

P4-86-442

Б.Н.Захарьев, Х.Функе

ВОССТАНОВЛЕНИЕ ТРЕХМЕРНЫХ НЕСФЕРИЧЕСКИХ ПОТЕНЦИАЛОВ ПО ДАННЫМ РАССЕЯНИЯ

Направлено в журнал "Physics Letters B"

1986

1. ВВЕДЕНИЕ

Фундаментальной проблемой во многих областях физики является определение потенциала взаимодействия V между частицами $^{1-3}$ Но найти V по данным рассеяния S /без многократного решения уравнения Шредингера и подгонки S, варьируя V каким-либо методом "проб и ошибок"/ практически удавалось лишь в случае сферической симметрии V([r]) : по данным при фиксированном орбитальном моменте в подходе Гельфанда – Левитана – Марченко $^{1-3}$ или при фиксированном значении энергии в подходе Редже – Ньютона – Сабатье $^{1-3}$, модифицированном для поиска потенциала в ограниченной области Шайдом и др. $^{4/}$. Обсуждалась также возможность решения обратной задачи с исходными данными при $aE + b\ell(\ell + 1) = = \text{const}^{/5/}$ /а и b – постоянные/.

С работ Кея и Мозеса^{/6/} началось распространение методов обратной задачи на сферически-несимметричные и нелокальные силы. Фаддеев^{/7/} и Ньютон ^{/2/} /см. также ^{/8/}/ развили теорию трехмерной обратной задачи для локальных потенциалов, но пока она не достигла стадии практического применения.

В данной работе продолжены исследования, начатые в ^{/9/}, по развитию метода обратной задачи для сферически-несимметричных потенциалов, допускающих разделение переменных в уравнении Шредингера в сфероидальных и эллипсоидальных координатах ^{/11-12/}

В отличие от случая сферически-симметричных потенциалов, парциальные уравнения по отдельным сфероидальным переменным имеют не по одной константе разделения (E = k², $\ell(\ell + 1)$, m), а комбинации "собственных значений" k², $\lambda_{\ell m}(k^2)$, m, которые в общем случае должны определяться при совместном решении уравнений с разными переменными. Например, $\overline{\lambda_{\ell m}}$ оказывается зависящей от k² и от m и лишь в пределе сферической симметрии принимает целочисленные значения $\ell(\ell + 1)$. Неизвестен аналог соотношения полноты /равенства Парсеваля/ парциальных функций по "радиальной"переменной – из-за этого нет /пока?../ и уравнений типа Гельфанда - Левитана - Марченко для обратной задачи с фиксированным значением ℓ - числа узлов волновой функции по угловым переменным. В парциальных уравнениях появляется не один центробежный барьер, а несколько.

Условие разделения переменных в сфероидальных координатах накладывает определенные ограничения на форму соответствующих потенциалов. Анализ таких форм показал, что в центре потенциальных ям могут быть нежелательные, с точки зрения физических приложений, подьемы, которые, правда, удается "спрятать" под

> Вовълничный высстру ВАСИНИК ВССЛЕДОВАНИЙ БИГС ОПЛЕСТИИА

1

барьер эффективного ядерного отталкивания из-за принципа Паули или убрать с помощью добавления простой угловой зависимости взаимодействия.

При наличии непрерывного спектра в сфероидальном поле можно предложить формализм обратной задачи при Е фиксированной из области континуума по аналогии с методом Ньютона - Сабатье. Для задач чисто дискретного спектра /запирающие ямы/ неприменимыми оказываются как подход с Е = const, так и с l = const, но зато было выяснено, что работает обобщение метода Хушияра -Разави / 10/ восстановления сил по спектральным параметрам в конечно-разностном приближении. Предлагается также вариант этого метода в рамках R-матричной теории рассеяния для сил конечного радиуса действия: определение потенциала по положениям Rматричных резонансов и их приведенным ширинам. Этот же подход годится и для потенциалов с трехосной деформацией при разделении переменных в эллипсоидальных координатах.

2. СФЕРОИДАЛЬНЫЕ КООРДИНАТЫ /СК/

 $x = \rho_{p} \sin \partial_{p} \cos \phi, \quad 0 \leq \rho_{n} \leq \infty,$

Хорошо известно определение вытянутых /prolate ξ_p , η_p , ϕ / и сплюснутых /oblate ξ_{ob} , η_{ob} , ϕ / СК ^{/11,12/} . Но для сопоставления со случаем сферической симметрии более удобен другой выбор СК: ρ , ∂ , ϕ , подобных радиусу г и углам θ , ϕ . Для вытянутых СК

$$y = \rho_{p} \sin \partial_{p} \sin \phi, \quad 0 \le \partial_{p} \le \pi,$$

$$z = \sqrt{\rho_{p}^{2} + a^{2} \cos \partial_{p}}, \quad 0 \le \phi \le 2\pi.$$

С обычными СК $\xi_{\rm p},\eta_{\rm p}$ они связаны соотношениями ${\rm a}^2\,(\xi_{\rm p}^2-1)=\rho_{\rm p}$ и $\eta_{\rm p}=\cos\partial_{\rm p}$, где $2{\rm a}$ – расстояние между фокусами эллипсоида, описываемого $\rho_{\rm p}=$ const. В случае сплюснутых СК имеем соответственно

$$x = \sqrt{\rho_{ob}^2 + a^2 \sin \partial_{ob} \cos \phi}, \quad 0 \leq \rho_{ob} < \infty, \quad a \xi_{ob} = \rho_{ob},$$

$$y = \sqrt{\rho_{ob}^2 + a^2 \sin \partial_{ob}, \sin \phi}, \quad 0 \leq \partial_{ob} \leq \pi, \quad \eta_{ob} = \cos \partial_{ob}, \qquad /2/$$

 $z = \rho_{ob} \cos \partial_{ob} , \qquad \qquad (0 \le \phi \le 2\pi ,$

3. РАЗДЕЛЕНИЕ ПЕРЕМЕННЫХ УРАВНЕНИЯ ШРЕДИНГЕРА В СК

Для потенциалов вида

u

$$= \frac{u_1(\rho_p) + u_2(\partial_p)}{\rho_p^2 + a^2 \sin^2 \partial_p}, \qquad /3/$$

где $u_1 \vee u_2$ - произвольные функции, уравнение Шредингера $(\Delta + k^2 - u)\Psi = 0$ /4/ допускает факторизацию волновой функции $\Psi = R(\rho)S(\partial)e^{\pm im\phi}$ и может быть сведено к обыкновенным дифференциальным уравнениям для

отдельных компонент /используем $R(\rho_p) = [\rho_p^2(\rho_p^2 + a^2)]^{-1/4}v(\rho_p)/.$ В случае вытянутых СК

$$\frac{d^2 v(\rho_p)}{d\rho_p^2} + \left[k^2 - \frac{u_1(\rho_p) + \lambda_{\ell m}}{\rho_p^2 + a^2} - \frac{a^2}{\rho_p^2(\rho_p^2 + a^2)} (m^2 + \frac{2\rho_p^2 - a^2}{4(\rho^2 + a^2)})\right] v(\rho_p) = 0, /5/$$

$$\frac{d^2 S(\partial_p)}{\partial_p^2} + \cot \partial_p \frac{dS(\partial_p)}{d\partial_p} + [\lambda_{\ell m} - u_2(\partial_p) - k^2 a^2 \cos \partial_p - \frac{m^2}{\sin^2 \partial_p}] S(\partial_p) = 0. /6/$$

Эквипотенциальные поверхности u_1 = const представляют собой аксиально-симметричные эллипсоиды. Если энергия отвечает состояниям непрерывного спектра, собственные значения $\lambda(k^2)$ вычисляются непосредственно из /6/ - из условия разрешимости /6/ с соответствующими граничными условиями. При a = 0: $\lambda_{\ell_m}(a=0)$ = = $\ell(\ell+1)$. При $k^2 < 0$ спектр дискретен, и k^2 и λ_{ℓ_m} должны определяться из условия совместной разрешимости системы уравнений $^{/5,6/}$.

Аналогичные формулы получаются для сплюснутых СК. Для потенциалов вида

$$u = \frac{u_{1}(\rho_{ob}) + u_{2}(\partial_{ob})}{\rho_{ob}^{2} + a^{2}\cos^{2}\partial_{ob}}$$
 /7/

"радиальное" уравнение имеет вид: $(R(\rho_{ob}) = \frac{1}{\sqrt{\rho_{ob}^{t} + a^{2}}} v(\rho_{ob}))$:

$$\frac{d^{2}v(\rho_{ob})}{d\rho_{ob}^{\prime}} + \left[k^{2} - \frac{u_{1} + \lambda\rho_{m}}{\rho_{ob}^{2} + a^{2}} + \frac{a^{2}(m^{2} - 1)}{(\rho_{ob}^{2} + a^{2})^{2}}\right]v(\rho_{ob}) = 0.$$
 /8/

Специфика уравнений /5/, /8/ по сравнению со случаем сферической симметрии состоит в том, что в них имеется по два "центробежных барьера". Из них только один сингулярен при $\rho_{\rm p}$ = 0. Это-

2

му значению $\rho_{\rm p}$ = 0 соответствует при вытянутых СК целый отрезок, точки которого отличаются значениями $\partial_{\rm p}$, а при сплюснутых СК: $\rho_{\rm ob}$ = 0 - диск /"монетка"/, точки которого характеризуются значениями $\partial_{\rm ob}$, ϕ_{\circ}

Рассмотрим вид потенциалов /3/, /7/, если выбрано ${\rm u}_1(\rho)/\rho^2$ в форме гауссовой ямы

$$\frac{u_1(\rho)}{\rho^2} = V_0 \exp\{-(\rho/\rho^0)^2\}, \quad V_0 < 0.$$
(9)

Потенциалы /3/, /7/ обращаются в нуль при $\rho = 0$, то есть дно у потенциальных ям получается не гладкое, а с подьемом в средней ее части. Один способ устранить этот центральный бугор – выбрать для вытянутой ямы добавочную угловую зависимость $u_2(\partial_p) = V_0 a^2 \sin^2 \partial_p$ а для сплюснутой $u_2(\partial_{0b}) = V_0 a^2 \cos^2 \partial_{0b}$. Для любых u_1 при этом получается $u(\rho = 0) = V_0$, а в уравнении по переменной ∂ это эк-вивалентно замене параметров: $\lambda \to \lambda - V_0 a^2$ и $k^2 \to k^2 - V_0$, так что процедура вычисления $\lambda \ell_m$ не изменяется по сравнению со случаем $u_2 = 0$. Однако отличная от нуля угловая часть приводит к появлению медленно /как $1/\rho^2$ / спадающей компоненты у потенциала. Правда, она несущественна для бесконечноглубоких запирающих ям.

Если же положить полный потенциал равным нулю при $\rho > r_o$, то разделение переменных возможно <u>отдельно</u> во внутренней области взаимодействия и во внешней области свободного движения. Рассеяние тогда можно описывать в рамках R-матричной теории.

4. МЕТОД НЬЮТОНА - САБАТЬЕ В СК

*Этот метод был рассмотрен в 97 в вытянутых СК и по форме не отличался от случая сплюснутых СК. Нормируем "радиальную" составляющую волновой функции $R_{\ell m}(\rho)$, регулярную в нуле, выбором асимптотики (R - решение уравнения /5/ или /8/):

$$R_{\ell_m}(\rho) \rightarrow \sin\left(k\rho - \frac{\pi(\ell + |m|)}{2} + \delta_{\ell_m}\right). \qquad (10)$$

Предполагаем существование уравнения Гельфанда - Левитана

$$K(\rho, \rho') + Q(\rho, \rho') + \int_{0}^{\rho} K(\rho, \rho'') Q(\rho', \rho') \frac{d\rho''}{\rho''^{2} + a^{2}}, \qquad /11/$$

где

$$Q(\rho, \rho') = \sum_{\ell_m} C_{\ell_m} \overset{o}{R}_{\ell_m}(\rho) \overset{o}{R}_{\ell_m}(\rho'), \qquad (12)$$

$$K(\rho, \rho') = -\sum_{\ell_m} C_{\ell_m} R_{\ell_m}(\rho) R_{\ell_m}(\rho'), \qquad (13)$$

а R - функции свободного движения. Для волновой функции R имеем

$$R_{\ell_{m}}(\rho) = \overset{o}{R}_{\ell_{m}}(\rho) + \overset{o}{\underset{o}{\int}} K(\rho,\rho') \overset{o}{R}_{\ell_{m}}(\rho') \frac{d\rho'}{\rho'^{2} + a^{2}},$$

$$R_{\ell_{m}}(\rho) = \overset{o}{R}_{\ell_{m}}(\rho) - \overset{\Sigma}{\underset{\ell'm}{\sum}} C_{\ell'm'} R_{\ell'm'}(\rho) L_{\ell\ell'mm'}(\rho). \qquad (14)$$

 $L_{\ell\ell'mm'}(\rho) = \int_{0}^{\rho} R_{\ell'm'}(\rho') R_{\ell m}(\rho') \frac{d\rho'}{\rho'^{2} + a^{2}} .$

Поскольку в обратной задаче известно асимптотическое поведение, то подставляя /10/ в /14/ при $\rho \to \infty$, получаем систему алгебра-ических уравнений для определения коэффициентов $C_{\ell m}$. Затем из /14/, но уже при произвольных ρ находим $R_{\ell m}\left(\rho\right)$, которая за-дает К(ρ,ρ '), диагональные значения этого ядра определяют потенциал

$$u_{1}(\rho) = -2\sqrt{\rho^{2} + a^{2}} \frac{d}{d\rho} \frac{K(\rho, \rho)}{\sqrt{\rho^{2} + a^{2}}}.$$
 (15/

5. РЕШЕНИЕ ОБРАТНОЙ ЗАДАЧИ В КОНЕЧНО-РАЗНОСТНОМ ПРИБЛИЖЕНИИ

Для сферически-симметричного случая Хушияр и Разави / 10/ преобразовывали радиальную волновую функцию $R(r) = r^{\ell+1} r(r)$. Этим они добивались того, что уравнение принимало вид, удобный для решения обратной задачи в разностном приближении, к тому же $\chi \rightarrow 1$. Последнее обстоятельство представляется несущественным, $r \rightarrow 0$ и мы откажемся от него при обобщении метода / 10/ на случай деформированных потенциалов. Тогда можно подобно / 10/ использовать преобразования R (ρ) = $\rho^{\ell+.1}\chi(\rho)$ или R (ρ) = $\rho^{m+1}\chi(\rho)$. Первый случай рассмотрен в ^{/9/}. Во втором – роль переменного параметра при восстановлении потенциала играет m вместо ℓ : сначала при самом большом значении m = M = N-1 находим u, (N) на краю области взаимодействия, затем при m, меньшем на единицу, решаем уравнение для у в конечно-разностном приближении, двигаясь из области, где задана асимптотика волновой функции, углубляемся еще на шаг в область взаимодействия и определяем и (N - 1), после этого с m = M - 2 проходим путь из области свободного движения через точки N, N - 1, где потенциал уже найден, и вычисляем u, (N - 2) и т.д. Все по схеме, аналогичной ^{/9,10/}.

Разностное уравнение для $\chi_m(n)$:

$$\chi_{\rm m}(n+1) = A_{\rm m}(n)\chi_{\rm m}(n) + C_{\rm m}(n)\chi_{\rm m}(n-1); C_{\rm m}(n) = \frac{m+1-n}{m+1+n};$$
 /16/

$$A_m(n) = m[2 - \Delta^2(k^2 - w_n)]/(m + 1 + n).$$

$$w_{n} = \frac{u_{1}(n) + \lambda}{\Delta^{2}n^{2} + a^{2}} - \frac{m(m+1)}{\Delta^{2}n^{2}} + \frac{a^{2}}{\Delta^{2}n^{2}(\Delta^{2}n^{2} + a^{2})}(m^{2} - \frac{2\Delta^{2}n^{2} - a^{2}}{4(\Delta^{2}n^{2} + a^{2})})$$

Принципиально важно обращение в нуль коэффициента $C_m(n)$ при каждом новом /уменьшенном на единицу/ значении m в нужном мессте $n = n_m = m + 1$. При каждом проходе-решении от больших значений ρ к меньшим с фиксированным m сначала двигаемся по области, где потенциал был определен раньше, затем достигаем точки, где $V(n_m)$ еще неизвестен, и здесь-то исчезновение $C_n(m)$ устраняет лишнюю неизвестную/функцию $\chi_m(n)$ в точке $n \neq n_m - 1/$, что позволяет выразить новое значение искомого потенциала.

В задачах, где исходными являются спектральные параметры дискретных уровней /бесконечно глубокие ямы, Я-матричная теория рассеяния/, вместе с m(l) нужно менять и значение энергии при новом проходе-решении. Это не мешает использовать указанную выше схему решения, хотя в оригинальной версии метода / 10/ возможность изменения энергии и не предусматривалась.

Если по условию задачи нужно найти и отличный от нуля потенциал \mathfrak{u}_2 , то аналогичная процедура производится с угловым уравнением. Исходными данными при этом могут служить общие "собственные значения" $\lambda \ell_m k^2$ для обоих уравнений и значения функций R,S на краю области интегрирования /нормировачные параметры/.

Указанная выше модификация формализма / 10/ - изменение энергии в процессе решения и совместное решение нескольких уравнений - позволяет перейти к решению обратной задачи для потенциалов с трехосной деформацией, допускающих разделение переменных в эллипсоидальных координатах /ЭК/.Если в случае аксиальной симметрии уравнение по ϕ решалось независимо /константы разделения связывали лишь парциальные уравнения по ρ и ∂ /, то все три парциальных уравнения по ЭК должны решаться совместно. По схеме решения предыдущих задач можно и здесь найти потенциалы от трех переменных $u_1(\xi_1)$, $u_2(\xi_2)$, $u_3(\xi_3)$, как при фиксированной энергии из области непрерывного спектра, благодаря свободе выбора Е из континуума, несмотря на связи, так и с переменными Е в случае дискретного спектра.

6. ЗАКЛЮЧЕНИЕ

Случаи разделения переменных при несферических потенциалах обогатили арсенал методов решения обратных задач и представляют интерес своими непривычными особенностями /связи уравнений через константы разделения, своеобразный вариант R-матричной теории/. Теперь нужно проверить практическую устойчивость численного решения по предложенным алгоритмам /см. также преобразование $^{13/}$ R(ρ) = f(ρ) $_{\chi}(\rho)$, обобщающее R(ρ) = $\rho^{\ell+1}$ $_{\chi}(\rho)$ /.

Авторы благодарны А.А.Сузько, В.Н.Пивоварчику, Н.Ф.Трусковой за полезные дискуссии.

ЛИТЕРАТУРА

- Newton R. Scattering of Waves and Particles, 2-nd Ed. Springer, N.Y., 1982.
- 2. Шадан К., Сабатье П. Обратные задачи в квантовой теории рассеяния. "Мир", М., 1980.
- 3. Захарьев Б.Н., Сузько А.А. Потенциалы и квантовое рассеяние. Прямая и обратная задачи. Энергоатомиздат, М., 1985.
- 4. Münchow M., Scheid W. Phys.Rev.Lett., 1980, vol.44, p.1299; May K.E., Münchow M., Schied W. Phys.Lett., 1984, B141, p.1; Lipperheide R., Fidelday H. Z.Phys. 1981, vol.A301, p.81.
- 5. Захарьев Б.Н., Рудяк Б.В. ОИЯИ Р4-84-759, Дубна, 1984.
- ó. Kay T., Moses M.E. Nuovo Cim., 1961, 22, p.689.
- 7. Фаддеев Л.Д. В кн.: Современные проблемы математики. Изд-во ВИНИТИ, М., 1974, т.3, с.93.
- 8. Cheney M. J.Math.Phys. 25, 1984, p.94, 1449 and 2988.
- 9. Захарьев Б.Н., Сузько А.А., Пивоварчик В.Н. Изв.АН СССР сер.физ. 1985, 49, №11, с.2227; Захарьев Б.Н., Функе Х. Краткие сообщ.0ИЯИ №12-85, Дубна, 1985, с.35.
- 10. Hooshyar M.A., Razavy M. Can.J.Phys., 1981, vol.59, No.11, p.1627.
- Морзе П.М., Фешбах Х. Методы теоретической физики, М.ИЛ, 1958; Flammer C. Spheroidal wave functions. Stanf.Univ. Press., Stanford, 1977.
- Комаров И.В., Пономарев Л.И., Славянов С.Ю. Сфероидальные и кулоновские сфероидальные функции. "Наука", М., 1976.
- 13. Zakhariev B.N. JINR, E4-86-96, Dubna, 1986.

Рукопись поступила в издательский отдел 4 июля 1986 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1 р. 75 к.
Д9-82-6 6 4	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3 р. 30 к.
Д3,4-82-704	Труды IV Международной школы по нейтронной физике. Дубна, 1982.	5 p. 00 x.
Д11-83-511	Труды совещания по системам и методам аналитических вычислений на ЭВМ и их применению в теоретической физике. Дубна, 1982.	2 р. 50 к.
Д7-83-644	Труды Международной школы-семинара по физике гяжелых ионов. Алушта, 1983.	6 р. 55 к.
A2,13-83-689	Труды рабочего совещания по пробленам излучения и детектирования гравитационных волн. Дубна, 1983.	2 р. 00 к.
Д13-84-6 3	Труды XI Международного симпозиума по ядерной электронике. Братислава, Чехословакия, 1983.	4 р. 50 к.
Д2-84-36 6	Труды 7 Международного совещания по проблемам квантовой теории поля. Алушта, 1984.	4 р. 30 к.
Д1,2-84-599	Труды VII Международного семинара по проблемам Физики высоких энергий. Дубна, 1984.	5 p. 50 k.
х Д17-84-850	Труды Ш Международного симпозиума по избранным проблемам статистической механики. Дубна,1984. /2 тома/	7 p. 75 k.
Д10,11-84-818	Труды V Международного совещания по про- блемам математического моделирования, про- граммированию и математическим методам реше- ния физических задач. Дубна, 1983	3 р. 50 к.
	Труды IX Всесоюзного совещания по ускорителям зарлженных частиц. Дубна, 1984 /2 тома/	13 р.50 к.
Д4-85-851	Труды Международной школы по структуре ядра, Алушта, 1985.	3 p. 75 K.
Д11-85 -79 1	Труды Международного совещания по аналитическим вычислениям на ЭВМ и их применению в теоретиче- ской физике. Дубна,1985.	4 р.
Д13-85 -79 3	Труды — ХП Международного симпозиума по ядерной электроныке, Дубна 1985.	4 р. 80 к.
Зак. Издате,	азы на упомянутые книги могут быть направлены 101000 Москва, Главпочтамт, п/я 7 льский отдел Объединениого ниститута ядерных	по адресу: 9 Исследований

Захарьев Б.Н., Функе Х. Р4-86-442 Восстановление трехмерных несферических потенциалов по данным рассеяния

Обратная задача для аксиально-симметричных потенциалов, допускающих разделение переменных в уравнении Шредингера в сфероидальных координатах ^{/9/}, распространяется на случай чисто дискретного спектра: R-матричную теорию рассеяния и запирающие бесконечно-глубокие ямы. Предлагается использовать тот же формализм и для восстановления потенциалов, для которых разделяются переменные в эллипсоидальных координатах /трехосные деформации/.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1986

Перевод Т.Ю.Думбрайс

Zakhariev B.N., Funke H. P4-86-442 Inverse Scattering Problem for Deformed Three-Dimensional Potentials		
The inverse problem for axial-deformed potentials which allow the separation of variables in the Schroedinger equation in spheroidal coordinates is formulated for a pure discrete spectrum; R-matrix scattering theory and confinement potential wells. The same formalism is suggested to apply for reconstruc- ting potentials for which the variables are separated in elli- psoidal coordinates (three-axial deformation).		
The investigation has been performed at the Laboratory of Theoretical Physics, JINR.		
Preprint of the Joint Institute for Nuclear Research. Dubna 1986		