B(MI) из работы⁷⁷. Оба распределения хорошо согласуются между собой. Заметим, что упоминавшиеся нами два максимума в распределении MI-силы в²⁰⁶_{Pb} отсутствуют у теоретических распределений MI-силы в²⁰⁸_{Pb} (см. расчеты в работах^{78,14}).

Рис. 2. Распределение силы МІ-переходов в 2^{366} рв в области МІ-резонанса. Экспериментальная гистограмма взята из работы/7/. Силовая функция с $\Delta = 0,3$ МэВ рассчитана с помощью/19/ программы GIRES

В эксперименте с мечеными фотонами^{/7/} на интервале 6,7-8, I МэВ была обнаружена суммарная сила МІ-переходов, равная (I9+2),4° . Напи расчеты дают для этой величины следующие значения: а) в ПСФ $\sum B(MI)$ = I8,7,4°; б) точный расчет, учитывающий взаимодействие с двухфононными состояниями – I6, I,4°; ; в) расчет с дополнительным затуханием – I3,2,4°.

Мы хотели бы прокомментировать некоторое противоречие между экспериментальными результатами групп из Гиссена ⁶ и Иллинойса ⁷⁷ относительно силы МІ-переходов при $E_{\chi} > 7$ МэВ в²⁰⁶рь. Эксперименты с мечеными фотонами чувствительны к полной силе дипольных χ -переходов в некотором интервале ΔE_{χ} , в то время как метод ядерной резонансной флуоресценции (ЯРФ) направлен на идентификацию отдельных уровней. Это затрудняет его использование, когда плотность состояний велика. Именно такова ситуация в ²⁰⁶рь. Методом ЯРФ на интервале 4,3-7,5 МэВ исследовано 24 дипольных уровня (из них только один оказался магнитным дипольным). Ясно, что это много меньше действительного числа дипольных уровней. Даже в наших расчетах с состояниями ограниченной сложности на указанном интервале находится 58 состояния I⁺ и почти столько же состояний I⁻. Но ведь должны быть и состояния еще более сложные. Мы полагаем, что в экспериментах методом ЯРФ часть I⁺-уровней была процущена.

¹Говоря точнее, на рис.2 для большего удобства сравнения с экспериментом изображена функция ¹ (MI,E_x) = b(MI,E_x) x 0,I МэВ.

4. ИЗОСКАЛЯРНОЕ І+ -СОСТОЯНИЕ

Расчеты в ПСФ (рис.1а) показывают, что в ²⁰⁶Pb , как и в ²⁰⁸Pb , при энергиях возбуждения $E_x \sim 6.0$ МэВ должно существовать изоскалярное I_{15}^+ -состояние. Интересно, что в ²⁰⁸Pb взаимодействие с двухфононными состояниями оказывает очень слабое влияние на структуру I_{15}^+ – состояния/14,20, и наблюдающийся экспериментально 1⁺ –уровень представляет собой практически чистую суперпозицию двух частично-дырочных компонент $(1h_{11/2}^{-1}h_{9/2})_{\rm T}$ и $(1i_{13/2}^{-1}1i_{11/2})_{\rm V}$ -Заметим, что в²⁰⁸Pb I_{16}^+ –состояние с энергией $E_{\rm X}$ = 5,846 МэВ – нижайшее по энергии 1⁺ – состояние, а следующий обнаруженный экспериментально 1⁺ -уровень находится при энергии 7,3 МэВ (см. последнюю компиляцию экспериментальных данных^(21/). Это указывает на малую плотность 1⁺ –состояний при $E_{\rm X}$ = 5-7 МэВ и объясняет, почему взаимодействие со сложными конфигурациями слабо влияет на 1⁺ –состояние ядра

Как уже отмечалось, в²⁰⁶Рb ситуация иная. Расчеты показывают, что взаимодействие с двухфононными состояниями оказывает заметное влияние на однофононное It- состояние этого ядра, вызывая заметную фрагментацию его силы (рис. 16). В расчетах, результаты которых представлены на рис. Id, при Е_х ≈ 5,7 МэВ видна группа из трех I⁺ -у́ровней. Один из них, с энергией $E_{x} = 5,71$ МэВ, имеет $B(MI)^{\uparrow} = 1,15 \mu_{*}^{2}$, два других имеют B(MI) $\approx 0,3 \mu_0^2$. Именно между тремя этими состояниями и распределена основная часть силы однофононного I₁₃-состояния. Его вклад в структуру I⁺ -уровня с максимальной величиной В(МI)[†] составляет ~ 50%. Правда, количественная сторона этого результата довольно сильно зависит от пареметров модельного рамильтониана. При изменении этих параметров B(MI) для слабих I⁺-уровней меняются в несколько раз. Но при любом реалистическом наборе параметров сохраняется I+-уровень с В(MI)1 ~ I,I-I,7 № и Е 5,6-5,8 МаВ. Вклад однофононного I: - - состояния в его структуру колеблется в пределах 45-60%, остальная часть нормы состояния исчерпывается двухирнонными компонентами. На наш взгляд, это состояние можно отождествить с I⁺-уровнем с E_y= 5,80 МэВ и B(MI) $f = 1,5 \mu_{\bullet}^{2}$, который обнаружен в ²⁰⁶ группой из Гиссена.

Изоскалярный I⁺-уровень ²⁰⁸ рь исследовался в нескольких реакциях, в том числе в неупругом рассеянии электронов и реакции (d ,³He) /22/. Как повлияют примеси двухфононных компонент на вероятности возбуждения аналогичного I⁺-уровня в ²⁰⁶ Pb? Уменьшение вклада однофононного состояния I⁺₁₈ в структуру наблюдаемого I⁺-уровня приводит и к уменьшению вклада протонной частично-дырочной компоненты $(1h_{11/2}^{-1}h_{9/2})_{\rm F}$. Ее амплитуда в волновой функции (I) I⁺-уровня ядра²⁰⁶ Pb будет иметь ве-

7

личину 0,60-0,70, в то время как в²⁰⁶рь амплитуда этой компоненты в I⁺₁₈ -состоянии ≥ 0,87.

линия - расчет в приближении случайной фа-Поэтому следует ожидать, что сечение возбуждения указанного І+-уровня²⁰⁶рь в реакции подхвата протона будет в 1,5-2 раза меньше, чем в ²⁰⁸Pb . Похожая ситуация имеет место и для вероятности возбуждения

I⁺-состояния в (е, е')-рассеянии. Из-за больших примесей двухфононных компонент заметно уменьшаются максимумы токовой переходной плотности $\rho_{11}(r)$ этого состояния (рис.3), хотя в главных чертах форма ρ_{44} (г) , рассчитанной в ПСФ, сохраняется. Изменения ρ_{44} (г) во внутренней области ядра весьма чувствительны к параметрам модельного га-мильтониана. Заметим, что формы / (-) I⁺₁₅-состояний в ²⁰⁶_{Pb} и ²⁰⁸_{Pb}, рассчитанные в ПСФ, очень близки ¹⁴. Уменьшение амплитуд близких к поверхности пиков $\rho_{41}(r)$ ослабит сечение возбуждения I^+ -уровня в (е.е')-рассеянии.

5. ВКЛАД ДВУХФОНОННЫХ КОМПОНЕНТ В ВЕРОЯТНОСТЬ ВОЗБУЖДЕНИЯ МІ-РЕЗОНАНСА

Вичисляя вероятности B(MI) 🕇 мы пользовались обычным выражением пля одночастичного оператора MI-перехода:

$$\mathcal{M}(M1) = \sum_{j_{1}, m_{1}, j_{2}, m_{2}} \langle j_{1}, m_{1} | \mathcal{M}(M1) | j_{2}, m_{2} \rangle a_{j_{1}, m_{1}}^{+} a_{j_{2}, m_{2}}, \qquad (3)$$

где /m (M1)/jz M2 > -одночастичный матричный элемент этого оператора, $a_{j_2 m_2}^{\dagger}$, $a_{j_2 m_2}^{\bullet}$ -операторы рождения и уничтожения нуклона на уровне среднего поля с квантовыми числами j = nlj и проекцией полного момента т. Если, используя преобразование Боголюбова, перейти в (3) к операторам рождения и уничтожения квазичастиц d_{jm}^{\dagger} , d_{jm} , а затем выразить пары квазичастичных операторов $d_{jm}^{\dagger}, d_{j_2m_2}^{\dagger}, d_{j_2m_2}, d_{j_2$

 $\mathcal{M}(M1_{M}) \equiv M_{a} + M_{aa} = \frac{M_{o}}{6} \left\{ \sum_{i} \left(\theta_{1Ai}^{+} - (-)^{M} \theta_{AAi} \right) \sum_{i \neq a} \frac{1}{2} M_{jeja}^{(d)} \mathcal{U}_{ija}^{(+)} - \mathcal{U}_{ija}^{(b)} \right\} +$ + $\sum_{\lambda_1,\lambda_2} \left[(2\lambda_1+1)(2\lambda_2+1) \right]^{\frac{1}{2}} M_{j_2j_2}^{(4)} \mathcal{D}_{j_2j_2}^{(4)} \mathcal{D}_{j_2j_2}^{(4)}$ (4) " ([Q, л, н, i, Q, лена ia] 1 + (-) ~ [Q, л, н, i, Q, лена ia] 1-м).

В формуле (4): $\psi_{j_1j_2}^{\lambda_i}$, $\psi_{j_jj_2}^{\lambda_i}$ -прямая и обратная двухквазичастичные амплитуды в волновой функции фонона; $\psi_{j_1j_2}^{(J)}$, $\psi_{j_jj_2}^{(J)}$ – комбинации коэф-фициентов преобразования Боголюбова; $M_{j_1j_2}^{(H)}$ – приведенный одночастич-ный матричный элемент оператора $\mathcal{M}(\mathcal{M}_{I_1})$.

В вероятность перехода из основного состояния четно-четного ядра на однофононное будет давать вклад только слагаемов ${\rm M}_{\odot} \sim {\rm Q}^+$. Благодаря слагаемому M_{QQ} , прямним переходами из основного состояния будут возбуждаться двухфононные состояния $[\mathcal{A}^{*}_{\lambda,\mu,i},\mathcal{A}^{*}_{\lambda,\mu,i}]_{\mathcal{A}^{*}_{\mu\nu}}$. Вероятность прямых переходов на двухфононные состояния невелика, посколь- $\mathbb{M}_{\mathrm{QQ}} \sim \psi \varphi$, а обратные амплитуды φ , как правило, очень малы. В приближении Тамма-Данкова M_{QO} =0, т.к. φ = 0, т.е. в этом приближении прямые переходы на двухфононные состояния из основного запрешены /23/

Если возбужденное состояние четно-четного ядра описывается волновой функцией (1), то вклад в вероятность перехода дают оба слагаемых Мо и Моо и возникает интерференция двух амплитуд, причем их относительный вес будет зависеть и от коэффициентов R и P волно-

q

^{*/}Для простоты мы опустили в (4) слагаемые ~ Q+Q, которые не дают вклад в вероятность перехода из основного состояния на состоя-HMe (I).

вой функции состояния (I). Кроме того, хотя вероятность прямого перехода на двухфононное состояние, как правило, мала, плотность этих состояний при энергиях 7-8 МэВ уже достаточно велика, и их суммарный вклад в интегральную вероятность возбуждения состояний с данными J^{π} в некотором интервале Δ может оказаться заметным.

В настоящей работе расчеты выполнены с полным оператором (4). Рассмотрим, каков вклад двухфононных компонент в вероятность возбуждения МІ-резонанса в ²⁰⁶Рь.

Рис. 4. Гистограмми распределения вероятности $B(M1, 0_{g, S}^{+} \rightarrow Q^{+} + Q^{+}Q^{+})$ и разности вероятностей $\Delta B(M1) = B(M1, 0_{g, S}^{+} \rightarrow Q^{+} + Q^{+}Q^{+}) - B(M1, 0_{g, S}^{+} \rightarrow Q^{+})$ в спектре ²⁰⁶ Pb.

Мы изобразили на рис. 4а гистограмму вероятности $B(MI, q^+ + q^+q^+)$, рассчитанной с полным оператором (4), а на рис. 4 б-гистограмму разности $\Delta B(M1)=B(M1, q^+ + q^+q^+)-B(M1, q^+)$. Величина $B(M1, q^+)$ рассчитана с оператором $\mathcal{M}(\mathcal{M}_{\mathcal{M}})$, в котором опущено слагаемое \mathbb{M}_{QQ} , но при этом структура I⁺ -состояний описывалась волновой функцией (I). Переходы на двухфононные компоненты в целом дают малый вклад в полную силу МІ-переходов. Интерференция одно- и двухфононных слагаемых в В(МІ) приводит и к усилению, и к ослаблению силы переходов, но в любом случае ее изменения оказываются на уровне I%. На интервале 6,7-8, I МэВ, который исследовался в экспериментах с мечеными фотонами ^{77/}, величины Σ . В(М1, Q⁺ + Q⁺Q⁺) и Σ . В(М1, Q⁺) составляют I6, I $\mathcal{M}_{\circ}^{\circ}$ и I6,2 $\mathcal{M}_{\circ}^{\circ}$ соответственно, а суммарная вероятность перехода на расположенные здесь двухфононные состояния (без учета интерференции с однофононными) равна 0,04 $\mathcal{M}_{\circ}^{\circ}$.

Таким образом, вклад двухфононных компонент в полную вероятность возбуждения МІ-резонанса незначителен. Но для отдельных І⁺-уровней он может оказаться очень важным и его необходимо учитывать при анализе свойств низколежащих дискретных состояний. Подробнее этот вопрос обсуждается в работе^{/24/}.

6. ЗАКЛЮЧЕНИЕ

Мы рассчитали в рамках квазичастично-фононной модели ядра фрагментацию МІ-силы в²⁰⁶ рь из-за взаимодействия с двухфононными состояниями. Хотя в целом фрагментация получилась не такой сильной, как это показывает эксперимент, после введения небольшого добавочного затухания мы получили хорошее описание экспериментального распределения МІ-силы в этом ядре. В частности, качественно воспроизводится двугорбая форма этого распределения.

Наши расчеты правильно воспроизводят свойства недавно обнаруженного в²⁰⁶Pb I⁺-уровня с энергией 5,8 МэВ и В(МІ)† = I,5 $\mu_0^2 \pm 0,5 \mu_0^2$. В наших расчетах это состояние имеет энергию 5,6-5,8 МэВ и В(МІ)† = =I,I-I,7 μ_0^2 , в зависимости от параметров модели. Большой вклад в структуру указанного I⁺ -состояния дает компонента $(1h_{11/2}^{-1}h_{9/2})_{\pi}$, но, в отличие от I⁺₁₈ -состояния в 208 Pb, велика также и примесь двухфононных компонент.

Подчеркнем, что сила МІ-переходов в области МІ -резонанса и вероятность возбуждения I⁺-уровня $E_x = 5,7I$ МэВ согласуются с экспериментальными значениями при значениях гиромагнитных факторов $g_s^{eff} = 0,8g_s^{free}$.

JINTEPA TYPA

- I. Brown G.E., Raman S. Comments Nucl. Part. Phys., 1980, 9, p.79.
- 2. Вдовин А.И., Пономарев В.Ю. В сб.: "Электромагнитные взаимодействия ядер при малых и средних энергиях. Труды V семинара". Изд. ИЯИ АН СССР, М., 1982, с. 63.

- 3. Laszewski R.M., Wambach J. Comments Nucl.Part.Phys., 1985, 14, p. 321.
- 4. Anantaraman N. et al. Phys.Rev.Lett., 1981, 46, p. 1318; Djalali C. et al. Nucl.Phys., 1982, A388, p. 1.
- . 5. Weinhard K. et al. Phys.Rev.Lett., 1982, 49, p. 18.
- 6. Ratzek R. et al. Phys. Rev. Lett. 1986, 56, p. 568.
- 7. Laszewski R.M. et al. Phys.Rev.Lett., 1985, 54, p. 530.
- Speth J. et al. Nucl. Phys. 1980, A343, p. 382; Cha D. et al. Nucl. Phys., 1984, A430, p. 321.
- 9. Soloviev V.G. et al. Nucl. Phys., 1977, A288, p. 376; 1978, A304, p. 503.
- 10. Соловьев В.Г. ЭЧАЯ, 1978, 9, с.810; Соловьев В.Г. Теория сложных ядер М., "Наука", 1971.
- Вдовин А.И., Соловьев В.Г. ЭЧАЯ, 1983, 14, с. 237;
 Воронов В.В., Соловьев В.Г. ЭЧАЯ, 1983, 14, с. 1380;
 Вдовин А.И. и др. ЭЧАЯ, 1985, 16, с.245.
- 12. Ponomarev V.Yu. et al. Nucl.Phys., 1979, А323, р. 446; Вдовин А.И. и др. ЯФ, 1979, 30, с. 923.
- 13. Пономарев В.Ю., Вдовин А.И. Сообщение ОИЯИ, Р4-80-392, 1980, Дубна.
- 14. Dao Tien Khoa et al. JINR, E4-86-198, Dubna, 1986.
- 15. Чепурнов В.А. ЯФ, 1967, 16, с. 955.
- Воронов В.В., Дао Тиен Кхоа. Изв. АН СССР (сер.физ.), 1984, 48, с. 2008.
- 17. Toki H. et al. Phys.Rev.C, 1983, 28, р. 1398; Борзов И.Н. и др. ЯФ, I984, 40, с.II5I;
- 18. Koeling T., Iachello F. Nucl.Phys., 1978, A295, p.45; Bertsch G.F. et al. Rev.Mod.Phys., 1983, 55, p. 287; Klevansky S.P., Lemmer R.H. Phys.Rev. C, 1982, 25, p.3137.
- 19. Пономарев В.Ю. и др. Сообщение ОИЯИ, Р4-81-704, Дубна, 1981.
- 20. Lee T.-S., Pittel S. Phys.Rev.C, 1975, 11, p.607.
- 21. Martin M.J. Nucl.Data Sheets, 1986, 47, p. 797.
- 22. Hayakawa S.I. et al. Phys.Rev.Lett., 1982, 49, p. 1624; Mairle G. et al. Phys.Lett., 1983, 121B, p.307; Muller S. et al. Phys.Rev. Lett., 1985, 54, p. 293.
- 23. Воронов В.В. и др. Изв. АН СССР (сер.физ.), 1984, 48, с.1846.
- 24. Пономарев В.Ю., Велчев Ч. Сообщение ОИЯИ, Р4-86-453, Дубна, 1986.

Рукопись поступила в издательский отдел 8 декабря 1986 года.

Вдовин А.И., Велчев Ч., Пономарев В.Ю.

P4-86-784

P4-86-784

Магнитный дипольный резонанс в 206 Рь

Фрагментация магнитных дипольных состояний в ядре ²⁰⁶ Рb рассчитана в рамках квазичастично-фононной модели ядра. Качественная картина фрагментации M1-резонанса близка к экспериментальной. Полная сила M1-переходов согласуется с экспериментальной при значениях эффективных. гиромагнитных факторов на 20% меньше, чем их свободные значения. Показано, что в ²⁰⁶ Рb должно существовать изоскалярное 1⁺-состояние. Из-за взаимодействия квазичастиц с фононами в его структуре появляются большие примеси двухфононных компонент. Характеристики указациого уровня близки к экспериментальным характеристикам недавно обларуженного в резонансном рассеянии гамма-квантов 1⁺-уровня с энергией 5,8 МэВ в этом ядре. Прямые переходы на двухфононные компоненты 1⁺-уровня с.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1986

Перевод Т.Ю.Думбрайс

Vdovin A.I., Velchev Ch., Ponomarev V.Yu.

Magnetic Dipole States in 206 Pb

The fragmentation of the magnetic dipole strength in ²⁰⁶ Pb is studied in the framework of the quasiparticle-phonon nuclear model. The calculations reproduce the twohumped shape of the experimental distribution. As in ²⁰⁸ Pb there exists the isoscalar 1⁺ state at $E_{\chi} = 5.7$ MeV in ²⁰⁶ Pb, its wave function contains sizeable two-phonon components. It is shown that direct transitions from the ground state to two-phonon 1⁺ states give a negligible contribution to the total excitation probability of the M1-resonance.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1986

12